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Abstract: Nowadays, 3-D convolutional neural networks (3-D CNN) have attracted lots of attention
in the spectral-spatial classification of hyperspectral imageries (HSI). In this model, the feed-forward
processing structure reduces the computational burden of 3-D structural processing. However, this
model as a vector-based methodology cannot analyze the full content of the HSI information, and as
a result, its features are not quite discriminative. On the other hand, convolutional long short-term
memory (CLSTM) can recurrently analyze the 3-D structural data to extract more discriminative and
abstract features. However, the computational burden of this model as a sequence-based methodology
is extremely high. In the meanwhile, the robust spectral-spatial feature extraction with a reasonable
computational burden is of great interest in HSI classification. For this purpose, a two-stage method
based on the integration of CNN and CLSTM is proposed. In the first stage, 3-D CNN is applied to
extract low-dimensional shallow spectral-spatial features from HSI, where information on the spatial
features are less than that of the spectral information; consequently, in the second stage, the CLSTM,
for the first time, is applied to recurrently analyze the spatial information while considering the
spectral one. The experimental results obtained from three widely used HSI datasets indicate that the
application of the recurrent analysis for spatial feature extractions makes the proposed model robust
against different spatial sizes of the extracted patches. Moreover, applying the 3-D CNN prior to the
CLSTM efficiently reduces the model’s computational burden. The experimental results also indicated
that the proposed model led to a 1% to 2% improvement compared to its counterpart models.

Keywords: convolutional neural network (CNN); recurrent neural network (RNN); hyperspectral
image classification; convolutional long short-term memory (CLSTM)

1. Introduction

Hyperspectral imagery (HSI) has a vast range of applications, such as in mineral exploration [1],
anomaly detection [2], and supervised classification [3–5]. Among these applications, the classification
of different land covers has attracted lots of attention in the remote sensing community due to
the existence of rich spectral and spatial information in HSI. However, classification methods and
algorithms need to be improved to be able to handle the large number of spectral bands and spatial
information in HSI.
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Traditional methods of classification, such as maximum likelihood (ML) [6], support vector
machines (SVMs) [3], and random forest (RF) [7], have been and are being widely applied for HSI
classification tasks. However, the major drawback of these methods is the fact that they classify
data in a spectral domain, that is, they ignore spatial information during the classification process.
To address this drawback, the SVM together with composite kernels (SVM-CK) was proposed by
Camps-Valls et al. and Fauvel et al. [8,9] in order to enhance traditional SVM by considering
the spatial information. Although SVM-CK uses features like the mean or the standard deviation
to consider the spatial information, these features cannot represent the full content and semantic
features of this kind of information. In parallel to this concept, morphological profiles (MPs) [10],
extended MPs (EMPs) [11], and Markov random fields (MRFs) [12] were proposed to extract the spatial
information. In Reference [13], advanced versions of these methods were applied on a number of HSI
datasets. Although these methods significantly improved the classification performance, their spatial
features were manually extracted, which means that prior knowledge and experts’ experiences are of
essence [14–16].

Recently, deep learning (DL) methods, in which both spectral and spatial information are
automatically extracted, have been employed for HSI classification tasks [17–20]. Chen et al. [21]
proposed a spectral-spatial classification auto-encoder model in which first, an HSI data cube is
preprocessed using principal component analysis (PCA). After that, target pixels along with their
neighbors, called PCA-cubes, are extracted from the principal components. Finally, PCA-cubes are
unfolded to a 1-D vector form and entered into several stack auto-encoder layers. This scheme, that
is, using the local regions to train a 1-D structural method, is also used in Reference [22]. In another
study, Li et al. [23] developed a novel version of the scheme based on a 1-D convolutional neural
network (CNN) and the pixel-pair strategy, to consider both the spectral and spatial information of
neighboring pixels.

A major limitation of these methods is that they do not jointly employ both spectral and
spatial information for classification. Instead of using a 1-D structure, Zhao et al. [24] used a novel
dimensionality reduction method and a 2-D CNN model to extract spectral and spatial features. These
features were stacked together and used for HSI classification. The PCA dimensionality reduction along
with EMP were applied in Reference [13] to enhance both the spectral and spatial feature extractions
of the 2-D CNN model. Ma et al. [14] also applied a spectral dimensionality reduction method to
an HSI data cube. Afterwards, the reduced data was fed to a deep 2-D CNN model architecture.
The model included several 2-D convolution, deconvolution, pooling, and unpooling layers with the
residual connections. Nevertheless, due the application of dimensional reduction processes, these
methods may discard some spectral information.To preserve the spectral information and to reduce
the computational burden, the stacking spectral patches strategy was proposed in Reference [15];
nonetheless, the shallow CNN model of this method cannot extract spatial information in an efficient
manner. The 1-D CNN and 2-D CNN were proposed by Reference [25] to extract the spectral and
spatial information for classification in a separate manner. He et al. [26] proposed the application
of a 2-D CNN framework with a new manual feature extraction method. These methods obtain
good results, despite not using the full capacity of DL methods like joint or automatic spectral-spatial
feature extraction.

To address the abovementioned issue, the 3-D structural methods are presented on extracted
cubes/patches of the HSI where both spectral and spatial information are jointly extracted. In this
context, Chen et al. [17] applied a 3-D CNN model to jointly extract the spectral and spatial
features from the data. Their model contains the 3-D convolution and pooling layers to extract
the spectral-spatial features and to decrease their dimensionality, respectively. The 3-D CNN model
is also equipped with the residual connections [27]. Moreover, Liu et al. [28] applied the transfer
learning and virtual sampling strategies to improve the 3-D CNN performance. The feed-forward
processing structure let these models reduce the computational burden. As a drawback, these models,
as the vector-based methodologies, cannot analyze the full content of spectral-spatial information.
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Due to limited spatial information in the HSI extracted patches, losing this information leads to a side
effect in the classification performance. In general, setting the appropriate spatial size of patches is a
controversial issue in these methods [16,27–29].

The recurrent neural network (RNN) as a sequence-based methodology was proposed in
Reference [30]. The intuition behind the use of RNN is to utilize the high computational power
of a recurrent analysis for HSI classification. The RNN was combined with CNN by Reference [31]
to boost the model performance. These methods considered the spectral bands of each pixel as a
sequence of inputs to recurrently analyze them in the RNN. However, they only considered the spectral
information while discarding the spatial one. To address the spatial consideration in the recurrent
processing of the spectral information, the Bi-convolutional long short-term memory (CLSTM) was
proposed in Reference [32]. This model applied a bidirectional connection to enhance the process
of the spectral feature extraction. The convolutional kernel was also incorporated into the model to
consider the neighboring information as well. Nevertheless, the concern of the recurrent processing
structure of this model was the spectral feature extraction. That means that the extraction of spatial
information is out of the concern of this model. In addition, the training process of this model is
extremely time-consuming.

