Forest 3D Reconstruction and Individual Tree Parameter Extraction Combining Close-Range Photo Enhancement and Feature Matching
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.2.1. Image Enhancement
2.2.2. 3D Model Reconstruction
2.2.3. Parameter Extraction Based on 3D Forest Model
2.2.4. Accuracy Verification
3. Results
3.1. Results of Different Image Enhancement Methods
3.2. Results of Feature Matching
3.3. 3D Forest Model Reconstruction Results
3.4. Individual Tree DBH Extraction
4. Discussion
4.1. The Effects of Different Image Enhancement Algorithms on 3D Reconstruction
4.2. The Effects of Different Tree Species and Terrain on 3D Reconstruction and Parameter Extraction
4.3. Research Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chirico, G.B.; Bonavolontà, F. Metrology for Agriculture and Forestry 2019. Sensors 2020, 20, 3498. [Google Scholar] [CrossRef]
- Holopainen, M.; Vastaranta, M.; Hyyppä, J. Outlook for the Next Generation’s Precision Forestry in Finland. Forests 2014, 5, 1682–1694. [Google Scholar] [CrossRef] [Green Version]
- You, L.; Tang, S.; Song, X.; Lei, Y.; Zang, H.; Lou, M.; Zhuang, C. Precise Measurement of Stem Diameter by Simulating the Path of Diameter Tape from Terrestrial Laser Scanning Data. Remote Sens. 2016, 8, 717. [Google Scholar] [CrossRef] [Green Version]
- Pitkänen, T.P.; Raumonen, P.; Kangas, A. Measuring stem diameters with TLS in boreal forests by complementary fitting procedure. ISPRS J. Photogramm. Remote Sens. 2019, 147, 294–306. [Google Scholar] [CrossRef]
- Akay, A.E.; Oğuz, H.; Karas, I.R.; Aruga, K. Using LiDAR technology in forestry activities. Environ. Monit. Assess. 2008, 151, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Faugeras, O.D.; Faugeras, O.D.; Luong, Q.-T.; Luong, Q.-T.; Maybank, S.J.; Maybank, S.J. Camera self-calibration: Theory and experiments. In Computer Vision—ECCV’92; Springer: Berlin/Heidelberg, Germany, 1992; pp. 321–334. [Google Scholar]
- Alex, M.A. Multiple View Geometry in Computer Vision. Kybernetes 2001, 30, 1333–1341. [Google Scholar]
- Petschko, H.; Goetz, J.; Böttner, M.; Firla, M.; Schmidt, S. Erosion Processes and Mass Movements in Sinkholes Assessed by Terrestrial Structure from Motion Photogrammetry. Available online: https://link.springer.com/chapter/10.1007/978-3-319-53498-5_26 (accessed on 20 April 2021).
- Liang, X.; Wang, Y.; Jaakkola, A.; Kukko, A.; Kaartinen, H.; Hyyppa, J.; Honkavaara, E.; Liu, J. Forest Data Collection Using Terrestrial Image-Based Point Clouds from a Handheld Camera Compared to Terrestrial and Personal Laser Scanning. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5117–5132. [Google Scholar] [CrossRef]
- Ullman, S. The Interpretation of Structure from Motion. Proc. R. Soc. Lond. B Biol. Sci. 1979, 203, 405–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schonberger, J.L.; Frahm, J.M. Structure-From-Motion Revisited. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 4104–4113. [Google Scholar]
- Luhmann, T. Close range photogrammetry for industrial applications. ISPRS J. Photogramm. Remote Sens. 2010, 65, 558–569. [Google Scholar] [CrossRef]
- Martin, M. Evaluation of Close-Range Photogrammetry Image Collection Methods for Estimating Tree Diameters. Int. J. Geo-Inf. 2018, 7, 93. [Google Scholar]
- Forsman, M.; Holmgren, J.; Olofsson, K. Tree Stem Diameter Estimation from Mobile Laser Scanning Using Line-Wise Intensity-Based Clustering. Forests 2016, 7, 206. [Google Scholar] [CrossRef] [Green Version]
