Figure 1.
Classification overall accuracy (OA) of artificial neural network (ANN) with increasing parameter subset (a) Flevoland, (b) Oberpfaffenhofen, and (c) Xi’an.
Figure 1.
Classification overall accuracy (OA) of artificial neural network (ANN) with increasing parameter subset (a) Flevoland, (b) Oberpfaffenhofen, and (c) Xi’an.
Figure 2.
Three fully polarimetric images. (a) PauliRGB image of Flevoland, (b) ground-truth map with (c) legend; (d) PauliRGB image of Oberpfaffenhofen, (e) ground-truth map with (f) legend; and (g) PauliRGB image of Xi’an area, (h) ground-truth map with (i) legend.
Figure 2.
Three fully polarimetric images. (a) PauliRGB image of Flevoland, (b) ground-truth map with (c) legend; (d) PauliRGB image of Oberpfaffenhofen, (e) ground-truth map with (f) legend; and (g) PauliRGB image of Xi’an area, (h) ground-truth map with (i) legend.
Figure 3.
Classification result of the ground-truth map of Flevoland image obtained by four classifiers on different forms of Touzi decomposition parameters, including (a) SVM on original parameters, (b) ANN on original parameters, (c) autoencoder (AE) on original parameters, (d) classifier based on AE (AEFT) on original parameters, (e) SVM on normalized parameters, (f) ANN on normalized parameters, (g) AE on normalized parameters, and (h) AEFT on normalized parameters.
Figure 3.
Classification result of the ground-truth map of Flevoland image obtained by four classifiers on different forms of Touzi decomposition parameters, including (a) SVM on original parameters, (b) ANN on original parameters, (c) autoencoder (AE) on original parameters, (d) classifier based on AE (AEFT) on original parameters, (e) SVM on normalized parameters, (f) ANN on normalized parameters, (g) AE on normalized parameters, and (h) AEFT on normalized parameters.
Figure 4.
Prediction result of Flevoland image obtained by four classifiers on different forms of Touzi decomposition parameters, including (a) SVM on original parameters, (b) SVM on normalized parameters, (c) ANN on original parameters, (d) ANN on normalized parameters, (e) AE on original parameters, (f) AE on normalized parameters, (g) AEFT on original parameters, and (h) AEFT on normalized parameters.
Figure 4.
Prediction result of Flevoland image obtained by four classifiers on different forms of Touzi decomposition parameters, including (a) SVM on original parameters, (b) SVM on normalized parameters, (c) ANN on original parameters, (d) ANN on normalized parameters, (e) AE on original parameters, (f) AE on normalized parameters, (g) AEFT on original parameters, and (h) AEFT on normalized parameters.
Figure 5.
Prediction result of Oberpfaffenhofen image obtained by four classifiers on different forms of Touzi decomposition parameters, including (a) SVM on original parameters, (b) SVM on normalized parameters, (c) ANN on original parameters, (d) ANN on normalized parameters, (e) AE on original parameters, (f) AE on normalized parameters, (g) AEFT on original parameters, and (h) AEFT on normalized parameters.
Figure 5.
Prediction result of Oberpfaffenhofen image obtained by four classifiers on different forms of Touzi decomposition parameters, including (a) SVM on original parameters, (b) SVM on normalized parameters, (c) ANN on original parameters, (d) ANN on normalized parameters, (e) AE on original parameters, (f) AE on normalized parameters, (g) AEFT on original parameters, and (h) AEFT on normalized parameters.
Figure 6.
Prediction result of Xi’an area obtained by four classifiers on different forms of Touzi decomposition parameters, including (a) SVM on original parameters, (b) SVM on normalized parameters, (c) ANN on original parameters, (d) ANN on normalized parameters, (e) AE on original parameters, (f) AE on normalized parameters, (g) AEFT on original parameters, and (h) AEFT on normalized parameters.
Figure 6.
Prediction result of Xi’an area obtained by four classifiers on different forms of Touzi decomposition parameters, including (a) SVM on original parameters, (b) SVM on normalized parameters, (c) ANN on original parameters, (d) ANN on normalized parameters, (e) AE on original parameters, (f) AE on normalized parameters, (g) AEFT on original parameters, and (h) AEFT on normalized parameters.
Figure 7.
Prediction result of Flevoland image obtained by different methods, including (a) SVM on the learned parameters, (b) SVM on all the parameters, (c) ANN on the learned parameters, (d) ANN on all the parameters, (e) AE on the learned parameters, (f) AE on all the parameters, (g) AEFT on the learned parameters, and (h) AEFT on all the parameters.
Figure 7.
Prediction result of Flevoland image obtained by different methods, including (a) SVM on the learned parameters, (b) SVM on all the parameters, (c) ANN on the learned parameters, (d) ANN on all the parameters, (e) AE on the learned parameters, (f) AE on all the parameters, (g) AEFT on the learned parameters, and (h) AEFT on all the parameters.
Figure 8.
Prediction result of Flevoland image obtained by different methods, including (a) SVM on the learned parameters, (b) SVM on all the parameters, (c) ANN on the learned parameters, (d) ANN on all the parameters, (e) AE on the learned parameters, (f) AE on all the parameters, (g) AEFT on the learned parameters, and (h) AEFT on all the parameters.
