A Spectral-Spatial Features Integrated Network for Hyperspectral Detection of Marine Oil Spill
Abstract
:1. Introduction
2. Data and Methodology
2.1. Remote Sensing Datasets
2.1.1. Pavia University Dataset
2.1.2. Oil Spill Datasets
2.2. Basic Framework of CNN
2.3. Proposed Method
3. Experimental Study
3.1. Data Partition
3.2. Evaluation Metrics
3.3. Experimental Scheme
3.4. Parameter Setting and Network Configuration
3.5. Experimental Results and Analysis
3.5.1. Experimental Results of Hyperspectral Classification
3.5.2. Experimental Results of Hyperspectral Oil Spill Detection
3.6. Analysis of Neighborhood Size
3.7. Time Cost
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leifer, I.; Lehr, W.J.; Simecek-Beatty, D.; Bradley, E.; Clark, R.; Dennison, P.; Hu, Y.; Matheson, S.; Jones, C.E.; Holt, B.; et al. State of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon oil spill. Remote Sens. Environ. 2012, 124, 185–209. [Google Scholar] [CrossRef] [Green Version]
- Jha, M.N.; Levy, J.; Gao, Y. Advances in Remote Sensing for Oil Spill Disaster Management: State-of-the-Art Sensors Technology for Oil Spill Surveillance. Sensors 2008, 8, 236–255. [Google Scholar] [CrossRef] [Green Version]
- Fingas, M.; Brown, C.E. A Review of Oil Spill Remote Sensing. Sensors 2017, 18, 91. [Google Scholar] [CrossRef] [Green Version]
- Wettle, M.; Daniel, P.J.; Logan, G.A.; Thankappan, M. Assessing the effect of hydrocarbon oil type and thickness on a remote sensing signal: A sensitivity study based on the optical properties of two different oil types and the HYMAP and Quickbird sensors. Remote Sens. Environ. 2009, 113, 2000–2010. [Google Scholar] [CrossRef]
- Zhang, B.; Zhao, L.; Zhang, X. Three-dimensional convolutional neural network model for tree species classification using airborne hyperspectral images. Remote Sens. Environ. 2020, 247, 111938. [Google Scholar] [CrossRef]
- Li, W.; Chen, C.; Su, H.; Du, Q. Local Binary Patterns and Extreme Learning Machine for Hyperspectral Imagery Classification. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3681–3693. [Google Scholar] [CrossRef]
- Chen, T.; Lu, S. Subcategory-Aware Feature Selection and SVM Optimization for Automatic Aerial Image-Based Oil Spill Inspection. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5264–5273. [Google Scholar] [CrossRef]
- Tong, S.; Liu, X.; Chen, Q.; Zhang, Z.; Xie, G. Multi-Feature Based Ocean Oil Spill Detection for Polarimetric SAR Data Using Random Forest and the Self-Similarity Parameter. Remote Sens. 2019, 11, 451. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, N.U.; Sakla, A.A.; Alam, M.S. Oil spill detection in ocean environment via ultrasonic imaging and spectral fringe-adjusted joint transform correlation. Opt. Eng. 2013, 52, 3109. [Google Scholar] [CrossRef]
- Kokaly, R.F.; Couvillion, B.R.; Holloway, J.M.; Roberts, S.A.; Ustin, S.L.; Peterson, S.H.; Khanna, S.; Piazza, S.C. Spectroscopic remote sensing of the distribution and persistence of oil from the Deepwater Horizon spill in Barataria Bay marshes. Remote Sens. Environ. 2013, 129, 210–230. [Google Scholar] [CrossRef] [Green Version]
