The Response of Cloud-Precipitation Recycling in China to Global Warming
Abstract
1. Introduction
2. Data and Methods
2.1. Observation and Reanalysis Datasets
2.2. Methods
3. Results
3.1. Evolution Characteristics of the Cloud Water Resources in the Different Climate Zones
3.2. Cloud-Precipitation Relationships and Their Climate Feedback Mechanisms
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Soden, B.J.; Held, I.M. An assessment of climate feedbacks in coupled ocean-atmosphere models. J. Clim. 2006, 19, 3354–3360. [Google Scholar] [CrossRef]
- Huang, J.; Li, Y.; Fu, C.; Chen, F.; Fu, Q.; Dai, A.; Shinoda, M.; Ma, Z.; Guo, W.; Li, Z.; et al. Dryland climate change: Recent progress and challenges. Rev. Geophys. 2017, 55, 719–778. [Google Scholar] [CrossRef]
- Soden, B.J.; Broccoli, A.J.; Hemler, R.S. On the use of cloud forcing to estimate cloud feedback. J. Clim. 2004, 17, 3661–3665. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Fasullo, J.T.; Mackaro, J. Atmospheric Moisture Transports from Ocean to Land and Global Energy Flows in Reanalyses. J. Clim. 2011, 24, 4907–4924. [Google Scholar] [CrossRef]
- Liu, J.; Shen, X.Y.; Li, X.F. Radiative Effects of Water Clouds on Heat, Cloud Microphysical and Surface Rainfall Budgets Associated with Pre-Summer Torrential Rainfall. Terr. Atmos. Ocean. Sci. 2014, 25, 39–48. [Google Scholar] [CrossRef]
- Manaster, A.; O’Dell, C.W.; Elsaesser, G. Evaluation of Cloud Liquid Water Path Trends Using a Multidecadal Record of Passive Microwave Observations. J. Clim. 2017, 30, 5871–5884. [Google Scholar] [CrossRef] [PubMed]
- Sui, C.H.; Li, X.F.; Yang, M.J.; Huang, H.L. Estimation of oceanic precipitation efficiency in cloud models. J. Atmos. Sci. 2005, 62, 4358–4370. [Google Scholar] [CrossRef]
- Shusse, Y.; Tsuboki, K. Dimension characteristics and precipitation efficiency of cumulonimbus clouds in the region far south from the mei-yu front over the eastern Asian continent. Mon. Weather Rev. 2006, 134, 1942–1953. [Google Scholar] [CrossRef][Green Version]
- Langhans, W.; Yeo, K.; Romps, D.M. Lagrangian Investigation of the Precipitation Efficiency of Convective Clouds. J. Atmos. Sci. 2015, 72, 1045–1062. [Google Scholar] [CrossRef]
- Hobbs, P.V.; Matejka, T.J.; Herzegh, P.H.; Locatelli, J.D.; Houze Jr, R.A. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. I: A case study of a cold front. J. Atmos. Sci. 1980, 37, 568–596. [Google Scholar] [CrossRef]
- Cohen, C.; McCaul, E.W. Further results on the sensitivity of simulated storm precipitation efficiency to environmental temperature. Mon. Weather Rev. 2007, 135, 1671–1684. [Google Scholar] [CrossRef][Green Version]
- Elliott, R.D. California storm characteristics and weather modification. J. Atmos. Sci. 1958, 15, 486–493. [Google Scholar] [CrossRef][Green Version]
- Clement, A.C.; Soden, B. The sensitivity of the tropical-mean radiation budget. J. Clim. 2005, 18, 3189–3203. [Google Scholar] [CrossRef]
- Liu, Y.H.; Luo, R.; Zhu, Q.Z.; Hua, S.; Wang, B. Cloud ability to produce precipitation over arid and semiarid regions of Central and East Asia. Int. J. Climatol. 2020, 40, 1824–1837. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007.