Figure 8.
Prediction result of Flevoland image obtained by different methods, including (a) SVM on the learned parameters, (b) SVM on all the parameters, (c) ANN on the learned parameters, (d) ANN on all the parameters, (e) AE on the learned parameters, (f) AE on all the parameters, (g) AEFT on the learned parameters, and (h) AEFT on all the parameters.
Figure 9.
Prediction result of Oberpfaffenhofen image obtained by different methods, including (a) SVM on the learned
parameters, (b) SVM on all the parameters, (c) ANN on the learned parameters, (d) ANN on all the parameters, (e) AE on the learned parameters, (f) AE on all the parameters, (g) AEFT on the learned parameters, and (h) AEFT on all the parameters.
Figure 9.
Prediction result of Oberpfaffenhofen image obtained by different methods, including (a) SVM on the learned
parameters, (b) SVM on all the parameters, (c) ANN on the learned parameters, (d) ANN on all the parameters, (e) AE on the learned parameters, (f) AE on all the parameters, (g) AEFT on the learned parameters, and (h) AEFT on all the parameters.
Figure 10.
Prediction result of Xi’an area obtained by different methods, including (a) SVM on the learned parameters, (b) SVM on all the parameters, (c) ANN on the learned parameters, (d) ANN on all the parameters, (e) AE on the learned parameters, (f) AE on all the parameters, (g) AEFT on the learned parameters, and (h) AEFT on all the parameters.
Figure 10.
Prediction result of Xi’an area obtained by different methods, including (a) SVM on the learned parameters, (b) SVM on all the parameters, (c) ANN on the learned parameters, (d) ANN on all the parameters, (e) AE on the learned parameters, (f) AE on all the parameters, (g) AEFT on the learned parameters, and (h) AEFT on all the parameters.
Figure 11.
Classification results of five classifiers on the ground-truth map of Flevoland image: (a) Ground-truth map, (b) SVM_PP, (c) SVM_LP, (d) ANN_Opt, (e) ANN_MIM, and (f) ANN_SpMI.
Figure 11.
Classification results of five classifiers on the ground-truth map of Flevoland image: (a) Ground-truth map, (b) SVM_PP, (c) SVM_LP, (d) ANN_Opt, (e) ANN_MIM, and (f) ANN_SpMI.
Figure 12.
Classification results of five classifiers on the ground-truth map of Oberpfaffenhofen image: (a) Ground-truth map, (b) SVM_PP, (c) SVM_LP, (d) ANN_Opt, (e) ANN_MIM and (f) ANN_SpMI.
Figure 12.
Classification results of five classifiers on the ground-truth map of Oberpfaffenhofen image: (a) Ground-truth map, (b) SVM_PP, (c) SVM_LP, (d) ANN_Opt, (e) ANN_MIM and (f) ANN_SpMI.
Figure 13.
Classification results of five classifiers on the ground-truth map of Xian area: (a) Ground-truth map, (b) SVM_PP, (c) SVM_LP, (d) ANN_Opt, (e) ANN_MIM, and (f) ANN_SpMI.
Figure 13.
Classification results of five classifiers on the ground-truth map of Xian area: (a) Ground-truth map, (b) SVM_PP, (c) SVM_LP, (d) ANN_Opt, (e) ANN_MIM, and (f) ANN_SpMI.
Table 1.
Parameter ranking result of Flevoland image based on different methods of mutual information.
Table 1.
Parameter ranking result of Flevoland image based on different methods of mutual information.
MIM | MRMR | TOCD-MI | Sp-MI |
---|
| | | span |
| | | |
span | span | span | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
Table 2.
Parameter ranking result of Oberpfaffenhofen image based on different methods of mutual information.
Table 2.
Parameter ranking result of Oberpfaffenhofen image based on different methods of mutual information.
MIM | MRMR | TOCD-MI | Sp-MI |
---|
| | | span |
| | | |
span | | span | |
| span | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
Table 3.
Parameter ranking result of the Xi’an area based on different methods of mutual information.
Table 3.
Parameter ranking result of the Xi’an area based on different methods of mutual information.
MIM | MRMR | TOCD-MI | Sp-MI |
---|
span | | | span |
| | | |
| | | |
| span | span | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
Table 4.
Information on three PolSAR data sets.
Table 4.
Information on three PolSAR data sets.
| Radar | Band | Year | Resolution | Size | Categories |
---|
Flevoland | AIRSAR | L | 1989 | 6.6 × 12.1 m | 750 × 1024 pixels | 15 |
Oberpfaffenhofen | E-SAR | L | 2002 | 3.0 × 2.2 m | 1300 × 1200 pixels | 3 |
Xi’an area | RADARSAT-2 | C | 2010 | 8 × 8 m | 512 × 512 pixels | 3 |
Table 5.
The distribution of training samples in each category for the scattering vector model (SVM) in Flevoland image.
Table 5.
The distribution of training samples in each category for the scattering vector model (SVM) in Flevoland image.
