# Managing Agricultural Water Considering Water Allocation Priority Based on Remote Sensing Data

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Development of Methodology

#### 2.1. Overview of the Problem

#### 2.2. Water Allocation Priority Evaluation

#### 2.2.1. Spatialization of Statistical Data

#### Remote Sensing Data Preparation

#### Regression Models

^{2}) and the significance test value F [19,36,37].

#### Modification Model

#### Model Validation

#### 2.2.2. Evaluation Index

#### 2.2.3. Evaluation Method

#### Division of Water Supply Response Unit

#### The AHP-TOPSIS Evaluation Approach

#### 2.3. Nonlinear Multi-Objective Optimization Model of Agricultural Land and Water

#### 2.3.1. Crop Water Requirements

_{0}and Kc, and the maximum evapotranspiration of crops can be calculated according to the crop coefficient method recommended by the FAO [43]:

#### 2.3.2. Objectives

#### 2.3.3. Constraints

#### 2.3.4. Solution Method

## 3. Application

#### 3.1. Study Area

^{9}m

^{3}. However, due to the decrease in annual runoff of the Yellow River, the water distribution of HID is reduced, and the gap between supply and demand of irrigation water is widened [49]. Water resources have become the main factor restricting the development of irrigation area. The challenges of the irrigation area are (1) how to manage water use on a canal system scale; (2) how to determine a reasonable priority for water distribution; and (3) how to allocate water resources in consideration of allocation efficiency and fairness.

#### 3.2. Evaluation Index Selection

#### 3.3. Data

## 4. Results and Discussion

#### 4.1. Spatial Results of Statistical Data

#### 4.1.1. Statistical Regression Model

^{2}= 0.7177, F = 25.42). Statistical regression results of grain yield also show that the model established by NDVI is better. Among these models, the quadratic function model and the power function model established by NDVI have better fitting results. In real cases, the agricultural output value and grain yield are not supposed to be negative. However, the linear and quadratic function models are prone to negative values, while the exponential function and power function algorithm would not be negative. Therefore, although the established linear model between NDVI and grain yield has a good fitting effect, we cannot select it due to the existence of negative values. In addition, considering the combined effects of NDVI and potential yield of farmland a multiple linear regression model is proposed. For preventing negative values, this study set the intercept of regression model to zero.

#### 4.1.2. Spatialization Results

#### 4.2. Water Allocation Priority

#### 4.3. Optimization Results Analysis

#### 4.4. Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Appendix A

#### Appendix A.1. The AHP-TOPSIS Evaluation Approach

_{ij}refers to the initial value of the evaluation index j of the response unit i and R is the standardized evaluation matrix.

^{+}is the maximum value of the jth index in the evaluation data response unit i, which is the positive ideal solution; Y

^{−}is the negative ideal solution, which can be calculated through the opposite method to the positive ideal solution. The calculation method is shown as follows:

_{i}is the proximity of each response unit i, its value range is between 0 and 1, and the closer to 1, the greater the priority weight, otherwise the opposite.