- Trenberth, K.E.; Fasullo, J.T.; Kiehl, J. Earth’s Global Energy Budget. Bull. Am. Meteorol. Soc. 2009, 90, 311–323. [Google Scholar] [CrossRef]
- Muller, C.J.; O’Gorman, P.A.; Back, L.E. Intensification of Precipitation Extremes with Warming in a Cloud-Resolving Model. J. Clim. 2011, 24, 2784–2800. [Google Scholar] [CrossRef]
- Zhai, P.M.; Zhang, X.B.; Wan, H.; Pan, X.H. Trends in total precipitation and frequency of daily precipitation extremes over China. J. Clim. 2005, 18, 1096–1108. [Google Scholar] [CrossRef]
- Jiang, Z.H.; Shen, Y.C.; Ma, T.T.; Zhai, P.M.; Fang, S.D. Changes of precipitation intensity spectra in different regions of mainland China during 1961–2006. J. Meteorol. Res. 2014, 28, 1085–1098. [Google Scholar] [CrossRef]
- Li, W.K.; Guo, W.D.; Xue, Y.K.; Fu, C.B.; Qiu, B. Sensitivity of a regional climate model to land surface parameterization schemes for East Asian summer monsoon simulation. Clim. Dyn. 2016, 47, 2293–2308. [Google Scholar] [CrossRef]
- Cai, M. Cloud Water Resources and Precipitation Efficiency Evaluation over China; Nanjing University of Information Science & Technology: Beijing, China, 2013. [Google Scholar]
- Wu, G.; Duan, A.; Liu, Y.; Mao, J.; Ren, R.; Bao, Q.; He, B.; Liu, B.; Hu, W. Tibetan Plateau climate dynamics: Recent research progress and outlook. Natl. Sci. Rev. 2015, 2, 100–116. [Google Scholar] [CrossRef]
- Sato, T.; Kimura, F. Impact of diabatic heating over the Tibetan Plateau on subsidence over northeast Asian arid region. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Sun, H.; Liu, X. Impacts of dynamic and thermal forcing by the Tibetan Plateau on the precipitation distribution in the Asian arid and monsoon regions. Clim. Dyn. 2021. [Google Scholar] [CrossRef]
- Platnick, S.; King, M.D.; Meyer, K.G.; Wind, G.; Amarasinghe, N.; Marchant, B.; Arnold, G.T.; Zhang, Z.; Hubanks, P.A.; Ridgway, B. MODIS cloud optical properties: User guide for the Collection 6 Level-2 MOD06/MYD06 product and associated Level-3 Datasets. Version 2015, 1, 145. [Google Scholar]
- Gultepe, I.; Rabin, R.; Ware, R.; Pavolonis, M. Light Snow Precipitation and Effects on Weather and Climate. Adv. Geophys. 2016, 57, 147–210. [Google Scholar] [CrossRef]
- Gultepe, I.; Agelin-Chaab, M.; Komar, J.; Elfstrom, G.; Boudala, F.; Zhou, B. A Meteorological Supersite for Aviation and Cold Weather Applications. Pure Appl. Geophys. 2019, 176, 1977–2015. [Google Scholar] [CrossRef]
- Horváth, Á.; Davies, R. Comparison of microwave and optical cloud water path estimates from TMI, MODIS, and MISR. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Hong, Y.; Nix, H.A.; Hutchinson, M.F.; Booth, T.H. Spatial interpolation of monthly mean climate data for China. Int. J. Climatol. 2005, 25, 1369–1379. [Google Scholar] [CrossRef]
- Ren, Z.G.; Zhang, M.J.; Wang, S.J.; Qiang, F.; Zhu, X.F.; Dong, L. Changes in daily extreme precipitation events in South China from 1961 to 2011. J. Geogr. Sci. 2015, 25, 58–68. [Google Scholar] [CrossRef]
- Li, Z.X.; He, Y.Q.; Wang, C.F.; Wang, X.F.; Xin, H.J.; Zhang, W.; Cao, W.H. Spatial and temporal trends of temperature and precipitation during 1960–2008 at the Hengduan Mountains, China. Quat. Int. 2011, 236, 127–142. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Kendall Rank Correlation Methods; Griffin, C., Ed.; Oxford University Press: London, UK, 1975; ISBN 978-0195208375. [Google Scholar]
- Wang, W.; Chen, X.; Shi, P.; van Gelder, P.H.A.J.M. Detecting changes in extreme precipitation and extreme streamflow in the Dongjiang River Basin in southern China. Hydrol. Earth Syst. Sci. 2008, 12, 207–221. [Google Scholar] [CrossRef]