Category | Number of Training Samples | Number of Testing Samples |
---|
Water | 662 | 13,232 |
Stem beans | 317 | 6338 |
Potatoes | 808 | 16,156 |
Forest | 902 | 18,044 |
Grasses | 353 | 7058 |
Beet | 502 | 10,033 |
Rapeseed | 693 | 13,863 |
Peas | 479 | 9582 |
Lucerne | 509 | 10,181 |
Bare soil | 255 | 5109 |
Wheat2 | 558 | 11,159 |
Wheat | 819 | 16,386 |
Wheat3 | 1112 | 22,241 |
Buildings | 37 | 735 |
Barely | 380 | 7595 |
Total | 8386 | 167,712 |
Table 6.
The distribution of training samples in each category for the SVM in Oberpfaffenhofen image.
Table 6.
The distribution of training samples in each category for the SVM in Oberpfaffenhofen image.
Category | Number of Training Samples | Number of Testing Samples |
---|
Built-up area | 268 | 267,742 |
Wood land | 767 | 765,737 |
Open area | 340 | 339,444 |
Total | 1375 | 1,372,923 |
Table 7.
The distribution of training samples in each category for the SVM in Xi’an area.
Table 7.
The distribution of training samples in each category for the SVM in Xi’an area.
Category | Number of Training Samples | Number of Testing Samples |
---|
Urban | 84 | 83,862 |
Bench land | 118 | 117,664 |
River | 36 | 35,652 |
Total | 238 | 237,178 |
Table 8.
Objective evaluation indicators of four classifiers on the normalized parameters and the original parameters of Touzi decomposition for Flevoland image.
Table 8.
Objective evaluation indicators of four classifiers on the normalized parameters and the original parameters of Touzi decomposition for Flevoland image.
| Water | Stem Beans | Potatoes | Forest | Grasses | Beet |
---|
SVM_Ori | 0.9995 ± 0.0007 | 0.9902 ± 0.0033 | 0.9742 ± 0.0033 | 0.9781 ± 0.0039 | 0.9044 ± 0.0119 | 0.9739 ± 0.0054 |
SVM_Uni | 0.9995 ± 0.0007 | 0.9884 ± 0.0042 | 0.9737 ± 0.0037 | 0.9776 ± 0.0036 | 0.9042 ± 0.0104 | 0.9733 ± 0.0060 |
ANN_Ori | 0.8241 ± 0.0088 | 0.6553 ± 0.0130 | 0.6550 ± 0.0087 | 0.4859 ± 0.0100 | 0.5077 ± 0.0112 | 0.5622 ± 0.0101 |
ANN_Uni | 0.9947 ± 0.0005 | 0.9811 ± 0.0029 | 0.9652 ± 0.0016 | 0.9763 ± 0.0016 | 0.6186 ± 0.0146 | 0.9694 ± 0.0035 |
AE_Ori | 0.8103 ± 0.0541 | 0.5775 ± 0.0664 | 0.5753 ± 0.0633 | 0.4605 ± 0.0413 | 0.4698 ± 0.1058 | 0.2797 ± 0.0517 |
AE_Uni | 0.9956 ± 0.0008 | 0.9574 ± 0.0077 | 0.8924 ± 0.0112 | 0.8493 ± 0.0087 | 0.7955 ± 0.0093 | 0.9182 ± 0.0092 |
AEFT_Ori | 0.7655 ± 0.1698 | 0.6232 ± 0.0588 | 0.6593 ± 0.0486 | 0.4070 ± 0.0577 | 0.6711 ± 0.0713 | 0.4115 ± 0.0541 |
AEFT_Uni | 0.9988 ± 0.0011 | 0.9914 ± 0.0031 | 0.9782 ± 0.0024 | 0.9854 ± 0.0023 | 0.9255 ± 0.0065 | 0.9783 ± 0.0037 |
| Rapeseed | Peas | Lucerne | Bare soil | Wheat2 | Wheat |
SVM_Ori | 0.9591 ± 0.0053 | 0.9908 ± 0.0031 | 0.9688 ± 0.0051 | 0.9954 ± 0.0035 | 0.9445 ± 0.0059 | 0.9731 ± 0.0036 |
SVM_Uni | 0.9604 ± 0.0043 | 0.9899 ± 0.0029 | 0.9663 ± 0.0064 | 0.9954 ± 0.0033 | 0.9455 ± 0.0057 | 0.9724 ± 0.0042 |
ANN_Ori | 0.4743 ± 0.0098 | 0.6921 ± 0.0107 | 0.5854 ± 0.0128 | 0.2282 ± 0.0194 | 0.3448 ± 0.0316 | 0.8467 ± 0.0033 |
ANN_Uni | 0.9221 ± 0.0026 | 0.9864 ± 0.0017 | 0.8944 ± 0.0042 | 0.9619 ± 0.0074 | 0.9230 ± 0.0031 | 0.9508 ± 0.0033 |
AE_Ori | 0.2720 ± 0.0669 | 0.5524 ± 0.0511 | 0.4914 ± 0.0807 | 0.2592 ± 0.0584 | 0.0541 ± 0.0454 | 0.5805 ± 0.1055 |