In summary, a joint extraction of the spectral and spatial features in a robust manner with a
reasonable computational burden is the main concern in HSI classification. For this purpose, we
develop a classification framework with two feature extraction stages. In the first stage, the 3-D CNN is
applied to process a high-dimensional HSI cube to effectively extract low-dimensional spectral-spatial
features. In the second stage, an innovative structure is designed to consider different pixels of
the 3-D-CNN-driven features as a sequence of inputs for the CLSTM. By doing so, deep semantic
spectral-spatial features are generated. The main contributions and novelties of the proposed model
are briefed as follows.

1. Unlike previous studies, considering different bands as a sequence for the recurrent analysis,
here, for the first time, neighboring pixels are regarded as a sequence to the recurrent procedure.

2. We build a novel, 3-D HSI classification framework which can jointly extract spectral and spatial
features from HSI data. The architecture of this framework enables our model to take full
advantage of vector-based and sequence-based learning methodologies in HSI classification.

3. To deal with the computational burden of CLSTM which makes the training process
time-consuming, we take advantage of the 3-D CNN prior to the CLSTM to reduce the huge
volume of spectral dimensionality. This strategy efficiently reduces the number of parameters in
the recurrent processing of the CLSTM.

The remainder of this paper is organized as follows. The architecture of the proposed classification
framework is briefly described in Section 2. Section 3 provides the experimental results, analysis, and
comparisons. Lastly, Section 4 draws the concluding remarks of this paper.

2. Methodology

As illustrated in Figure 1, our DL classification model has three blocks. The first block is applied
to extract the shallow low-dimensional spectral-spatial features. The second block is applied to extract
the more abstract and semantic spectral-spatial features in a continuous form, and the third one runs
the classification task.

For this purpose, let us assume X = {x1, x2, ..., xn} ∈ R1×1×B, where B is the number of spectral
bands and n is the number of pixels having a ground truth label, namely Y = {y1, y2, ..., yn}. For each
member of X set, the image patches with the size of w× w× B (w is the window size) are extracted,
where xi is its centered pixel. Accordingly, the X set can be represented as X∗ = {x∗1 , x∗2 , ..., x∗n} ∈
Rw×w×B. After the extraction of the image patches, each patch, x∗i is fed into Block 1. In this block, the
great spectral dimension of the input patch is processed in two convolutional layers, namely CNN1 and
CNN2, containing hundreds of 3-D convolutional kernels. The details of these kernels are summarized
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in Section 2.1. The function of these layers is to reduce the spectral dimension and to extract shallow
spectral-spatial features. After completing the process of Block 1, its output Z1 ∈ Rw×w×1×K1 (K1 is the
number of filters) is fed into the next block.

 
 

..

Input 3D Patch Batch Normalization ReLU Activation3D Convolution CLSTM

. . . . .

. . . . . . . . .

Figure 1. The framework of the proposed model for Hyperspectral imagery (HSI) classification.

The outputs of Block 1, are entered into Block 2 with a CLSTM layer in order to make the features
more abstract and discriminative. In this layer, the neighboring pixels are regarded as a sequence
of inputs (3-D tensors) for the recurrent procedure. To comprehend the 3-D structural processing of
this layer, its inputs and states can be presumed as vectors standing on a spatial grid; consequently,
the inputs and past states of neighboring pixels can determine the future state in this grid through
a recurrent analysis. By doing this, the output of this layer can be represented as Z2 ∈ Rw×1×1×K2 ,
where K2 is the number of outputs for Block 2. More detail on this layer is described in Section 2.2.

Finally, in Block 3, spectral-spatial features, consecutively extracted through pervious blocks, are
considered for the membership probability of the classification task. This task is performed in a fully
connected layer by a softmax as an activation function.

2.1. Convolutional Layer

According to Reference [33], a convolutional kernel in a 3-D CNN is applied to simultaneously
extract the spectral and spatial features of the input. For the jth feature map in the ith layer, Oij at an
(x, y, z) position can be formulated as

Oxyz
ij = ϕ

(
bij + ∑

k
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∑
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f=0

Gi−1

∑
g=0

We f g
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)
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where e, f , and g are the width, height, and depth of the 3-D kernel, respectively; W is the weight of
position (e, f , and g) connected to the k feature map, b denotes bias, and ϕ stands as an activation
function. For the convolutional layers of the proposed model, the biases were omitted and batch
normalization (BN) [34] along with the L2 norm regularization technique were used. The BN is applied
(i) to tackle the internal covariant shift phenomenon and (ii) to make model training possible in the
presence of small initial learning rates. Furthermore, a rectified linear unit (ReLU) [35] is employed as
an activation function. After applying these operations, the formulation of the convolutional layer can
be rewritten as follows:
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ij )

Var(Õxyz
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Note that W̃ is a regularized weight matrix and that Õ is the output of ReLU activation function.
Ô presents the output of the BN function. Furthermore, E(.) and Var(.) respectively display the
expectation and variance of each input, and γ and β stand as learnable parameters.

In the proposed model, we applied two 3-D CNN layers, CNN1 and CNN2, to process
high-dimensional spectral information and the produce shallow spectral-spatial features. After
completing the feature extraction process of these two layers, K1 features the spectral dimension
of which is 1 are generated. Subsequently, these features are entered to Block 2 where the spatial
information is recurrently analyzed in this block.

2.2. Recurrent Layer

In the literature of sequence-based methodology, a long short-term memory [36] (LSTM) network
has been used in a wide range of researches [36–40]. The main contribution of the LSTM architecture is
to make the network more resistant to either the vanishing or exploding gradient phenomenon, which
are the main concerns of an RNN’s training process [41–43]. To do so, an LSTM defines a memory cell,
Ct (Equation (4)), which contains the state information at time t. An input gate it (Equation (5)) and a
forget gate ft (Equation (6)), respectively, stores and discards a part of the memory cell information.
The memory cell, Ct, is updated by a current memory cell information, named C (Equation (7)). Lastly,
the cell, Ct, is tuned by an output gate, Ot (Equation (8)). To sum up, these features trap a gradient
into a cell to preserve it from vanishing or exploding quickly [36]. However, as observed in Figure 2,
an LSTM network has one 1-D structure because it applies matrix multiplication (“.” in Figure 2).
Therefore, the LSTM converts the inputs to 1-D vectors prior to any processing. This issue causes the
spatial information of the data to be lost.