- Clark, R.N.; Swayze, G.A.; Leifer, I.; Livo, K.E.; Kokaly, R.; Hoefen, T.; Lundeen, S.; Eastwood, M.; Green, R.O.; Pearson, N.; et al. The Airborne Visible/Infrared Imaging Spectrometer(AVIRIS) Team. In A Method for Quantitative Mapping of Thick Oil Spills Using Imaging Spectroscopy; Technical Report; United States Geological Survey: Reston, VA, USA, 2010. [Google Scholar]
- Yang, J.; Wan, J.; Ma, Y.; Zhang, J.; Hu, Y. Characterization analysis and identification of common marine oil spill types using hyperspectral remote sensing. Int. J. Remote Sens. 2020, 41, 7163–7185. [Google Scholar] [CrossRef]
- Loos, E.; Brown, L.; Borstad, G.; Mudge, T.; Alvare, M. Characterization of oil slicks at sea using remote sensing techniques. In Proceedings of the OCEANS, Yeosu, Korea, 14–19 October 2012. [Google Scholar]
- Kühn, F.; Oppermann, K.; Hoerig, B. Hydrocarbon Index–An algorithm for hyperspectral detection of hydrocarbons. Int. J. Remote Sens. 2004, 25, 2467–2473. [Google Scholar] [CrossRef]
- Sun, P. Study of prediction models for oil thickness based on spectral curve. Spectrosc. Spect. Anal. 2013, 33, 1881–1885. [Google Scholar]
- Hu, C.; Lee, Z.; Franz, B. Chlorophyll aalgorithms for oligotrophic oceans: A novel approach based on three–Band reflectance difference. J. Geophys. Res. Ocean 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Lu, W.; Yuan, H.; Xu, G. Modern Near Infrared Spectroscopy Analytical Technology; China Petrochemical Press: Beijing, China, 2007. [Google Scholar]
- Kutser, T.; Pierson, D.C.; Kallio, K.Y.; Reinarta, A.; Sobeka, S. Mapping lake CDOM by satellite remote sensing. Remote Sens. Environ. 2005, 94, 535–540. [Google Scholar] [CrossRef]
- Zhao, D.; Cheng, X.; Zhang, H.; Niu, Y.; Qi, Y.; Zhang, H. Evaluation of the Ability of Spectral Indices of Hydrocarbons and Seawater for Identifying Oil Slicks Utilizing Hyperspectral Images. Remote Sens. 2018, 10, 421. [Google Scholar] [CrossRef] [Green Version]
- Angelliaume, S.; Ceamanos, X.; Viallefont-Robinet, F.; Baque, R.; Deliot, P.; Miegebielle, V. Hyperspectral and Radar Airborne Imagery over Controlled Release of Oil at Sea. Sensors 2017, 17, 1772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, C.I. An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis. IEEE T. Inform. Theory. 2000, 46, 1927–1932. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Li, Y.; Chen, P.; Zhu, X. Extraction of Oil Spill Information Using Decision Tree Based Minimum Noise Fraction Transform. J. Indian Soc. Remote Sens. 2016, 44, 421–426. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Young, T.; Hazarika, D.; Poria, S.; Cambria, E. Recent Trends in Deep Learning Based Natural Language Processing. IEEE Comput. Intell. M. 2018, 13, 55–75. [Google Scholar] [CrossRef]
- Girshick, R.B.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the Dimensionality of Data with Neural Networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef] [Green Version]
- Hinton, G.E.; Osindero, S.; Teh, Y.W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18, 1527–1554. [Google Scholar] [CrossRef]