AE_Uni | 0.8073 ± 0.0218 | 0.9490 ± 0.0086 | 0.9132 ± 0.0047 | 0.9333 ± 0.0126 | 0.7220 ± 0.0222 | 0.9020 ± 0.0090 |
AEFT_Ori | 0.2496 ± 0.0637 | 0.5406 ± 0.0742 | 0.6453 ± 0.0663 | 0.2230 ± 0.0677 | 0.0610 ± 0.0518 | 0.4286 ± 0.2283 |
AEFT_Uni | 0.9678 ± 0.0033 | 0.9913 ± 0.0021 | 0.9830 ± 0.0034 | 0.9966 ± 0.0023 | 0.9602 ± 0.0028 | 0.9777 ± 0.0029 |
| Wheat3 | Buildings | Barely | OA | | |
SVM_Ori | 0.9929 ± 0.0018 | 0.9411 ± 0.0268 | 0.9403 ± 0.0099 | 0.9730 ± 0.0012 | | |
SVM_Uni | 0.9925 ± 0.0019 | 0.9421 ± 0.0256 | 0.9404 ± 0.0078 | 0.9726 ± 0.0009 | | |
ANN_Ori | 0.8899 ± 0.0028 | 0.5054 ± 0.0961 | 0.4296 ± 0.0165 | 0.6267 ± 0.0034 | | |
ANN_Uni | 0.9890 ± 0.0012 | 0.9621 ± 0.0112 | 0.9056 ± 0.0066 | 0.9445 ± 0.0010 | | |
AE_Ori | 0.4576 ± 0.1018 | 0.1031 ± 0.1194 | 0.1341 ± 0.0574 | 0.4465 ± 0.0186 | | |
AE_Uni | 0.9466 ± 0.0059 | 0.8549 ± 0.0550 | 0.7801 ± 0.0227 | 0.8861 ± 0.0048 | | |
AEFT_Ori | 0.7154 ± 0.1477 | 0.1911 ± 0.2031 | 0.2733 ± 0.0761 | 0.4956 ± 0.0223 | | |
AEFT_Uni | 0.9946 ± 0.0012 | 0.9500 ± 0.0222 | 0.9767 ± 0.0053 | 0.9804 ± 0.0007 | | |
Table 9.
Objective evaluation indicators of four classifiers on the normalized parameters and the original parameters of Touzi decomposition for Oberpfaffenhofen image.
Table 9.
Objective evaluation indicators of four classifiers on the normalized parameters and the original parameters of Touzi decomposition for Oberpfaffenhofen image.
| Built-Up Area | Wood Land | Open Area | OA |
---|
SVM_Ori | 0.8385 ± 0.0174 | 0.9663 ± 0.0087 | 0.6849 ± 0.0193 | 0.8718 ± 0.0045 |
SVM_Uni | 0.8407 ± 0.0144 | 0.9663 ± 0.0096 | 0.6774 ± 0.0181 | 0.8704 ± 0.0051 |
ANN_Ori | 0.7766 ± 0.0070 | 0.9691 ± 0.0015 | 0.6681 ± 0.0048 | 0.8571 ± 0.0013 |
ANN_Uni | 0.7834 ± 0.0077 | 0.9752 ± 0.0011 | 0.6387 ± 0.0039 | 0.8546 ± 0.0010 |
AE_Ori | 0.6484 ± 0.0517 | 0.8819 ± 0.0108 | 0.3581 ± 0.0469 | 0.7069 ± 0.0096 |
AE_Uni | 0.7673 ± 0.0120 | 0.8417 ± 0.0065 | 0.4682 ± 0.0111 | 0.7349 ± 0.0048 |
AEFT_Ori | 0.6493 ± 0.0801 | 0.9290 ± 0.0449 | 0.4177 ± 0.1147 | 0.7481 ± 0.0189 |
AEFT_Uni | 0.8823 ± 0.0043 | 0.9704 ± 0.0021 | 0.7512 ± 0.0046 | 0.8990 ± 0.0014 |
Table 10.
Objective evaluation indicators of four classifiers on the normalized parameters and the original parameters of Touzi decomposition for Xi’an area.
Table 10.
Objective evaluation indicators of four classifiers on the normalized parameters and the original parameters of Touzi decomposition for Xi’an area.
| Urban | Bench Land | River | OA |
---|
SVM_Ori | 0.8653 ± 0.0222 | 0.8822 ± 0.0192 | 0.6290 ± 0.0750 | 0.8382 ± 0.0124 |
SVM_Uni | 0.8616 ± 0.0262 | 0.8798 ± 0.0204 | 0.6205 ± 0.0748 | 0.8344 ± 0.0138 |
ANN_Ori | 0.8578 ± 0.0029 | 0.9004 ± 0.0023 | 0.7696 ± 0.0157 | 0.8657 ± 0.0021 |
ANN_Uni | 0.8564 ± 0.0034 | 0.9026 ± 0.0021 | 0.7729 ± 0.0106 | 0.8668 ± 0.0016 |
AE_Ori | 0.6696 ± 0.0435 | 0.8738 ± 0.0182 | 0.0962 ± 0.0227 | 0.6847 ± 0.0111 |
AE_Uni | 0.8811 ± 0.0098 | 0.8942 ± 0.0040 | 0.6969 ± 0.0453 | 0.8599 ± 0.0096 |
AEFT_Ori | 0.6235 ± 0.0651 | 0.8969 ± 0.0073 | 0.2013 ± 0.0483 | 0.6956 ± 0.0251 |
AEFT_Uni | 0.9081 ± 0.0031 | 0.8926 ± 0.0023 | 0.8313 ± 0.0046 | 0.8889 ± 0.0009 |
Table 11.