.

+

C  +

i f

o
. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .
. . . .

C



Figure 2. The input, architecture, and output of the long short-term memory (LSTM).

To address this problem, recently, Shi et al. [44] proposed a CLSTM network using convolutional
kernels to perform an LSTM analysis for 3-D structural data. As observed in Figure 3, by replacing
the convolutional operation (“*”) with matrix multiplication, the spatial information is considered
in the process of the sequence prediction. Accordingly, the CLSTM is taken into account for Block 2
to analyze the spatial contents of HSI in a recurrent manner while considering the spectral contents.
In general, the convolutional operator of the CLSTM is set to consider the spatial information in the
recurrent analysis of a temporal observation. However, in this study, the recurrent analysis of CLSTM
is directly applied to the spatial dimension. Concurrently, the convolutional operator is incorporated
into the model to consider a temporal observation in a recurrent processing of spatial information.
According to this strategy, columns of HSI input patches are considered as the sequences of inputs.
In the meanwhile, the kernel size of this layer determines how many sequences should be involved in
the output generation. Setting the first dimension of the kernel size equal to 1, each sequence generates
a one-step prediction. Consequently, by entering the w× w× 1 neighboring pixels’ information to
this layer, a w× 1× 1 output feature is produced. Therefore, the sequence-based methodology can be
applied to capture spatial information for the HSI classification. It should be mentioned that the biases
of the original form of the CLSTM network are omitted and that the BN is applied to the output of this
layer (Equation (9)). The equations of this layer are arranged as follows:
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Ct = ft ◦ Ct−1 + it ◦ Ct (4)

it = ϕ′(Wxi ∗ xt + Whi ∗ Ht−1 + Wci ∗ Ct−1) (5)

ft = ϕ′(Wx f ∗ xt + Wh f ∗ Ht−1 + Wc f ∗ Ct−1) (6)

Ct = ϕ(Wxc ∗ xt + Whc ∗ Ht−1) (7)

Ot = ϕ′(Wxo ∗ xt + Who ∗ Ht−1 + Wco ◦ Ct−1) (8)

Ht = BN(ϕ(Ct) ◦Ot) (9)

where ϕ and ϕ′ are the activation functions, H is the hidden state, ◦ is the point-wise product, ∗ is
convolutional operator, and W is the weight matrix; e.g., Wxc is the input-memory cell weight matrix.

*

+

C  +

i f

o

C



Figure 3. The input, architecture, and output of the convolutional long short-term memory (CLSTM).

We establish this architecture to recurrently analyze the spatial content of input cubes according
to the assumption that neighboring pixels might belong to the same material/category. Note that it is
quite possible that some cubes are extracted from the boundary of two or more categories. Accordingly,
there are two different scenarios in an HSI classification using the CLSTM, both of which are discussed
in the following.

In the first scenario, which has a homogeneous area assumption, pixels in a data cube belong
to the same material. Since each pixel is entered into the model along with its neighboring pixels,
extracted data cubes/patches are expected to have overlaps. These overlaps (i.e., common pixels
among patches) have been considered by CLSTM. Since the proposed model has the capability to
consider correlations among joint pixels in different patches, we call it patch-related convolutional
long short-term memory (PRCLSTM).

In the second scenario, which is based on a heterogeneous area assumption, the patches processed
in the model contain different materials. In this case, the inner structure of the CLSTM, which is
controlled by gate units, can switch off irrelevant input connections and expose the relevant part of
the memory information in the state-to-state transition. From the perspective of these two scenarios,
it can be concluded that CLSTM guarantees an excellent performance in the both homogeneous and
heterogeneous areas commonly available in HSI datasets.

3. Experimental Results

3.1. Experiment Data

To comprehensively assess the performance of the proposed model, three different types of
publicly available hyperspectral datasets, Indian Pines, University of Pavia, and Salinas, were chosen
and are described next:



Remote Sens. 2019, 11, 883 7 of 21

1. Indian Pines: The Indian Pines dataset (Indiana) was collected by Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) over Northwestern Indiana in June 1992. This data includes
145 × 145 pixels in 220 spectral bands; however, 20 water absorption and low signal-to-noise
bands were removed in our experiments. The spatial resolution of this data is 20 m, and the
spectral bands cover wavelengths in the range of 0.4–2.5 µm. Figure 4a illustrates a false color
composite and a ground truth map of the data. The ground truth map contains 16 land-cover
classes, including the different types of vegetation species. For the training process, 30% of the
labeled data was randomly chosen, and the rest was left just for the testing process. Table 1
indicates the number of training and test samples for each class.

2. University of Pavia: The University of Pavia (PaviaU) dataset was captured by Reflective Optics
System Imaging Spectrometer (ROSIS-3) over this Italian university’s engineering school in 2001.
This dataset originally contained 113 spectral bands, with the size of 610 × 340 and a spatial
resolution of 1.3 m. However, after removing noisy and damaged spectral bands, 103 bands in
the range of 0.43–0.86 µm remained. Figure 4b shows a false color composite of the data and
its ground truth map. The ground truth map contains nine different types of urban classes. As
tabulated in Table 2, 20% of the labeled samples were randomly selected for the training process,
while the remaining samples were only used for the testing process.

3. Salinas: The Salinas dataset consists of 512 × 217 pixels, captured by the AVIRIS sensor over
the Salinas Valley in California, USA, in 1992. After removing noisy spectral bands, 204 bands,
each with the spatial resolution of 3.7 m, were used in our experiments. As shown in Figure 4c,
sixteen classes related to different agricultural crops were collected in the ground truth map.
According to Table 3, about 18% of the labeled samples were used for the training, and the rest
were considered completely for the testing.

Table 1. The number of training and testing samples for the Indiana dataset.

No. Class Train Test

1 Alfalfa 14 32
2 Corn-notill 418 1010
3 Corn-min 250 580
4 Corn 67 170
5 Grass/Pasture 142 341
6 Grass/Trees 214 516
7 Grass/Pasture-mowed 7 21
8 Hay-windrowed 151 327
9 Oats 6 14

10 Soybeans-notill 305 667
11 Soybeans-min 733 1722
12 Soybeans-clean 174 419
13 Wheat 61 144
14 Woods 377 888
15 Bldg.-Grass-Tree-Drives 127 259
16 Stone-steel towers 27 66

Total 3073 7176
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Table 2. The number of training and testing samples for the PaviaU dataset.