- Li, S.; Song, W.; Fang, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J.A. Deep Learning for Hyperspectral Image Classification: An Overview. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6690–6709. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Huang, Y.; Li, W.; Zhang, F.; Li, H. Deep Convolutional Neural Networks for Hyperspectral Image Classification. J. Sensors 2015, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Wu, G.; Zhang, F.; Du, Q. Hyperspectral Image Classification Using Deep Pixel-Pair Features. IEEE Trans. Geosci. Remote Sens. 2017, 55, 844–853. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, H.; Eom, K.B. Active Deep Learning for Classification of Hyperspectral Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 712–724. [Google Scholar] [CrossRef] [Green Version]
- Gao, K.; Liu, B.; Yu, X.; Qin, J.; Zhang, P.; Tan, X. Deep Relation Network for Hyperspectral Image Few-Shot Classification. Remote Sens. 2020, 12, 923. [Google Scholar] [CrossRef] [Green Version]
- Fang, L.; Liu, Z.; Song, W. Deep Hashing Neural Networks for Hyperspectral Image Feature Extraction. IEEE Trans. Geosci. Remote Sens. Lett. 2019, 16, 1412–1416. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6251. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, H.; Shen, Q. Spectral–Spatial Classification of Hyperspectral Imagery with 3D Convolutional Neural Network. Remote Sens. 2017, 9, 67. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Z.; Li, J.; Luo, Z.; Chapman, M. Spectral–Spatial Residual Network for Hyperspectral Image Classification: A 3-D Deep Learning Framework. IEEE Trans. Geosci. Remote Sens. 2017, 56, 847–858. [Google Scholar] [CrossRef]
- Seydgar, M.; Alizadeh Naeini, A.; Zhang, M.; Li, W.; Satari, M. 3-D Convolution-Recurrent Networks for Spectral-Spatial Classification of Hyperspectral Images. Remote Sens. 2019, 11, 883. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Xiao, Y.; Wang, D.; Luo, B. CSA-MSO3DCNN: Multiscale Octave 3D CNN with Channel and Spatial Attention for Hyperspectral Image Classification. Remote Sens. 2020, 12, 188. [Google Scholar] [CrossRef] [Green Version]
- Rao, M.; Tang, P.; Zhang, Z. A Developed Siamese CNN with 3D Adaptive Spatial-Spectral Pyramid Pooling for Hyperspectral Image Classification. Remote Sens. 2020, 12, 1964. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, Z.; Zhao, X.; Wang, G.; Gu, Y. Deep Learning-Based Classification of Hyperspectral Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2094–2107. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, L.; Du, B.; Zhang, F. Spectral–Spatial Unified Networks for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5893–5909. [Google Scholar] [CrossRef]
- Mei, X.; Pan, E.; Ma, Y.; Dai, X.; Huang, J.; Fan, F.; Du, Q.; Zheng, H.; Ma, J. Spectral-Spatial Attention Networks for Hyperspectral Image Classification. Remote Sens. 2019, 11, 963. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Zhao, Y.Q.; Chan, J.C.W. Learning and Transferring Deep Joint Spectral–Spatial Features for Hyperspectral Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4729–4742. [Google Scholar] [CrossRef]
- Feng, J.; Chen, J.; Liu, L.; Cao, X.; Zhang, X.; Jiao, L.; Yu, T. CNN-Based Multilayer Spatial–Spectral Feature Fusion and Sample Augmentation with Local and Nonlocal Constraints for Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 1299–1313. [Google Scholar] [CrossRef]