Objective evaluation indicators of four classifiers on the learned parameters and all parameters of Touzi decomposition for the Flevoland image.
Table 11.
Objective evaluation indicators of four classifiers on the learned parameters and all parameters of Touzi decomposition for the Flevoland image.
| Water | Stem Beans | Potatoes | Forest | Grasses | Beet |
---|
SVM_LP | 1.0000 ± 0.0001 | 0.9928 ± 0.0046 | 0.9737 ± 0.0035 | 0.9809 ± 0.0036 | 0.8992 ± 0.0145 | 0.9814 ± 0.0056 |
SVM_AP | 0.9986 ± 0.0011 | 0.9759 ± 0.0063 | 0.9457 ± 0.0060 | 0.9431 ± 0.0056 | 0.8750 ± 0.0098 | 0.9373 ± 0.0063 |
ANN_LP | 0.9934 ± 0.0021 | 0.9748 ± 0.0050 | 0.9621 ± 0.0028 | 0.9729 ± 0.0020 | 0.6140 ± 0.0267 | 0.9611 ± 0.0043 |
ANN_AP | 0.9948 ± 0.0010 | 0.9777 ± 0.0044 | 0.9639 ± 0.0031 | 0.9752 ± 0.0019 | 0.6151 ± 0.0196 | 0.9666 ± 0.0046 |
AE_LP | 0.9999 ± 0.0001 | 0.9784 ± 0.0033 | 0.9407 ± 0.0140 | 0.9480 ± 0.0103 | 0.6185 ± 0.0130 | 0.9624 ± 0.0055 |
AE_AP | 0.9950 ± 0.0010 | 0.9523 ± 0.0107 | 0.8882 ± 0.0128 | 0.8451 ± 0.0100 | 0.7887 ± 0.0142 | 0.9109 ± 0.0114 |
AEFT_LP | 0.9990 ± 0.0013 | 0.9874 ± 0.0057 | 0.9741 ± 0.0035 | 0.9821 ± 0.0032 | 0.8731 ± 0.0097 | 0.9806 ± 0.0036 |
AEFT_AP | 0.9980 ± 0.0016 | 0.9846 ± 0.0058 | 0.9699 ± 0.0029 | 0.9800 ± 0.0029 | 0.8979 ± 0.0121 | 0.9638 ± 0.0076 |
| Rapeseed | Peas | Lucerne | Bare soil | Wheat2 | Wheat |
SVM_LP | 0.9654 ± 0.0037 | 0.9889 ± 0.0034 | 0.9732 ± 0.0063 | 0.9988 ± 0.0007 | 0.9597 ± 0.0034 | 0.9787 ± 0.0026 |
SVM_AP | 0.9425 ± 0.0056 | 0.9749 ± 0.0033 | 0.9433 ± 0.0071 | 0.9803 ± 0.0078 | 0.9342 ± 0.0076 | 0.9653 ± 0.0037 |
ANN_LP | 0.9263 ± 0.0035 | 0.9750 ± 0.0018 | 0.8848 ± 0.0081 | 0.9946 ± 0.0008 | 0.9239 ± 0.0032 | 0.9484 ± 0.0033 |
ANN_AP | 0.9220 ± 0.0038 | 0.9851 ± 0.0021 | 0.8938 ± 0.0057 | 0.9607 ± 0.0092 | 0.9240 ± 0.0053 | 0.9492 ± 0.0049 |
AE_LP | 0.8072 ± 0.0159 | 0.9624 ± 0.0046 | 0.8476 ± 0.0059 | 0.9959 ± 0.0010 | 0.8765 ± 0.0230 | 0.9420 ± 0.0069 |
AE_AP | 0.8030 ± 0.0170 | 0.9478 ± 0.0098 | 0.9136 ± 0.0061 | 0.9340 ± 0.0148 | 0.7141 ± 0.0343 | 0.9036 ± 0.0102 |
AEFT_LP | 0.9611 ± 0.0060 | 0.9810 ± 0.0033 | 0.9799 ± 0.0051 | 0.9984 ± 0.0011 | 0.9551 ± 0.0034 | 0.9767 ± 0.0023 |
AEFT_AP | 0.9613 ± 0.0049 | 0.9876 ± 0.0040 | 0.9732 ± 0.0048 | 0.9947 ± 0.0034 | 0.9579 ± 0.0048 | 0.9755 ± 0.0039 |
| Wheat3 | Buildings | Barely | OA | | |
SVM_LP | 0.9905 ± 0.0017 | 0.9733 ± 0.0153 | 0.9682 ± 0.0052 | 0.9770 ± 0.0010 | | |
SVM_AP | 0.9841 ± 0.0024 | 0.9039 ± 0.0275 | 0.9050 ± 0.0110 | 0.9538 ± 0.0013 | | |
ANN_LP | 0.9817 ± 0.0017 | 0.9322 ± 0.0276 | 0.9399 ± 0.0074 | 0.9432 ± 0.0015 | | |
ANN_AP | 0.9882 ± 0.0013 | 0.9488 ± 0.0224 | 0.9015 ± 0.0106 | 0.9432 ± 0.0014 | | |
AE_LP | 0.9547 ± 0.0037 | 0.9053 ± 0.0190 | 0.8621 ± 0.0114 | 0.9516 ± 0.0049 | | |
AE_AP | 0.9453 ± 0.0070 | 0.8333 ± 0.0776 | 0.7775 ± 0.0259 | 0.8831 ± 0.0066 | | |
AEFT_LP | 0.9891 ± 0.0016 | 0.9487 ± 0.0292 | 0.9750 ± 0.0042 | 0.9749 ± 0.0007 | | |
AEFT_AP | 0.9932 ± 0.0019 | 0.9153 ± 0.0506 | 0.9638 ± 0.0078 | 0.9739 ± 0.0014 | | |
Table 12.