No. Class Train Test

1 Asphalt 1337 5294

2 Meadows 3742 14907

3 Gravel 404 1695

4 Trees 619 2445

5 Painted metal sheets 264 1081

6 Bare Soil 1028 4001

7 Bitumen 256 1074

8 Self-Blocking Bricks 718 2964

9 Shadows 194 753

Total 8562 34214

Table 3. The number of training and testing samples for the Salinas dataset.

No. Class Train Test

1 Brocoli-green-weeds-1 348 1661

2 Brocoli-green-weeds-2 665 3061

3 Fallow 346 1630

4 Fallow-rough-plow 242 1152

5 Fallow-smooth 471 2207

6 Stubble 711 3248

7 Celery 636 2943

8 Grapes-untrained 2038 9233

9 Soil-vinyard-develop 1129 5074

10 Corn-senesced-green-weeds 586 2692

11 Lettuce-romaine-4wk 183 885

12 Lettuce-romaine-5wk 333 1594

13 Lettuce-romaine-6wk 178 738

14 Lettuce-romaine-7wk 196 874

15 Vinyard-untrained 1277 5991

16 Vinyard-vertical-trellis 305 1502

Total 9644 44485
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(a) (b)

(c)

Figure 4. The false color composite and the ground truth map of the experiments data: (a) Indiana, (b)
PaviaU, and (c) Salinas.

3.2. Experimental Settings

To comprehensively qualify the performance of the PRCLSTM model, four classification metrics,
namely Overall Accuracy (OA), Kappa Coefficient (κ), Average Accuracy (AA), and Test Error (TE), are
used in this study. The first three classification metrics are extracted from the confusion matrix, whereas
the last one is the expected value of error on a new input of the network. This last criterion indicates the
generalization capacity of the model, and its lower value demonstrates a better performance. To assess
the independency of the proposed model on training and test data distributions, all experiments
are repeated ten times with a random train and test splitting. Finally, the average and the standard
deviation of the experiments are estimated and reported.

Before discussing the parameter setting for the proposed model, we show the model’s framework
and configuration for the Salinas dataset in detail (Figure 5 and Table 4). Inspired by Reference [27],
we set the parameters of Block 1. To do so, the number of filters of CNN1 and CNN2 are respectively
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considered as 24 and 128 in this block. At the same time, the kernel sizes of CNN1 and CNN2 are
also respectively set as 1× 1× 7 and 1× 1× K, where K is the third dimension of the output of the
previous layer. In Block 2, to completely use the spatial information of an input cube, the kernel size
of the CLSTM layer is set to 1× 1. To set the number of outputs of Block 2, the different number of
kernels in the range of 10 to 22 with a step size of four are assessed. As illustrated in Figure 6, the
model with 18 kernels has the higher mean of OA in the datasets in question. Thus, we choose this
number for the output of Block 2 in our proposed model.

Block  2Block  1 Block  3

. . . . . . . . 
. . . .

1 × 1 × 7
9

9

204

24

1 × 1 × 99

9

9

99

9

9

1
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1

1 × 1
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9

9

99

9

9

1
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1
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BN + ReLU BN + ReLU BN + ReLU

. . . .
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. . . .
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1
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1

Flatten

Figure 5. The patch-related convolutional long short-term memory (PRCLSTM) framework for the
classification of Salinas dataset with a 9 × 9 × 204 window size for the input cube.

Table 4. The configuration of the PRCLSTM for the classification of the Salinas dataset with a 9× 9 ×
204 window size for the input cube.

Section Unit Input Shape Kernel Size Regularization Output Shape

Block1 CNN1 + BN + ReLU 9× 9× 204 1× 1× 7 L2(0.0001) 9× 9× 99× 24
CNN2 + BN + ReLU 9× 9× 99× 24 1× 1× 99 L2(0.0001) 9× 9× 1× 128

Block2 CLSTM + BN + ReLU 9× 9× 1× 128 1× 1 Dropout (30%) 9× 1× 18

Block3 Flatten 9× 1× 18 - - 162
Fully Connected 162 - Dropout (50%) 16
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Figure 6. The overall accuracy (OA) of the PRCLSTM with different numbers of kernels for Block 2.

In the second part, the optimal parameters for the training process, specifically the batch size
and learning rate, are obtained via a grid search algorithm. Note that the search space of these two
parameters is set to References [16,27,29,45,46]. As a result of the grid search, the learning rate was set
to 0.0001, 0.0003, and 0.0001 for Indiana, PaviaU, and Salinas, respectively. We also consider 0.00001 as
the learning decay only for PaviaU because this parameter does not show a positive effect on the other
datasets. The batch size is also set to 16 for all the experiment datasets.

In the third part, we set the parameters of the regularization techniques. In the PRCLSTM model,
two types of regularization techniques—Batch Normalization (BN) [34] and dropout [47]—are taken
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into account. As already mentioned, BN is used to tackle the internal covariant shift phenomenon [34],
and the dropout is applied to increase the generalization capacity. Accordingly, BN is applied to
the fourth dimension of each layer output to make the training process more efficiently. In addition,
according to the number of the inputs, 30% of the connections and nodes are discarded by a dropout
method for the CLSTM layer. Through the dropout method, 50% of the nodes are ignored in order to
prevent overfitting in the classification layer. Finally, in the last part, we initialize the kernels of the
CNN and CLSTM layers by using the truncated normal distribution [48]. Then, these initial values
are optimized using a root mean squared error propagation (RMSProp) [49] as an optimizer to back
propagate the gradient of the categorical cross-entropy cost function. In the training phase, after each
epoch, the trained model is evaluated by the validation set, and the model with the lowest TE is
preserved. Subsequently, the obtained model is applied for the testing procedure which provides the
evaluation results.

3.3. Competing Methods

In order to evaluate the performance of the PRCLSTM, the model is compared to different types of
classifiers like SVM, 1-D, 2-D, and 3-D CNN and RNN. Moreover, to analyze the effect of spectral-spatial
feature extraction blocks, two additional models are also implemented. The configurations of the
competing methods are as follows:

1. P-SVM-RBF: an SVM classifier with an radial basis function (RBF) kernel used to estimate class
membership probabilities by an expensive K-fold cross-validation.

2. P-CNN [50]: a 2-D CNN layers with a PCA as a preprocessing procedure.
3. CRNN [31]: 1-D CNN layers, followed by two fully connected RNN layers.
4. 3-D-CNN [51]: 3-D CNN layers, followed by fully connected layers.
5. 3-D-CNN-LSTM: Our proposed model in which a CLSTM layer is replaced with a fully connected

LSTM. This model was performed to demonstrate the efficacy of Block 2.
6. L-CLSTM: Our proposed model in which all layers are replaced with the CLSTM (L-CLSTM is

the long CLSTM). This model was implemented to indicate the Block 1 efficiency.