- Sun, G.; Zhang, X.; Jia, X.; Ren, J.; Zhang, A.; Yao, Y.; Zhao, H. Deep Fusion of Localized Spectral Features and Multi-scale Spatial Features for Effective Classification of Hyperspectral Images. Int. J. App. Earth Obs. 2020, 91, 102157. [Google Scholar] [CrossRef]
- Liu, B.; Li, Y.; Li, G.; Liu, A. A Spectral Feature Based Convolutional Neural Network for Classification of Sea Surface Oil Spill. ISPRS Int. J. Geo Inf. 2019, 8, 160. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Li, Y.; Zhang, Q.; Liu, B. Oil Film Classification Using Deep Learning-Based Hyperspectral Remote Sensing Technology. ISPRS Int. J. Geo Inf. 2019, 8, 181. [Google Scholar] [CrossRef] [Green Version]
- Zhong, P.; Gong, Z.; Li, S.; Schoenlieb, B. Learning to Diversify Deep Belief Networks for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3516–3530. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, L.; Xiao, C.; Qu, Y.; Zheng, K.; Marinoni, A. Hyperspectral Image Classification Based on a Shuffled Group Convolutional Neural Network with Transfer Learning. Remote Sens. 2020, 12, 1780. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [Green Version]
- Carranza-García, M.; García-Gutiérrez, J.; Riquelme, J.C. A Framework for Evaluating Land Use and Land Cover Classification Using Convolutional Neural Networks. Remote Sens. 2019, 11, 274. [Google Scholar] [CrossRef] [Green Version]
- Nair, V.; Hinton, G.E. Rectified linear units improve restricted Boltzmann machines. In Proceedings of the International Conference on Machine Learning (ICML), Haifa, Israel, 21–24 June 2010; pp. 807–814. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar]
- Kinma, D.P.; Ba, J.L. Adam: A method for stochastic optimization. In Proceedings of the International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015; pp. 1–13. [Google Scholar]
- Paoletti, M.E.; Haut, J.M.; Plaza, J.; Plaza, A. A new deep convolutional neural network for fast hyperspectral image classification. ISPRS J. Photogram. Remote Sens. 2018, 145, 120–147. [Google Scholar]
- Song, D.; Zhen, Z.; Wang, B.; Li, X.; Gao, L.; Wang, N.; Xie, T.; Zhang, T. A Novel Marine Oil Spillage Identification Scheme Based on Convolution Neural Network Feature Extraction from Fully Polarimetric SAR Imagery. IEEE Access 2020, 8, 59801–59820. [Google Scholar] [CrossRef]
- Meng, Z.; Li, L.; Jiao, L.; Feng, Z.; Tang, X.; Liang, M. Fully Dense Multiscale Fusion Network for Hyperspectral Image Classification. Remote Sens. 2019, 11, 2718. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, N.; Hinton, G.E.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Mohammadimanesh, F.; Salehi, B.; Mahdianpari, M.; Gill, E.; Molinier, M. A new fully convolutional neural network for semantic segmentation of polarimetric SAR imagery in complex land cover ecosystem. ISPRS J. Photogram. 2019, 151, 223–236. [Google Scholar] [CrossRef]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Zhang, J.; Zhang, L.; Tian, C.; Zhang, Y. Deep Cube-Pair Network for Hyperspectral Imagery Classification. Remote Sens. 2018, 10, 783. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.K.; Krishna, G.; Dubey, S.R.; Chaudhuri, B.B. HybridSN: Exploring 3D-2D CNN Feature Hierarchy for Hyperspectral Image Classification. IEEE Geosci. Remote. Sens. Lett. 2020, 17, 277–281. [Google Scholar] [CrossRef] [Green Version]