#### Appendix A.2. Statistical Regression Model

**Figure A1.**Statistical relationship between NDVI and agricultural output value: (

**a**) Linear algorithm; (

**b**) quadratic polynomial algorithm; (

**c**) exponential algorithm; (

**d**) power function algorithm.

**Figure A2.**Statistical relationship between potential yield of farmland and agricultural output value: (

**a**) Linear algorithm; (

**b**) quadratic polynomial algorithm; (

**c**) exponential algorithm; (

**d**) power function algorithm.

**Figure A3.**Statistical relationship between NDVI and grain yield. (

**a**) Linear algorithm; (

**b**) quadratic polynomial algorithm; (

**c**) exponential algorithm; (

**d**) power function algorithm.

**Figure A4.**Statistical relationship between potential yield of farmland and grain yield: (

**a**) Linear algorithm; (

**b**) quadratic polynomial algorithm; (

**c**) exponential algorithm; (

**d**) power function algorithm.

## References

- Gong, X.; Zhang, H.; Ren, C.; Sun, D.; Yang, J. Optimization allocation of irrigation water resources based on crop water requirement under considering effective precipitation and uncertainty. Agric. Water Manag.
**2020**, 239, 106264. [Google Scholar] [CrossRef] - Saccon, P. Water for agriculture, irrigation management. Appl. Soil Ecol.
**2018**, 123, 793–796. [Google Scholar] [CrossRef] - Li, M.; Fu, Q.; Singh, V.P.; Liu, D.; Li, T.; Zhou, Y. Managing agricultural water and land resources with tradeoff between economic, environmental, and social considerations: A multi-objective non-linear optimization model under uncertainty. Agric. Syst.
**2020**, 178. [Google Scholar] [CrossRef] - RazaviToosi, S.L.; Samani, J.M.V. Evaluating water management strategies in watersheds by new hybrid Fuzzy Analytical Network Process (FANP) methods. J. Hydrol.
**2016**, 534, 364–376. [Google Scholar] [CrossRef] - Karnib, A. An approach to elaborate priority preorders of water resources projects based on multi-criteria evaluation and fuzzy sets analysis. Water Resour. Manag.
**2004**, 18, 13–33. [Google Scholar] [CrossRef] - Kundu, S.; Khare, D.; Mondal, A. Landuse change impact on sub-watersheds prioritization by analytical hierarchy process (AHP). Ecol. Inform.
**2017**, 42, 100–113. [Google Scholar] [CrossRef] - Jaiswal, R.K.; Ghosh, N.C.; Lohani, A.K.; Thomas, T. Fuzzy AHP Based Multi Crteria Decision Support for Watershed Prioritization. Water Resour. Manag.
**2015**, 29, 4205–4227. [Google Scholar] [CrossRef] - Karatayev, M.; Kapsalyamova, Z.; Spankulova, L.; Skakova, A.; Movkebayeva, G.; Kongyrbay, A. Priorities and challenges for a sustainable management of water resources in Kazakhstan. Sustain. Water Qual. Ecol.
**2017**, 9–10, 115–135. [Google Scholar] [CrossRef] - RazaviToosi, S.L.; Samani, J.M.V. A Fuzzy Group Decision Making Framework Based on ISM-FANP-FTOPSIS for Evaluating Watershed Management Strategies. Water Resour. Manag.
**2019**, 33, 5169–5190. [Google Scholar] [CrossRef] - Gómez-Limón, J.A.; Gutiérrez-Martín, C.; Montilla-López, N.M. Agricultural water allocation under cyclical scarcity: The role of priority water rights. Water
**2020**, 12, 1835. [Google Scholar] [CrossRef] - Li, S.; He, Y.; Chen, X.; Zheng, Y. The improved bankruptcy method and its application in regional water resource allocation. J. Hydro-Environ. Res.
**2020**, 28, 48–56. [Google Scholar] [CrossRef] - Zhang, F.; Yue, Q.; Engel, B.A.; Guo, S.; Guo, P.; Li, X. A bi-level multiobjective stochastic approach for supporting environment-friendly agricultural planting strategy formulation. Sci. Total Environ.
**2019**, 693, 133593. [Google Scholar] [CrossRef] - Christakos, G.; Angulo, J.M.; Yu, H.L.; Wu, J. Space-time metric determination in environmental modeling. J. Environ. Inform.
**2017**, 30, 29–40. [Google Scholar] [CrossRef] - Tang, Y.; Zhang, F.; Engel, B.A.; Liu, X.; Yue, Q.; Guo, P. Grid-scale agricultural land and water management: A remote-sensing-based multiobjective approach. J. Clean. Prod.
**2020**, 265, 121792. [Google Scholar] [CrossRef] - Tang, Y.; Zhang, F.; Wang, S.; Zhang, X.; Guo, S.; Guo, P. A distributed interval nonlinear multiobjective programming approach for optimal irrigation water management in an arid area. Agric. Water Manag.
**2019**, 220, 13–26. [Google Scholar] [CrossRef] - Tian, F.; Zhang, Y.; Lu, S. Spatial-temporal dynamics of cropland ecosystem water-use efficiency and the responses to agricultural water management in the Shiyang River Basin, northwestern China. Agric. Water Manag.
**2020**, 237, 106176. [Google Scholar] [CrossRef] - Chen, Q.; Hou, X.; Zhang, X.; Ma, C. Improved GDP spatialization approach by combining land-use data and night-time light data: A case study in China’s continental coastal area. Int. J. Remote Sens.
**2016**, 37, 4610–4622. [Google Scholar] [CrossRef] [Green Version] - Liang, H.; Guo, Z.; Wu, J.; Chen, Z. GDP spatialization in Ningbo City based on NPP/VIIRS night-time light and auxiliary data using random forest regression. Adv. Space Res.