To evaluate the performance of PRCLSTM, as a 3-D-LSTM-based model, we first compare that to
two implemented 3-D-LSTM-based models, namely 3-D-CNN-LSTM and L-CLSTM. These models are
then comprehensively compared with the other competitive classifier methods (cases 1–4 above). The
best results based on the four classification metrics have been bolded in the different tables.

3.4. Analyses of the 3-D-LSTM-Based Models

In the first phase, the effect of Block 2 is analyzed through a comparison of 3-D-CNN-LSTM
and PRCLSTM. Figure 7 illustrates the performance of the two models in terms of the validation loss
(validation error) during the training process for the Indiana, PaviaU, and Salinas datasets. As is
clear from Figure 7, the performance of the PRCLSTM is more stable than that of the 3-D-CNN-LSTM
model. Moreover, our model, having a CLSTM layer, converges to a far better solution than that of the
3-D-CNN-LSTM. According to the test results (Tables 5–7), compared with the 3-D-CNN-LSTM, the
PRCLSTM leads to 0.98%, 1.14%, 2.48%, and 0.05 improvements in the OA, κ, AA, and TE respectively,
averaged on all three datasets. For example, the improvements for Indiana in terms of OA, κ, AA,
and TE have respectively been 1.73%, 1.98%, 6.16%, and 0.08. In addition, as is obvious from the
classification maps in Figures 8–10, the 3-D-CNN-LSTM, unlike our proposed model, leads to a great
deal of noise and a malicious effect, both from the flatting out of the 3-D data by the fully connected
LSTM layer for the PaviaU dataset and, especially, for the Indiana and Salinas datasets. As our
experimental results indicate, considering the spatial information of data during sequence-based
prediction leads to a more-effective learning process.
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Figure 7. The validation loss during the training of the 3-D convolutional neural network (CNN)-LSTM
and PRCLSTM for (a) Indiana, (b) PaviaU, and (c) Salinas.

Table 5. A comparison between the classification results of the Indiana dataset with a fixed spatial size
of the input cube and a sufficient number of training samples.

No. P-SVM-RBF P-CNN CRNN 3-D-CNN 3-D-CNN-LSTM L-CLSTM PRCLSTM

1 85.10 ± 13.96 100 ± 0.0 96.86 ± 2.05 59.37 ± 13.34 100 ± 0.00 100 ± 0.0 100 ± 0.0

2 71.55 ± 2.26 79.49 ± 1.83 97.24 ± 0.59 87.98 ± 1.04 94.29 ± 3.49 93.90 ± 3.39 99.66 ± 0.27

3 83.20 ± 1.83 86.13 ± 2.42 96.97 ± 0.82 86.38 ± 1.71 97.92 ± 0.78 95.84 ± 2.26 99.19 ± 0.48

4 69.13 ± 4.90 95.57 ± 2.15 95.12 ± 2.44 64 ± 3.47 96.8 ± 2.09 97.42 ± 1.78 99.8 ± 0.30

5 93.41 ± 1.05 94.7 ± 1.37 97.42 ± 0.66 95.28 ± 0.70 98.31 ± 1.19 96.90 ± 1.31 98.07 ± 0.51

6 91.30 ± 1.28 98.49 ± 0.54 99.25 ± 0.42 99.83 ± 0.11 99.05 ± 0.61 98.44 ± 0.45 99.94 ± 0.10

7 94.99 ± 4.78 99 ± 3.16 93.05 ± 7.14 77.62 ± 7.79 100 ± 0.0 97.04 ± 4.8 100 ± 0.0

8 90.41 ± 0.97 94.14 ± 1.54 98.44 ± 1.19 98.84 ± 0.37 96.75 ± 0.94 96.30 ± 1.07 96.83 ± 0.22

9 83.65 ± 15.18 90 ± 31.62 97.78 ± 6.67 77.14 ± 11.57 20 ± 42.16 100 ± 0.0 100 ± 0.0

10 80.55 ± 2.62 85.96 ± 1.7 95.43 ± 0.81 87.23 ± 1.60 99.41 ± 0.57 93.29 ± 1.79 99.8 ± 0.33

11 80.16 ± 1.31 85.43 ± 0.88 97.87 ± 0.75 94.17 ± 0.43 98.77 ± 0.46 98.70 ± 0.68 99.18 ± 0.33

12 74.21 ± 2.74 82.37 ± 4.5 95.39 ± 0.59 67.59 ± 1.24 91.06 ± 4.45 96.66 ± 2.31 98.21 ± 1.01

13 95.53 ± 2.67 99.93 ± 0.21 99.24 ± 0.87 99.31 ± 0.57 99.13 ± 0.98 98.63 ± 1.12 99.93 ± 0.22

14 92.16 ± 0.90 96.18 ± 0.51 98.8 ± 1.37 97.26 ± 0.69 98.89 ± 0.38 99.40 ± 0.34 99.4 ± 0.15

15 80.10 ± 2.79 91.43 ± 2.21 98.88 ± 0.78 92.32 ± 1.63 98.56 ± 1.14 99.29 ± 0.75 99.79 ± 0.39

16 99.54 ± 0.97 98.49 ± 1.21 96.38 ± 2.94 85.60 ± 6.07 98.14 ± 1.46 90.20 ± 7.02 95.77 ± 1.26

OA 82.51 ± 0.51 88.52 ± 0.66 97.51 ± 0.32 90.53 ± 0.30 97.46 ± 0.5 96.86 ± 0.50 99.19 ± 0.11

κ 79.92 ± 0.59 86.85 ± 0.76 97.16 ± 0.36 89.16 ± 0.35 97.1 ± 0.57 96.42 ± 0.57 99.08 ± 0.13

AA 85.31 ± 1.36 92.33 ± 1.96 97.13 ± 0.84 85.62 ± 1.37 92.94 ± 2.86 97.0 ± 0.43 99.1 ± 0.08

TE - 0.3200 ± 0.019 0.0906 ± 0.011 0.5605 ± 0.024 0.1292 ± 0.023 0.1416 ± 0.051 0.0492 ± 0.003
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Table 6. A comparison between the classification results of the PaviaU dataset with a fixed spatial size
of the input cube and a sufficient number of training samples.