Layer | Filter(number) | Stride | Padding | Activation | Dropout | |
---|---|---|---|---|---|---|
Spectral Feature Extraction | Conv. 1 | 20 (20) | 1 | Yes | ReLU | No |
Maxpooling1 | 3 (-) | 3 | No | No | No | |
Conv. 2 | 20 (40) | 1 | Yes | ReLU | No | |
Maxpooling2 | 3 (-) | 3 | No | No | No | |
FC 1 | - (-) | - | - | ReLU | No | |
Spatial Feature Extraction | Conv. 1 | (3,3) (40) | 1 | Yes | ReLU | No |
Conv. 2 | (3,3) (40) | 1 | Yes | ReLU | No | |
Conv. 3 | (3,3) (40) | 1 | Yes | ReLU | No | |
Concat. 1 | - (-) | - | - | - | ||
Conv. 4 | (1,1) (40) | 1 | Yes | ReLU | No | |
Maxpooling1 | (3,3) (-) | (3,3) | No | No | No | |
FC 2 | - (-) | - | - | ReLU | No | |
Full connection | Concat. 2 | - (-) | - | - | - | 0.25 |
FC 3 | 64 (-) | - | - | ReLU | 0.5 | |
Softmax | 3/9 * (-) | - | - | Softmax | - |
No. | Class | Train. | Val. | Test. |
---|---|---|---|---|
1 | Asphalt | 663 | 663 | 5305 |
2 | Meadows | 1865 | 1865 | 14,919 |
3 | Gravel | 210 | 210 | 1679 |
4 | Trees | 306 | 307 | 2451 |
5 | Metal Sheets | 134 | 135 | 1076 |
6 | Bare Soil | 503 | 503 | 4023 |
7 | Bitumen | 133 | 133 | 1064 |
8 | Bricks | 368 | 368 | 2946 |
9 | Shadows | 95 | 94 | 758 |
TOTAL | 4277 | 4278 | 34,221 |
No. | Class | Train. | Val. | Test. |
---|---|---|---|---|
1 | Thick oil | 2772 | 2772 | 22,175 |
2 | Thin oil | 1865 | 1866 | 14,925 |
3 | Water | 7963 | 7962 | 63,700 |
TOTAL | 12,600 | 12,600 | 100,800 |
No. | Class | Train. | Val. | Test. |
---|---|---|---|---|
1 | Thick oil | 745 | 746 | 5964 |
2 | Thin oil | 909 | 909 | 7272 |
3 | Water | 5546 | 5545 | 44,364 |
TOTAL | 7200 | 7200 | 57,600 |
Hyperparameter | Pavia University | Dataset 1 | Dataset 2 | |
---|---|---|---|---|
Neural Network | Learning rate | 10−4 | 10−4 | 10−4 |
epoch | 300 | 50 | 50 | |
Batch size | 100 | 100 | 100 | |
LetNet-5 | Learning rate | 10−4 | 10−4 | 10−4 |
epoch | 100 | 50 | 50 | |
Batch size | 60 | 100 | 100 | |
SPE-CNN | Learning rate | 10−3 | 10−4 | 10−4 |
epoch | 100 | 100 | 100 | |
Batch size | 100 | 100 | 100 | |
SPA-CNN | Learning rate | 10−4 | 3 × 10−5 | 3 × 10−5 |
epoch | 100 | 100 | 100 | |
Batch size | 60 | 100 | 100 |
Class | RF | SVMHSI | SVMHSI&GLCM | NN | LeNet-5 | SPE-CNN | SPA-CNN | SSFIN |
---|---|---|---|---|---|---|---|---|
1 | 92.84 | 95.31 | 99.45 | 93.42 | 98.49 | 95.21 | 99.70 | 99.85 |
2 | 97.77 | 98.44 | 99.48 | 98.31 | 99.86 | 98.40 | 100.00 | 100.00 |
3 | 73.73 | 81.12 | 94.94 | 67.66 | 98.33 | 73.97 | 100.00 | 99.82 |
4 | 92.13 | 95.76 | 99.63 | 90.21 | 98.69 | 89.84 | 99.63 | 99.76 |
5 | 98.70 | 99.63 | 100.00 | 100.00 | 100.00 | 99.63 | 100.00 | 100.00 |
6 | 73.13 | 91.08 | 98.38 | 92.27 | 99.85 | 89.91 | 100.00 | 100.00 |
7 | 80.83 | 88.91 | 98.97 | 88.72 | 96.71 | 86.28 | 99.81 | 100.00 |
8 | 89.04 | 92.36 | 97.79 | 92.91 | 98.74 | 91.31 | 99.73 | 99.05 |
9 | 100.00 | 99.47 | 100.00 | 99.87 | 97.76 | 99.74 | 99.47 | 100.00 |
OA (%) | 90.84 ± 0.22 | 95.07 ± 0.14 | 98.92 ± 0.06 | 94.22 ± 0.21 | 99.20 ± 0.07 | 93.96 ± 0.31 | 99.78 ± 0.11 | 99.82 ± 0.05 |
AA (%) | 87.94 ± 0.29 | 93.28 ± 0.25 | 98.59 ± 0.10 | 91.58 ± 0.48 | 98.51 ± 0.13 | 91.59 ± 0.54 | 99.59 ± 0.22 | 99.76 ± 0.08 |
Kappa | 87.69 ± 0.30 | 93.45 ± 0.18 | 98.58 ± 0.08 | 92.30 ± 0.29 | 98.94 ± 0.09 | 91.96 ± 0.42 | 99.70 ± 0.14 | 99.76 ± 0.07 |