Objective evaluation indicators of four classifiers on the learned parameters and all parameters of Touzi decomposition for Oberpfaffenhofen image.
Table 12.
Objective evaluation indicators of four classifiers on the learned parameters and all parameters of Touzi decomposition for Oberpfaffenhofen image.
| Built-Up Area | Wood Land | Open Area | OA |
---|
SVM_LP | 0.8357 ± 0.0180 | 0.9733 ± 0.0048 | 0.6807 ± 0.0157 | 0.8741 ± 0.0050 |
SVM_AP | 0.8381 ± 0.0210 | 0.9686 ± 0.0072 | 0.6672 ± 0.0192 | 0.8686 ± 0.0054 |
ANN_LP | 0.7488 ± 0.0180 | 0.9733 ± 0.0048 | 0.6542 ± 0.0110 | 0.8506 ± 0.0028 |
ANN_AP | 0.7752 ± 0.0202 | 0.9730 ± 0.0049 | 0.6342 ± 0.0140 | 0.8507 ± 0.0032 |
AE_LP | 0.6608 ± 0.0664 | 0.8477 ± 0.0113 | 0.3981 ± 0.0485 | 0.7001 ± 0.0072 |
AE_AP | 0.7497 ± 0.0214 | 0.8448 ± 0.0123 | 0.4576 ± 0.0230 | 0.7305 ± 0.0064 |
AEFT_LP | 0.8442 ± 0.0124 | 0.9557 ± 0.0062 | 0.6987 ± 0.0142 | 0.8704 ± 0.0048 |
AEFT_AP | 0.8015 ± 0.0135 | 0.9087 ± 0.0104 | 0.6373 ± 0.0159 | 0.8207 ± 0.0071 |
Table 13.
Objective evaluation indicators of four classifiers on the learned parameters and all parameters of Touzi decomposition for Xi’an area.
Table 13.
Objective evaluation indicators of four classifiers on the learned parameters and all parameters of Touzi decomposition for Xi’an area.
| Urban | Bench Land | River | OA |
---|
SVM_LP | 0.8841 ± 0.0227 | 0.8837 ± 0.0250 | 0.7262 ± 0.0726 | 0.8602 ± 0.0104 |
SVM_AP | 0.8531 ± 0.0217 | 0.8892 ± 0.0170 | 0.6100 ± 0.0712 | 0.8345 ± 0.0105 |
ANN_LP | 0.8542 ± 0.0094 | 0.9021 ± 0.0055 | 0.7588 ± 0.0286 | 0.8636 ± 0.0039 |
ANN_AP | 0.8542 ± 0.0084 | 0.9004 ± 0.0048 | 0.7680 ± 0.0241 | 0.8642 ± 0.0028 |
AE_LP | 0.8979 ± 0.0052 | 0.9018 ± 0.0048 | 0.7893 ± 0.0197 | 0.8835 ± 0.0018 |
AE_AP | 0.8775 ± 0.0097 | 0.8916 ± 0.0061 | 0.6779 ± 0.0402 | 0.8545 ± 0.0079 |
AEFT_LP | 0.8906 ± 0.0063 | 0.8924 ± 0.0051 | 0.8265 ± 0.0096 | 0.8819 ± 0.0024 |
AEFT_AP | 0.8508 ± 0.0078 | 0.8489 ± 0.0079 | 0.7709 ± 0.0153 | 0.8379 ± 0.0042 |
Table 14.
The objective indicators of three ANN-based classifiers and two SVM classifiers on different forms of parameters of Touzi decomposition for the Flevoland image.
Table 14.