No. P-SVM-RBF P-CNN CRNN 3-D-CNN 3-D-CNN-LSTM L-CLSTM PRCLSTM

1 94.92 ± 0.44 95.44 ± 0.49 97.37 ± 1.82 95.42 ± 0.24 99.65 ± 0.21 96.27 ± 3.83 99.74 ± 0.07

2 96.30 ± 0.21 98.85 ± 0.13 99.69 ± 0.10 99.03 ± 0.09 99.88 ± 0.05 99.53 ± 0.23 99.97 ± 0.02

3 86.95 ± 1.25 92.99 ± 1.88 95.99 ± 1.96 89.54 ± 0.83 98.35 ± 2.01 93.48 ± 3.93 99.99 ± 0.03

4 96.91 ± 0.36 99.50 ± 0.18 98.33 ± 2.04 99.41 ± 0.21 99.76 ± 0.12 99.86 ± 0.14 99.98 ± 0.05

5 99.98 ± 0.04 99.72 ± 0.27 99.47 ± 0.06 95.39 ± 1.06 99.84 ± 0.1 99.92 ± 0.1 99.88 ± 0.08

6 91.56 ± 0.89 98.67 ± 0.48 99.54 ± 0.27 96.53 ± 0.47 99.96 ± 0.04 99.86 ± 0.2 100 ± 0.0

7 89.95 ± 1.93 96.04 ± 0.82 97.25 ± 1.24 93.75 ± 1.01 96.23 ± 3.81 99.84 ± 0.23 99.73 ± 0.83

8 86.37 ± 0.91 90.04 ± 1.08 94.97 ± 1.65 90.61 ± 0.39 96.95 ± 4.24 98.72 ± 0.87 99.47 ± 0.47

9 100 ± 0.0 99 ± 0.59 99.22 ± 0.66 99.71 ± 0.30 99.02 ± 0.83 99.65 ± 0.39 99.09 ± 0.55

OA 94.26 ± 0.14 97.24 ± 0.12 98.51 ± 0.46 96.75 ± 0.06 99.35 ± 0.43 98.69 ± 0.65 99.87 ± 0.07

κ 92.36 ± 0.19 96.33 ± 0.17 98.02 ± 0.62 95.69 ± 0.09 99.14 ± 0.57 98.26 ± 0.86 99.82 ± 0.09

AA 93.66 ± 0.24 96.70 ± 0.23 97.98 ± 0.49 95.49 ± 0.19 98.85 ± 0.66 98.57 ± 0.6 99.76 ± 0.15

TE - 0.0846 ± 0.004 0.0683 ± 0.021 0.3091 ± 0.008 0.044 ± 0.030 0.0811 ± 0.040 0.0176 ± 0.003

Table 7. A comparison between the classification results of the Salinas dataset with a fixed spatial size
for the input cube and a sufficient number of training samples.

No. P-SVM-RBF P-CNN CRNN 3-D-CNN 3-D-CNN-LSTM L-CLSTM PRCLSTM

1 99.99 ± 0.03 100 ± 0.0 100 ± 0.0 99.9 ± 0.15 99.98 ± 0.04 99.92 ± 0.14 100 ± 0.0
2 99.76 ± 0.11 99.94 ± 0.04 99.88 ± 0.15 99.78 ± 0.24 99.87 ± 0.08 89.60 ± 8.38 99.92 ± 0.16
3 97.91 ± 0.68 99.72 ± 0.24 98.66 ± 1.86 99.63 ± 0.12 99.92 ± 0.08 99.90 ± 0.22 100 ± 0.0
4 98.91 ± 0.24 99.61 ± 0.23 98.68 ± 1.59 99.94 ± 0.08 99.66 ± 0.26 98.80 ± 0.75 99.68 ± 0.19
5 99.61 ± 0.09 99.39 ± 0.30 99.84 ± 0.17 99.19 ± 0.15 99.93 ± 0.05 100 ± 0.0 99.95 ± 0.05
6 100 ± 0.0 100 ± 0.0 99.86 ± 0.10 99.93 ± 0.04 100 ± 0.0 99.89 ± 0.21 99.99 ± 0.03
7 99.99 ± 0.03 100 ± 0.0 99.60 ± 0.95 99.26 ± 0.39 99.95 ± 0.06 99.91 ± 0.11 100 ± 0.0
8 82.35 ± 0.52 95.91 ± 0.78 96.53 ± 0.61 94.77 ± 0.39 99.63 ± 0.21 96.40 ± 1.89 99.80 ± 0.27
9 99.54 ± 0.06 99.90 ± 0.15 99.97 ± 0.07 99.78 ± 0.12 99.98 ± 0.04 99.94 ± 0.07 100 ± 0.0

10 96.70 ± 0.49 99.59 ± 0.26 98.60 ± 0.69 97.52 ± 0.46 99.82 ± 0.11 99.67 ± 0.35 99.86 ± 0.05
11 98.24 ± 0.53 97.59 ± 1.67 98.52 ± 2.62 97.12 ± 0.54 97.73 ± 0.60 98.95 ± 0.91 98.92 ± 0.52
12 99.07 ± 0.36 99.73 ± 0.10 99.96 ± 0.06 99.99 ± 0.02 99.93 ± 0.06 99.95 ± 0.03 99.97 ± 0.04
13 98.78 ± 0.57 99.54 ± 0.36 99.81 ± 0.13 99.93 ± 0.12 99.53 ± 0.68 99.97 ± 0.06 99.92 ± 0.14
14 98.37 ± 0.56 99.88 ± 0.14 99.36 ± 0.28 99.53 ± 0.30 99.93 ± 0.11 99.48 ± 0.45 99.78 ± 0.35
15 80.49 ± 0.83 90.45 ± 1.44 94.99 ± 0.46 93.18 ± 0.90 95.62 ± 3.88 95.79 ± 4.51 99.82 ± 0.57
16 99.84 ± 0.19 99.98 ± 0.06 98.33 ± 0.32 99.24 ± 0.26 100 ± 0.0 99.62 ± 0.54 100 ± 0.0

OA 93.15 ± 0.11 97.67 ± 0.09 98.28 ± 0.34 97.6 ± 0.11 99.19 ± 0.58 97.65 ± 0.72 99.88 ± 0.08
κ 92.36 ± 0.12 97.41 ± 0.10 98.08 ± 0.38 97.33 ± 0.13 99.10 ± 0.64 97.38 ± 0.80 99.87 ± 0.09

AA 96.85 ± 0.08 98.83 ± 0.12 98.91 ± 0.48 98.67 ± 0.08 99.47 ± 0.25 98.61 ± 0.51 99.85 ± 0.05
TE - 0.0628 ± 0.003 0.0545 ± 0.012 0.2405 ± 0.012 0.0505 ± 0.028 0.1358 ± 0.73 0.0196 ± 0.002

(a) (b) (c) (d) (e) (f) (g)

Figure 8. The classification maps of Indiana: (a) P-SVM-RBF, (b) P-CNN, (c) CRNN, (d) 3-D-CNN, (e)
3-D-CNN-LSTM, (f) L-CLSTM, and (g) PRCLSTM.
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(a) (b) (c) (d) (e) (f) (g)

Figure 9. The classification maps of PaviaU: (a) P-SVM-RBF, (b) P-CNN, (c) CRNN, (d) 3-D-CNN, (e)
3-D-CNN-LSTM, (f) L-CLSTM, and (g) PRCLSTM.