- Mikita, T.; Janata, P.; Surový, P. Forest Stand Inventory Based on Combined Aerial and Terrestrial Close-Range Photogrammetry. Forests 2016, 7, 165. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Yun, T.; Liang, F.; Li, W.; Zhang, T.; Sun, Y. Study of Obtain of Key Parameters of Forest Stand Based on Close Range Photogrammetry. Sci. Technol. Eng. 2017, 17, 85–92. [Google Scholar]
- Hua, Y.; Xianyu, M.; Yan, L.; Jun, C. Measurement and Calculation Methods of a Stem Image Information. Front. For. China 2006, 1, 59–63. [Google Scholar]
- Hapca, A.I.; Mothe, F.; Leban, J.M. A digital photographic method for 3D reconstruction of standing tree shape. Ann. For. Sci. 2007, 64, 631–637. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Jaakkola, A.; Wang, Y.; Hyyppä, J.; Honkavaara, E.; Liu, J.; Kaartinen, H. The Use of a Hand-Held Camera for Individual Tree 3D Mapping in Forest Sample Plots. Remote Sens. 2014, 6, 6587–6603. [Google Scholar] [CrossRef] [Green Version]
- Dick, A.R.; Kershaw, J.A.; MacLean, D.A. Spatial Tree Mapping Using Photography. North. J. Appl. For. 2010, 27, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Surový, P.; Yoshimoto, A.; Panagiotidis, D. Accuracy of Reconstruction of the Tree Stem Surface Using Terrestrial Close-Range Photogrammetry. Remote Sens. 2016, 8, 123. [Google Scholar] [CrossRef] [Green Version]
- Goesele, M.; Curless, B.; Seitz, S.M. Multi-View Stereo Revisited. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), New York, NY, USA, 17–22 June 2006. [Google Scholar]
- Goesele, M.; Snavely, N.; Curless, B.; Hoppe, H.; Seitz, S.M. Multi-View Stereo for Community Photo Collections. In Proceedings of the 2007 IEEE 11th International Conference on Computer Vision 2007, Rio de Janeiro, Brazil, 14–20 October 2007; pp. 1–8. [Google Scholar]
- Liu, L. Automated Registration of 2D Images with 3D Range Data in a Photorealistic Modeling System of Urban Scenes. Ph.D. Thesis, City University of New York, New York, NY, USA, 2007. [Google Scholar]
- Pollefeys, M.; Koch, R.; Van Gool, L. Self-calibration and metric reconstruction in spite of varying and unknown internal camera parameters. In Proceedings of the International Conference on Computer Vision, Copenhagen, Denmark, 28–31 May 2002. [Google Scholar]
- Voicu, L.I.; Myler, H.R.; Weeks, A.R. Practical considerations on color image enhancement using homomorphic filtering. J. Electron. Imaging 1997, 6, 108–113. [Google Scholar] [CrossRef]
- Fattal, R.; Lischinski, D.; Werman, M. Gradient domain high dynamic range compression. In Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, San Antonio, TX, USA, 23–26 July 2002. [Google Scholar]
- Hua, B.; Gruson, A.; Petitjean, V.; Zwicker, M.; Nowrouzezahrai, D.; Eisemann, E.; Hachisuka, T. A Survey on Gradient-Domain Rendering. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13652 (accessed on 20 April 2021).
- Prada, F.; Kazhdan, M.; Chuang, M.; Hoppe, H. Gradient-domain processing within a texture atlas. ACM Trans. Graph. 2018, 37, 1–14. [Google Scholar] [CrossRef]
- Yin, W.; Lin, X.; Sun, Y. A novel framework for low-light colour image enhancement and denoising. In Proceedings of the 2011 3rd International Conference on Awareness Science and Technology, iCAST 2011, Dalian, China, 27–30 September 2011. [Google Scholar]
- Pitas, I.; Venetsanopoulos, A.N. Nonlinear Digital Filters: Principles and Applications. Available online: https://www.springer.com/gp/book/9780792390497 (accessed on 20 April 2021).