The objective indicators of three ANN-based classifiers and two SVM classifiers on different forms of parameters of Touzi decomposition for the Flevoland image.
| SVM_PP | SVM_LP | ANN_Opt | ANN_MIM | ANN_SpMI |
---|
Water | 0.9987 ± 0.0011 | 1.0000 ± 0.0001 | 0.9931 ± 0.0015 | 0.9951 ± 0.0009 | 0.9938 ± 0.0017 |
Stem beans | 0.9520 ± 0.0080 | 0.9928 ± 0.0046 | 0.9105 ± 0.0065 | 0.9721 ± 0.0061 | 0.9755 ± 0.0035 |
Potatoes | 0.9482 ± 0.0048 | 0.9737 ± 0.0035 | 0.9544 ± 0.0028 | 0.9568 ± 0.0032 | 0.9607 ± 0.0031 |
Forest | 0.9333 ± 0.0062 | 0.9809 ± 0.0036 | 0.9603 ± 0.0029 | 0.9709 ± 0.0030 | 0.9735 ± 0.0025 |
Grasses | 0.9219 ± 0.0090 | 0.8992 ± 0.0145 | 0.5762 ± 0.0261 | 0.6183 ± 0.0253 | 0.6286 ± 0.0280 |
Beet | 0.9319 ± 0.0101 | 0.9814 ± 0.0056 | 0.9394 ± 0.0060 | 0.9616 ± 0.0030 | 0.9614 ± 0.0040 |
Rapeseed | 0.8885 ± 0.0096 | 0.9654 ± 0.0037 | 0.7618 ± 0.0132 | 0.9230 ± 0.0038 | 0.9265 ± 0.0041 |
Peas | 0.9793 ± 0.0045 | 0.9889 ± 0.0034 | 0.9712 ± 0.0026 | 0.9688 ± 0.0018 | 0.9756 ± 0.0019 |
Lucerne | 0.9594 ± 0.0086 | 0.9732 ± 0.0063 | 0.8897 ± 0.0058 | 0.8638 ± 0.0090 | 0.8836 ± 0.0087 |
Bare soil | 0.9956 ± 0.0030 | 0.9988 ± 0.0007 | 0.9731 ± 0.0034 | 0.9875 ± 0.0056 | 0.9945 ± 0.0005 |
Wheat2 | 0.9108 ± 0.0091 | 0.9597 ± 0.0034 | 0.6853 ± 0.0235 | 0.9197 ± 0.0022 | 0.9231 ± 0.0031 |
Wheat | 0.9633 ± 0.0035 | 0.9787 ± 0.0026 | 0.9381 ± 0.0052 | 0.9358 ± 0.0057 | 0.9485 ± 0.0038 |
Wheat3 | 0.9935 ± 0.0019 | 0.9905 ± 0.0017 | 0.9893 ± 0.0014 | 0.9778 ± 0.0017 | 0.9819 ± 0.0021 |
Buildings | 0.9531 ± 0.0270 | 0.9733 ± 0.0153 | 0.9335 ± 0.0191 | 0.9404 ± 0.0187 | 0.9327 ± 0.0368 |
Barely | 0.9677 ± 0.0061 | 0.9682 ± 0.0052 | 0.8913 ± 0.0123 | 0.8696 ± 0.0187 | 0.9353 ± 0.0101 |
OA | 0.9535 ± 0.0014 | 0.9770 ± 0.0010 | 0.9035 ± 0.0012 | 0.9354 ± 0.0013 | 0.9435 ± 0.0013 |
Table 15.
The objective indicators of three ANN-based classifiers and two SVM classifiers on different forms of parameters of Touzi decomposition for the Oberpfaffenhofen image.
Table 15.
The objective indicators of three ANN-based classifiers and two SVM classifiers on different forms of parameters of Touzi decomposition for the Oberpfaffenhofen image.
| SVM_PP | SVM_LP | ANN_Opt | ANN_MIM | ANN_SpMI |
---|
Wood land | 0.8575 ± 0.0144 | 0.8357 ± 0.0180 | 0.7033 ± 0.0270 | 0.7412 ± 0.0163 | 0.7557 ± 0.0179 |
Open area | 0.9629 ± 0.0107 | 0.9733 ± 0.0048 | 0.9713 ± 0.0061 | 0.9724 ± 0.0038 | 0.9743 ± 0.0040 |
Built-up area | 0.6475 ± 0.0245 | 0.6807 ± 0.0157 | 0.5120 ± 0.0135 | 0.6491 ± 0.0096 | 0.6511 ± 0.0132 |
OA | 0.8644 ± 0.0043 | 0.8741 ± 0.0050 | 0.8055 ± 0.0043 | 0.8474 ± 0.0024 | 0.8518 ± 0.0024 |
Table 16.
The objective indicators of three ANN-based classifiers and two SVM classifiers on different forms of parameters of Touzi decomposition for the Xian area.
Table 16.
The objective indicators of three ANN-based classifiers and two SVM classifiers on different forms of parameters of Touzi decomposition for the Xian area.
| SVM_PP | SVM_LP | ANN_Opt | ANN_MIM | ANN_SpMI |
---|
Urban | 0.8389 ± 0.0284 | 0.8841 ± 0.0227 | 0.8491 ± 0.0233 | 0.8190 ± 0.0247 | 0.8575 ± 0.0334 |
Bench land | 0.8817 ± 0.0176 | 0.8837 ± 0.0250 | 0.8926 ± 0.0143 | 0.8794 ± 0.0171 | 0.8902 ± 0.0122 |
River | 0.6576 ± 0.0664 | 0.7262 ± 0.0726 | 0.7624 ± 0.0450 | 0.7842 ± 0.1024 | 0.7793 ± 0.0437 |
OA | 0.8329 ± 0.0115 | 0.8602 ± 0.0104 | 0.8576 ± 0.0092 | 0.8438 ± 0.0197 | 0.8620 ± 0.0088 |
Table 17.