(a) (b) (c) (d) (e) (f) (g)

Figure 10. The classification maps of Salinas: (a) P-SVM-RBF, (b) P-CNN, (c) CRNN, (d) 3-D-CNN, (e)
3-D-CNN-LSTM, (f) L-CLSTM, and (g) PRCLSTM.

The second phase analyses the effect of the spectral feature extraction and dimension reduction,
performed by the 3-D-CNN layers in Block 1. For this purpose, the L-CLSTM model, which contains
only CLSTM layers, is selected. To achieve a fair comparison, the parameters of the L-CLSTM model
are considered to be approximately equal to the PRCLSTM model. As illustrated in Figure 11, due
to the high dimension of the input data, the L-CLSTM model, unlike the PRCLSTM model, cannot
converge to the proper solution in terms of the validation loss during the training process for any
of the datasets. Tables 5–7 show that the PRCLSTM leads to on average 1.91%, 2.24%, 1.51%, and
0.09 improvements in the OA, κ, AA, and TE, respectively, for all of the three datasets compared to
L-CLSTM. From the perspective of computational burden, as seen in Table 8, the computational cost
of the L-CLSTM model is much higher than that of the PRCLSTM model. The results in this phase
imply that the extraction of low-dimensional shallow features, as inputs of Block 2, play a key role in
improving the performance of the recurrent analysis.

Table 8. The computational time (min: minutes, s: second) of the 3-D-LSTM-based models for the three
datasets.

Method Time Indiana PaviaU Salinas

P-CNN
Train (m) 2.2 3.5 3.9

Test (s) 1 2.5 3.1

CRNN
Train (m) 2.5 4.7 7.1

Test (s) 1 2.5 7.7
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Table 8. Cont.

Method Time Indiana PaviaU Salinas

3-D-CNN Train (m) 8.2 12 22.3
Test (s) 2.7 8 17.4

3-D-CNN-LSTM Train (m) 20.7 37.3 54.6
Test (s) 5 20 37

L-CLSTM Train (m) 37.1 122.9 171.8
Test (s) 37 69 108

PRCLSTM Train (m) 20.8 38.6 55.7
Test (s) 5 21 39
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Figure 11. The validation loss during the training of the L-CLSTM and PRCLSTM for (a) Indiana, (b)
PaviaU, and (c) Salinas.

3.5. The PRCLSTM Performance

The two main factors that influence the performance of DL methods in an HSI classification task
are the spatial size of an input cube and the number of training samples. Accordingly, we establish a
three-part analysis to evaluate the performance of the proposed model in terms of these parameters.
In the first part, the performance of the models is assessed in the presence of a fixed and sufficient
number of training samples, as well as a fixed spatial size for the input cube. To do so, the training
and test samples are determined as reported in Tables 1–3. To prevent over-fitting and to enhance
the training procedure, 35%, 50%, and 50% of the training samples are selected for the validation
of the learned parameters of Indiana, PaviaU, and Salinas, respectively, during the training process.
It is worth mentioning that the test samples are involved in neither the validation nor the training
procedures and that they are just used for testing. The hyper-parameters of the 3-D-CNN-LSTM and
L-CLSTM models are set the same as the PRCLSTM model, and for the other models, these parameters
are set based on their original implementations. To have a fair comparison, a 9× 9× B (B is the number
of spectral bands) window size is selected as the input cubes of all models, and 200 is set as the number
of training epochs. The results of the evaluation criteria for all models in hand have been illustrated in
Tables 5–7 for the Indiana, PaviaU, and Salinas datasets, respectively. These tables demonstrate that
the PRCLSTM model achieves the best performance in all three datasets. For instance, in the Indiana
dataset, the PRCLSTM achieves about a 2% higher accuracy in terms of the OA as well as a standard
deviation three times lower than the best result gained by the other competitors. Moreover, according
to Figures 8–10, the PRCLSTM produces the most accurate and noiseless classification maps.

In the second part, the training processes with different spatial sizes of input cubes are performed.
We set the extracted window to a range of sizes from 3× 3 to 11× 11 and report the OA and TE for each
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model. Table 9 and Figure 12 indicate that the proposed model achieves the best results in most cases.
However, for the Salinas dataset, the 3-D-CNN-LSTM performs relatively better than the PRCLSTM in
terms of the OA for the 3× 3 window size, but the PRCLSTM still shows the lowest TE, guaranteeing a
better generalization capacity for our model. These results indicate that the proposed model performs
better in the various sizes of input cubes compared to the convolutional feed-forward-based models,
thanks to the use of a convolutional recurrent structure to capture the spatial information of data.
For example, the 3-D-CNN model, as a competing method, performs the best in the case of the 5× 5
window size, whereas its performance deteriorates for the other window sizes.

(a) (b)

(c)

Figure 12. The test Errors (TEs) of the various methods with different window sizes of the input cube
for (a) Indiana, (b) PaviaU, and (c) Salinas.

Table 9. The overall accuracy (OA%) of different window sizes of the input cube for the three datasets.

Method Dataset 3 × 3 5 × 5 7 × 7 9 × 9 11 × 11

P-CNN

Indiana

70.81 ± 0.72 81.96 ± 0.41 85.06 ± 0.4 88.52 ± 0.66 91.52 ± 0.47

CRNN 89.57 ± 0.11 93.76 ± 1.02 96.82 ± 0.63 97.51 ± 0.32 96.96 ± 1.08

3-D-CNN 93.44 ± 0.33 95.58 ± 0.16 90.46 ± 0.34 90.53 ± 0.3 90.68 ± 0.22

3-D-CNN-LSTM 95.15 ± 0.65 94.62 ± 1.63 88.98 ± 1.28 97.46 ± 0.5 92.89 ± 1.19

L-CLSTM 75 ± 1.20 75.83 ± 4.28 88.16 ± 4.31 96.86 ± 0.50 97.79 ± 0.56

PRCLSTM 96.94 ± 0.35 98.38 ± 0.22 99.02 ± 0.32 99.19 ± 0.11 99.32 ± 0.19
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Table 9. Cont.