Class | RF | SVMHSI | SVMHSI&GLCM | NN | LeNet-5 | SPE-CNN | SPA-CNN | SSFIN |
---|---|---|---|---|---|---|---|---|
1 | 92.16 | 96.45 | 97.41 | 95.43 | 95.74 | 96.66 | 98.53 | 98.44 |
2 | 89.09 | 91.94 | 93.17 | 92.26 | 90.45 | 92.46 | 94.45 | 94.70 |
3 | 98.66 | 98.77 | 99.01 | 98.30 | 98.97 | 98.50 | 99.01 | 99.22 |
OA (%) | 95.64 ± 0.09 | 97.20 ± 0.02 | 97.74 ± 0.05 | 96.63 ± 0.07 | 96.90 ± 0.10 | 97.12 ± 0.05 | 98.18 ± 0.04 | 98.28 ± 0.06 |
AA (%) | 93.01 ± 0.14 | 95.57 ± 0.09 | 96.42 ± 0.06 | 95.13 ± 0.16 | 94.86 ± 0.16 | 95.78 ± 0.15 | 97.14 ± 0.14 | 97.32 ± 0.15 |
Kappa | 91.67 ± 0.16 | 94.71 ± 0.05 | 95.73 ± 0.10 | 93.64 ± 0.14 | 94.14 ± 0.19 | 94.57 ± 0.08 | 96.56 ± 0.07 | 96.77 ± 0.12 |
Class | RF | SVMHSI | SVMHSI&GLCM | NN | LeNet-5 | SPE-CNN | SPA-CNN | SSFIN |
---|---|---|---|---|---|---|---|---|
1 | 83.97 | 87.27 | 93.04 | 84.54 | 93.36 | 86.70 | 97.79 | 98.24 |
2 | 79.40 | 86.56 | 92.18 | 85.95 | 91.23 | 87.44 | 96.53 | 97.04 |
3 | 99.00 | 98.80 | 99.22 | 98.56 | 98.93 | 98.77 | 99.19 | 99.54 |
OA (%) | 94.80 ± 0.10 | 95.99 ± 0.06 | 97.62 ± 0.03 | 95.27 ± 0.11 | 97.15 ± 0.16 | 95.90 ± 0.10 | 98.61 ± 0.07 | 99.03 ± 0.04 |
AA (%) | 87.05 ± 0.28 | 90.69 ± 0.16 | 94.77 ± 0.15 | 89.25 ± 0.37 | 93.86 ± 0.39 | 90.67 ± 0.58 | 97.14 ± 0.32 | 97.88 ± 0.21 |
Kappa | 85.65 ± 0.29 | 89.19 ± 0.16 | 93.69 ± 0.08 | 87.26 ± 0.31 | 92.45 ± 0.42 | 88.97 ± 0.29 | 96.33 ± 0.17 | 97.45 ± 0.10 |
Dataset 1 | Dataset 2 | |||||
---|---|---|---|---|---|---|
Precision | Recall | F1-Score | Precision | Recall | F1-Score | |
thick oil | 0.9794 | 0.9844 | 0.9819 | 0.9758 | 0.9824 | 0.9791 |
thin oil | 0.9504 | 0.9470 | 0.9487 | 0.9691 | 0.9704 | 0.9698 |
seawater | 0.9931 | 0.9922 | 0.9926 | 0.9965 | 0.9954 | 0.9959 |
macro-averaged | 0.9743 | 0.9745 | 0.9744 | 0.9805 | 0.9827 | 0.9816 |
weighted-averaged | 0.9838 | 0.9838 | 0.9838 | 0.9909 | 0.9909 | 0.9909 |
Dataset 1 | Dataset 2 | |||
---|---|---|---|---|
Train(s) | Test(s) | Train(s) | Test(s) | |
NN | 101.95 | 4.65 | 57.60 | 2.62 |
LeNet-5 | 116.90 | 7.04 | 67.09 | 4.07 |
SPE-CNN | 232.36 | 7.54 | 134.15 | 4.35 |
SPA-CNN | 214.49 | 8.63 | 149.13 | 5.22 |
SSFIN | 287.58 | 12.15 | 177.40 | 7.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Shao, Q.; Song, D.; Li, Z.; Tang, Y.; Yang, C.; Wang, M. A Spectral-Spatial Features Integrated Network for Hyperspectral Detection of Marine Oil Spill. Remote Sens. 2021, 13, 1568. https://doi.org/10.3390/rs13081568
Wang B, Shao Q, Song D, Li Z, Tang Y, Yang C, Wang M. A Spectral-Spatial Features Integrated Network for Hyperspectral Detection of Marine Oil Spill. Remote Sensing. 2021; 13(8):1568. https://doi.org/10.3390/rs13081568
Chicago/Turabian StyleWang, Bin, Qifan Shao, Dongmei Song, Zhongwei Li, Yunhe Tang, Changlong Yang, and Mingyue Wang. 2021. "A Spectral-Spatial Features Integrated Network for Hyperspectral Detection of Marine Oil Spill" Remote Sensing 13, no. 8: 1568. https://doi.org/10.3390/rs13081568
APA StyleWang, B., Shao, Q., Song, D., Li, Z., Tang, Y., Yang, C., & Wang, M. (2021). A Spectral-Spatial Features Integrated Network for Hyperspectral Detection of Marine Oil Spill. Remote Sensing, 13(8), 1568. https://doi.org/10.3390/rs13081568