- Lo, W.Y.; Puchalski, S.M. Digital image processing. Veter Radiol. Ultrasound 2008, 49 (Suppl. 1), S42–S47. [Google Scholar] [CrossRef]
- Land, E.H. Recent advances in retinex theory and some implications for cortical computations: Color vision and the natural image. Proc. Natl. Acad. Sci. USA 1983, 80, 5163–5169. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zheng, J.; Hu, H.; Li, B. Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE Trans. Image Proc. 2013, 22, 3538–3548. [Google Scholar] [CrossRef] [PubMed]
- Hao, P.; Wang, S.; Li, S.; Yang, M. Low-Light Image Enhancement Based on Retinex and Saliency Theories. In Proceedings of the 2019 Chinese Automation Congress (CAC), Hangzhou, China, 22–24 November 2019. [Google Scholar]
- Choi, D.H.; Jang, I.H.; Kim, M.H.; Kim, N.C. Color image enhancement using single-scale retinex based on an improved image formation model. In Proceedings of the European Signal Processing Conference, Lausanne, Switzerland, 25–29 August 2008. [Google Scholar]
- Wang, W.; Li, B.; Zheng, J.; Xian, S.; Wang, J. A fast Multi-Scale Retinex algorithm for color image enhancement. In Proceedings of the International Conference on Wavelet Analysis & Pattern Recognition, Hong Kong, China, 30–31 August 2008. [Google Scholar]
- Uliyan, D.M.; Alshammari, M.T. Investigation of image forgery based on multiscale retinex under illumination variations. J. Intell. Fuzzy Syst. 2020, 21, 1–12. [Google Scholar] [CrossRef]
- Zotin, A. Fast algorithm of image enhancement based on multi-scale retinex. Int. J. Reason. Based Intell. Syst. 2020, 12, 106. [Google Scholar] [CrossRef]
- Jobson, D.; Rahman, Z.; Woodell, G. A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans. Image Process. 1997, 6, 965–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sizintsev, M.; Wildes, R.P. Spacetime Stereo and 3D Flow via Binocular Spatiotemporal Orientation Analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 2241–2254. [Google Scholar] [CrossRef] [PubMed]
- Harris, C.; Stephens, M. A Combined Corner and Edge Detector. In Proceedings of the 4th Alvey Vision Conference, Manchester, UK, 31 August–2 September 1988; pp. 147–151. [Google Scholar]
- Bay, H. SURF: Speeded Up Robust Features. Comput. Vis. Image Underst. 2006, 110, 404–417. [Google Scholar]
- Lowe, D.G. Object Recognition from Scale-Invariant Keypoints; Iccv: Vancouver, BC, Canada, 1999. [Google Scholar]
- Schnabel, R.; Wahl, R.; Klein, R. Efficient RANSAC for Point-Cloud Shape Detection. Comput. Graph. Forum 2007, 26, 214–226. [Google Scholar] [CrossRef]
- Schnabel, R.; Wahl, R.; Klein, R. RANSAC Based Out-of-Core Point-Cloud Shape Detection for City-Modeling. Proc. Terr. Laserscanning 2007, 26, 214–226. [Google Scholar]
- Cheng, S.W.; Dey, T.K.; Shewchuk, J. Delaunay Mesh Generation. Comput. Math. Math. Phys. 2013, 50, 38–53. [Google Scholar]
- Zhou, D.; Xu, Y.; Zhang, Q.; Wei, X. A new triangulation algorithm from 3D unorganized dense point cloud. In Proceedings of the Tencon IEEE Region 10 Conference, Macao, China, 1–4 November 2015; pp. 1–6. [Google Scholar]
- Choi, D.H.; Jang, I.H.; Kim, M.H.; Kim, N.C. Color Image Enhancement Based on Single-Scale Retinex with a JND-Based Nonlinear Filter. In Proceedings of the International Symposium on Circuits and Systems (ISCAS 2007), New Orleans, LA, USA, 20–27 May 2007. [Google Scholar]