Method Dataset 3 × 3 5 × 5 7 × 7 9 × 9 11 × 11

P-CNN

PaviaU

89.49 ± 0.11 94.31 ± 0.11 95.89 ± 0.16 97.24 ± 0.12 97.86 ± 0.14
CRNN 97.18 ± 0.04 98.05 ± 0.16 98.63 ± 0.06 98.51 ± 0.46 99 ± 0.09

3-D-CNN 97.25 ± 0.08 97.79 ± 0.08 97.63 ± 0.08 96.75 ± 0.06 96.66 ± 0.17
3-D-CNN-LSTM 98.39 ± 0.25 98.77 ± 0.1 98.55 ± 0.35 99.35 ± 0.43 99.4 ± 0.22

L-CLSTM 92.93 ± 1.33 97.43 ± 0.63 98.51 ± 0.30 98.85 ± 0.73 99.35 ± 0.27
PRCLSTM 99.05 ± 0.09 99.66 ± 0.09 99.92 ± 0.03 99.87 ± 0.07 99.86 ± 0.03

P-CNN

Salinas

90.27 ± 0.2 94.96 ± 0.11 96.01 ± 0.12 97.67 ± 0.09 98.02 ± 0.09
CRNN 92.45 ± 0.34 94.29 ± 1.66 96.85 ± 0.59 98.28 ± 0.34 98.38 ± 0.91

3-D-CNN 96.53 ± 0.43 98.02 ± 0.19 97.22 ± 0.22 97.60 ± 0.11 97.11 ± 0.77
3-D-CNN-LSTM 97.37 ± 0.13 97.32 ± 0.28 97.34 ± 0.4 99.2 ± 0.59 98.89 ± 0.65

L-CLSTM 92.30 ± 0.9 94.69 ± 0.46 96.16 ± 0.41 97.65 ± 0.72 98.73 ± 1.01
PRCLSTM 96.75 ± 0.4 99.13 ± 0.21 99.80 ± 0.08 99.88 ± 0.08 99.93 ± 0.03

In the third part, we assess the capability of the proposed model when a small amount of training
data is available. For this purpose, the Salinas dataset is selected and the models are trained by a
range of 0.5% to 3% of data as training samples. Then the OA, κ, and AA are reported for the rest
of the samples. From the experiments, first of all, one can conclude that the models which contain a
convolutional recurrent unit perform better than the models with a convolutional feed-forward unit
when limited training samples are accessible. For example, as is obvious from Figure 13, where the
competing methods, such as the CRNN and 3-D-CNN, lead to about an 80% accuracy in terms of the
OA, the convolutional recurrent models, that is, the PRCLSTM and L-CLSTM, result in a higher than
91% accuracy. It should be noted that, in the case of very limited training samples (i.e., 0.5% and 1%),
the L-CLSTM model results in a relatively higher classification accuracy; however, this improvement is
not reliable because the accuracy of the L-CLSTM fluctuates with an increase in the number of training
samples. Generally speaking, the results of the PRCLSTM are more accurate and more stable in both
scenarios of having sufficient and limited training samples.

In addition to the abovementioned analyses, the training and testing time of the 3-D-LSTM
model for the constant spatial size of the input cubes (i.e., 9 × 9 × B) and a sufficient amount
of training samples are tabulated in Table 8. Thanks to the Graphical Processor Unit (GPU)
resources, the computational cost of DL methods is reduced. In general, recurrent-based models
are still computationally expensive; however, as observed in Table 8, two 3-D-LSTM-based models
(3-D-CNN-LSTM and PRCLSTM), by taking advantage of the dimensionality reduction of the 3-D
CNN are able to reduce the computational burden of CLSTM. Furthermore, to statistically compare
the proposed method with its best rivals in each dataset, the wilcoxon rank sum test [52] was used
here. This test, which is a common statistical test, can be applied to compare two independent sets of
samples without having any assumption about the statistical distribution of the sets. In our case, a set
is a 10 × 1 vector of κ values, coming from 10 runs of each classifier. The obtained result, tabulated in
Table 10 indicates that the differences between PRCLSTM and the competing models are statistically
significant at the confidence level of 95%.

It is worth mentioning that all the experiments here were conducted on an ASUS FX-553 laptop
that has a NVIDIA GeForce GTX-1050Ti GPU (4GB GDDR5). Moreover, all the models have been
implemented in the Python (https://www.python.org) language, which has utilized Keras (https:
//www.keras.io), TensorFlow (https://www.tensorflow.org), and libsvm (https://www.csie.ntu.edu.
tw/~cjlin/libsvm/) as its machine learning libraries.

https://www.python.org
https://www.keras.io
https://www.keras.io
https://www.tensorflow.org
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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(a) (b)

(c)

Figure 13. The classification result (%) with a limited size of training samples: (a) OA, (b) Kappa
Coefficent (κ), and (c) Average Accuracy (AA).

Table 10. The statistical significance of the PRCLSTM and the best competitors on the datasets in
question.

Method Dataset κ p-Value Statistical Significance

CRNN
Indiana

97.16 ± 0.36
0.00018 Significant

PRCLSTM 99.08 ± 0.13

3-D-CNN-LSTM
PaviaU

99.14 ± 0.57
0.0022 Significant

PRCLSTM 99.82 ± 0.09

3-D-CNN-LSTM
Salinas

99.10 ± 0.64
0.00018 Significant

PRCLSTM 99.87 ± 0.09

4. Conclusions

In recent years, deep learning (DL) methods are of major concern in hyperspectral imagery (HSI)
classification tasks. These methods are able to automatically extract spectral and spatial information
and to apply them in classification processes. However, a full extraction of both the spectral and
spatial information are the main concerns of these methods. To address them, here, an innovative
convolution-recurrent framework has been presented to build a 3-D spectral-spatial trainable model
for HSI classification. This model contains two stages: (i) the 3-D CNNs, which produce shallow
spectral-spatial features in a feed-forward procedure, and (ii) a CLSTM, which extracts more abstract
and semantic features in a recurrent manner. The focus of the first stage is to analyze a high spectral
dimension, while the concentration of the second one is to process the full content of spatial information.
In this study, the performance of the PRCLSTM (the proposed model) has been assessed in the presence
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of (i) a sufficient number of training samples, (ii) a limited number of training samples, and (iii) different
input cubes sizes. From the results, it can be concluded that the PRCLSTM performance is promising,
even with a limited number of training samples. Moreover, the recurrent analysis for extracting spatial
information makes the classification model robust against the different input cubes sizes, indicating a
high generalization capacity of the proposed model.
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