- Wilcox, R.R. Theil-Sen Estimator, Fundamentals of Modern Statistical Methods: Substantially Improving Power and Accuracy; Springer: New York, NY, USA, 2001. [Google Scholar]
- Guo, Q.; Liang, J.; Cao, X.; Zhang, Z.; Zhang, L. Spatiotemporal Evolution of Evapotranspiration in China after 1998. Water 2020, 12, 3250. [Google Scholar] [CrossRef]
- Han, J.Y.; Du, H.B.; Wu, Z.F.; He, H.S. Changes in Extreme Precipitation Over Dry and Wet Regions of China During 1961–2014. J. Geophys. Res. Atmos. 2019, 124, 5847–5859. [Google Scholar] [CrossRef]
- Donat, M.G.; Lowry, A.L.; Alexander, L.V.; O’Gorman, P.A.; Maher, N. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Chang. 2016, 6, 508–513. [Google Scholar] [CrossRef]
- Gultepe, I.; Sharman, R.; Williams, P.D.; Zhou, B.B.; Ellrod, G.; Minnis, P.; Trier, S.; Griffin, S.; Yum, S.S.; Gharabaghi, B.; et al. A Review of High Impact Weather for Aviation Meteorology. Pure Appl. Geophys. 2019, 176, 1869–1921. [Google Scholar] [CrossRef]
- Yang, B.; Qian, Y.; Lin, G.; Leung, R.; Zhang, Y. Some issues in uncertainty quantification and parameter tuning: A case study of convective parameterization scheme in the WRF regional climate model. Atmos. Chem. Phys. 2012, 12, 2409–2427. [Google Scholar] [CrossRef]
- Singh, M.S.; O’Gorman, P.A. Increases in moist-convective updraught velocities with warming in radiative-convective equilibrium. Q. J. R. Meteorol. Soc. 2015, 141, 2828–2838. [Google Scholar] [CrossRef]
- Hamada, A.; Takayabu, Y.N.; Liu, C.T.; Zipser, E.J. Weak linkage between the heaviest rainfall and tallest storms. Nat. Commun. 2015, 6, 6213. [Google Scholar] [CrossRef]
- Andersen, H.; Cermak, J.; Fuchs, J.; Knutti, R.; Lohmann, U. Understanding the drivers of marine liquid-water cloud occurrence and properties with global observations using neural networks. Atmos. Chem. Phys. 2017, 17, 9535–9546. [Google Scholar] [CrossRef]
- Klein, S.A.; Hartmann, D.L. The seasonal cycle of low stratiform clouds. J. Clim. 1993, 6, 1587–1606. [Google Scholar] [CrossRef]
- He, Y.P. How surface latent heat flux is related to lower-tropospheric stability in southern subtropical marine stratus and stratocumulus regions. Cent. Eur. J. Geosci. 2009, 1, 368–375. [Google Scholar] [CrossRef]
Datasets | Variables | Time Scale | Resolution |
---|---|---|---|
CMA | Precipitation | 1961–2019 (monthly) | 0.5° × 0.5° |
MODIS | Liquid water path Ice water path | 2001–2019 (monthly) | 1° × 1° |
ERA5 | Upward moisture flux Temperature at 700 hPa | 1979–present (monthly) | 0.25° × 0.25° |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Q.; Cao, X.; Liang, J.; Zhang, Z.; Zhang, M.; Zhang, L. The Response of Cloud-Precipitation Recycling in China to Global Warming. Remote Sens. 2021, 13, 1601. https://doi.org/10.3390/rs13081601
Guo Q, Cao X, Liang J, Zhang Z, Zhang M, Zhang L. The Response of Cloud-Precipitation Recycling in China to Global Warming. Remote Sensing. 2021; 13(8):1601. https://doi.org/10.3390/rs13081601
Chicago/Turabian StyleGuo, Qi, Xianjie Cao, Jiening Liang, Zhida Zhang, Min Zhang, and Lei Zhang. 2021. "The Response of Cloud-Precipitation Recycling in China to Global Warming" Remote Sensing 13, no. 8: 1601. https://doi.org/10.3390/rs13081601
APA StyleGuo, Q., Cao, X., Liang, J., Zhang, Z., Zhang, M., & Zhang, L. (2021). The Response of Cloud-Precipitation Recycling in China to Global Warming. Remote Sensing, 13(8), 1601. https://doi.org/10.3390/rs13081601