Training time of four classifiers for parameter normalization on three PolSAR datasets.
Table 17.
Training time of four classifiers for parameter normalization on three PolSAR datasets.
| Flevoland | Oberpfaffenhofen | Xi’an |
---|
SVM_Ori | 1.38 ± 0.04 | 0.12 ± 0.03 | 0.00 ± 0.00 |
SVM_Uni | 1.38 ± 0.05 | 0.13 ± 0.03 | 0.00 ± 0.00 |
ANN_Ori | 3.80 ± 0.03 | 0.31 ± 0.02 | 0.35 ± 0.05 |
ANN_Uni | 3.79 ± 0.04 | 0.36 ± 0.02 | 0.31 ± 0.02 |
AE_Ori | 60.13 ± 0.56 | 19.59 ± 0.44 | 3.21 ± 0.11 |
AE_Uni | 63.92 ± 0.22 | 21.83 ± 0.35 | 4.54 ± 0.12 |
AEFT_Ori | 26.46 ± 0.17 | 15.57 ± 0.30 | 13.91 ± 0.13 |
AEFT_Uni | 27.26 ± 0.08 | 16.40 ± 0.32 | 14.55 ± 0.08 |
Table 18.
Training time of four classifiers for parameter representative learning on three PolSAR datasets.
Table 18.
Training time of four classifiers for parameter representative learning on three PolSAR datasets.
| Flevoland | Oberpfaffenhofen | Xi’an |
---|
SVM_LP | 0.63 ± 0.03 | 0.11 ± 0.02 | 0.00 ± 0.00 |
SVM_AP | 1.79 ± 0.07 | 0.15 ± 0.04 | 0.00 ± 0.00 |
ANN_LP | 1.23 ± 0.08 | 0.08 ± 0.01 | 0.09 ± 0.01 |
ANN_AP | 1.64 ± 0.03 | 0.12 ± 0.02 | 0.13 ± 0.01 |
AE_LP | 53.01 ± 1.57 | 15.94 ± 0.38 | 2.90 ± 0.04 |
AE_AP | 64.18 ± 0.20 | 22.79 ± 1.20 | 4.65 ± 0.08 |
AEFT_LP | 13.57 ± 0.49 | 1.93 ± 0.07 | 3.20 ± 0.04 |
AEFT_AP | 13.76 ± 0.05 | 2.47 ± 0.26 | 3.55 ± 0.05 |
Table 19.
Prediction time of four classifier for parameter normalization on three PolSAR datasets.
Table 19.
Prediction time of four classifier for parameter normalization on three PolSAR datasets.
| Flevoland | Oberpfaffenhofen | Xi’an |
---|
SVM_Ori | 119.50 ± 4.40 | 54.29 ± 4.07 | 2.21 ± 0.26 |
SVM_Uni | 120.11 ± 3.48 | 55.32 ± 3.71 | 2.22 ± 0.28 |
ANN_Ori | 0.04 ± 0.00 | 0.03 ± 0.00 | 0.01 ± 0.00 |
ANN_Uni | 0.03 ± 0.00 | 0.03 ± 0.00 | 0.01 ± 0.00 |
AE_Ori | 0.47 ± 0.01 | 0.77 ± 0.02 | 0.12 ± 0.00 |
AE_Uni | 0.51 ± 0.01 | 0.82 ± 0.02 | 0.13 ± 0.01 |
AEFT_Ori | 0.48 ± 0.01 | 0.75 ± 0.02 | 0.13 ± 0.00 |
AEFT_Uni | 0.51 ± 0.01 | 0.81 ± 0.02 | 0.13 ± 0.01 |
Table 20.
Prediction time of four classifier for parameter representative learning on three PolSAR datasets.
Table 20.
Prediction time of four classifier for parameter representative learning on three PolSAR datasets.
| Flevoland | Oberpfaffenhofen | Xi’an |
---|
SVM_LP | 59.42 ± 4.40 | 37.87 ± 4.89 | 1.72 ± 0.29 |
SVM_AP | 172.87 ± 5.41 | 59.18 ± 4.36 | 2.44 ± 0.29 |
ANN_LP | 0.03 ± 0.00 | 0.02 ± 0.00 | 0.01 ± 0.00 |
ANN_AP | 0.04 ± 0.00 | 0.03 ± 0.00 | 0.01 ± 0.00 |
AE_LP | 0.54 ± 0.02 | 0.85 ± 0.03 | 0.15 ± 0.01 |
AE_AP | 0.53 ± 0.01 | 0.89±0.06 | 0.15 ± 0.01 |
AEFT_LP | 0.53 ± 0.02 | 0.84 ± 0.03 | 0.15 ± 0.00 |
AEFT_AP | 0.53 ± 0.01 | 0.89 ± 0.08 | 0.15 ± 0.00 |