- Wang, C.; Peng, M.; Xu, L.; Chen, T. A single scale retinex based method for palm vein extraction. In Proceedings of the 2016 IEEE Information Technology, Networking, Electronic and Automation Control Conference, Chongqing, China, 20–22 May 2016; pp. 75–78. [Google Scholar]
- Wang, D.; Bei, J.; Gu, S.; Nie, R. Operating Mode and Method on Information Collection Systems of GPS Close-range Photogrammetry. In Proceedings of the 3rd China Satellite Navigation Academic Annual Conference—S01 Beidou/GNSS Navigation Application, Chengdu, China, 23–25 May 2012. [Google Scholar]
- Zeng, W.; Zhong, S.D.; Yao, Y.; Shao, Z.F. 3D Model Reconstruction Based on Close-Range Photogrammetry. Appl. Mech. Mater. 2012, 263-266, 2393–2398. [Google Scholar] [CrossRef]
Sample Plot | Stand Type | Slope (°) | Main Tree Species | Number of Trees |
---|---|---|---|---|
1 | Evergreen broadleaf forest | 13 | Eucalyptus grandis | 35 |
2 | Evergreen broadleaf forest | 27 | Taxus chinensis | 28 |
3 | Coniferous forest | 15 | Larix gmelinii | 40 |
4 | Coniferous forest | 25 | Pinus tabuliformis | 47 |
Tree Species | Point Cloud Number of the Original IMAGES (104) | Point cloud Number after Enhancement (104) | The Increased Number of Point Cloud (104) | The Proportion of Increased Number of the Point Cloud (%) |
---|---|---|---|---|
Eucalyptus grandis | 311.67 | 313.36 | 1.691 | 0.54 |
Taxus chinensis | 12.13 | 14.37 | 2.24 | 18.47 |
Larix gmelinii | 177.39 | 222.10 | 44.71 | 25.20 |
Pinus tabuliformis | 22.89 | 28.12 | 5.23 | 22.85 |
Tree Species | Number of Investigated Trees | Number of Reconstructed Trees | Reconstruction Rate (r) |
---|---|---|---|
Eucalyptus grandis | 35 | 28 | 80% |
Taxus chinensis | 28 | 18 | 64% |
Larix gmelinii | 40 | 31 | 78% |
Pinus tabuliformis | 47 | 29 | 62% |
Tree Species | Average of Extracted DBH (cm) | Average of Measured DBH (cm) | RE (%) | PRE (%) |
---|---|---|---|---|
Eucalyptus grandis | 24.30 | 24.30 | 5.34 | 94.66 |
Taxus chinensis | 17.31 | 17.31 | 4.96 | 95.04 |
Larix gmelinii | 17.90 | 17.90 | 3.12 | 96.88 |
Pinus tabuliformis | 16.42 | 15.49 | 8.48 | 91.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, R.; Guo, Z.; Zhang, X. Forest 3D Reconstruction and Individual Tree Parameter Extraction Combining Close-Range Photo Enhancement and Feature Matching. Remote Sens. 2021, 13, 1633. https://doi.org/10.3390/rs13091633
Zhu R, Guo Z, Zhang X. Forest 3D Reconstruction and Individual Tree Parameter Extraction Combining Close-Range Photo Enhancement and Feature Matching. Remote Sensing. 2021; 13(9):1633. https://doi.org/10.3390/rs13091633
Chicago/Turabian StyleZhu, Ruoning, Zhengqi Guo, and Xiaoli Zhang. 2021. "Forest 3D Reconstruction and Individual Tree Parameter Extraction Combining Close-Range Photo Enhancement and Feature Matching" Remote Sensing 13, no. 9: 1633. https://doi.org/10.3390/rs13091633
APA StyleZhu, R., Guo, Z., & Zhang, X. (2021). Forest 3D Reconstruction and Individual Tree Parameter Extraction Combining Close-Range Photo Enhancement and Feature Matching. Remote Sensing, 13(9), 1633. https://doi.org/10.3390/rs13091633