**2020**, 65, 481–493. [Google Scholar] [CrossRef] - Zhao, M.; Cheng, W.; Zhou, C.; Li, M.; Wang, N.; Liu, Q. GDP spatialization and economic differences in South China based on NPP-VIIRS nighttime light imagery. Remote Sens.
**2017**, 9, 673. [Google Scholar] [CrossRef] [Green Version] - Sutton, P. Modeling population density with night-time satellite imagery and GIS. Comput. Environ. Urban Syst.
**1997**, 21, 227–244. [Google Scholar] [CrossRef] - Xiao, G.; Zhu, X.; Hou, C.; Liu, Y.; Xu, K. A spatialization method for grain yield statistical data: A study on winter wheat of Shandong Province, China. Agron. J.
**2019**, 111, 1892–1903. [Google Scholar] [CrossRef] - Li, M.; Fu, Q.; Guo, P.; Singh, V.P.; Zhang, C.; Yang, G. Stochastic multi-objective decision making for sustainable irrigation in a changing environment. J. Clean. Prod.
**2019**, 223, 928–945. [Google Scholar] [CrossRef] - Zhang, Y.; Zhang, F.; Zhu, H.; Guo, P. An Optimization-Evaluation Agricultural Water Planning Approach Based on Interval Linear Fractional Bi-Level Programming and IAHP-TOPSIS. Water
**2019**, 11, 1094. [Google Scholar] [CrossRef] [Green Version] - Ahmad, I.; Zhang, F.; Liu, J.; Anjum, M.N.; Zaman, M.; Tayyab, M.; Waseem, M.; Farid, H.U. A linear bi-level multi-objective program for optimal allocation of water resources. PLoS ONE
**2018**, 13, e192294. [Google Scholar] [CrossRef] [Green Version] - Zhang, C.; Engel, B.A.; Guo, P.; Zhang, F.; Guo, S.; Liu, X.; Wang, Y. An inexact robust two-stage mixed-integer linear programming approach for crop area planning under uncertainty. J. Clean. Prod.
**2018**, 204, 489–500. [Google Scholar] [CrossRef] - Hu, Z.; Wei, C.; Yao, L.; Li, L.; Li, C. A multi-objective optimization model with conditional value-at-risk constraints for water allocation equality. J. Hydrol.
**2016**, 542, 330–342. [Google Scholar] [CrossRef] - Chanta, S.; Mayorga, M.E.; Kurz, M.E.; McLay, L.A. The minimum p-envy location problem: A new model for equitable distribution of emergency resources. IIE Trans. Healthc. Syst. Eng.
**2011**, 1, 101–115. [Google Scholar] [CrossRef] - Espejo, I.; Marín, A.; Puerto, J.; Rodríguez-Chía, A.M. A comparison of formulations and solution methods for the minimum-envy location problem. Comput. Oper. Res.
**2009**, 36, 1966–1981. [Google Scholar] [CrossRef] - Chanta, S.; Mayorga, M.E.; McLay, L.A. The minimum p-envy location problem with requirement on minimum survival rate. Comput. Ind. Eng.
**2014**, 74, 228–239. [Google Scholar] [CrossRef] - Liu, L.; Xu, X.; Chen, X. Assessing the impact of urban expansion on potential crop yield in China during 1990–2010. Food Secur.
**2014**, 7, 33–43. [Google Scholar] [CrossRef] [Green Version] - Lewis, J.E.; Rowland, J.; Nadeau, A. Estimating maize production in Kenya using NDVI: Some statistical considerations. Int. J. Remote Sens.
**1998**, 19, 2609–2617. [Google Scholar] [CrossRef] - Steininger, M.K. Satellite estimation of tropical secondary forest above-ground biomass: Data from Brazil and Bolivia. Int. J. Remote Sens.
**2000**, 21, 1139–1157. [Google Scholar] [CrossRef] - Zheng, D.; Rademacher, J.; Chen, J.; Crow, T.; Bresee, M.; Le Moine, J.; Ryu, S.R. Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA. Remote Sens. Environ.
**2004**, 93, 402–411. [Google Scholar] [CrossRef] - Ma, T.; Zhou, Y.; Wang, Y.; Zhou, C.; Haynie, S.; Xu, T. Diverse relationships between Suomi-NPP VIIRS night-time light and multi-scale socioeconomic activity. Remote Sens. Lett.
**2014**, 5, 652–661. [Google Scholar] [CrossRef] - Shi, K.; Yu, B.; Hu, Y.; Huang, C.; Chen, Y.; Huang, Y.; Chen, Z.; Wu, J. Modeling and mapping total freight traffic in China using NPP-VIIRS nighttime light composite data. GISci. Remote Sens.
**2015**, 52, 274–289. [Google Scholar] [CrossRef] - Ma, T.; Zhou, C.; Pei, T.; Haynie, S.; Fan, J. Responses of Suomi-NPP VIIRS-derived nighttime lights to socioeconomic activity in Chinas cities. Remote Sens. Lett.
**2014**, 5, 165–174. [Google Scholar] [CrossRef] - Osten, D.W. Selection of optimal regression models via cross-validation. J. Chemom.
**1988**, 2, 39–48. [Google Scholar] [CrossRef] - Cao, X.; Wang, J.; Chen, J.; Shi, F. Spatialization of electricity consumption of China using saturation-corrected DMSP-OLS data. Int. J. Appl. Earth Obs. Geoinf.
**2014**, 28, 193–200. [Google Scholar] [CrossRef] - Ma, R.X.; Fu, B.L.; He, H.C.; Fan, D.L. Gdp spatialization and dynamic analysis based on dmsp/ols images: A case of henan province. In The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Proceedings of the 2020 International Conference on Geomatics in the Big Data Era (ICGBD), Guilin, China, 15–17 November 2019; ProQuest: Ann Arbor, MI, USA, 2020; Volume XLII-3/W10, pp. 783–791. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Huo, Z.; Xu, X.; Qu, Z.; Huang, G.; Tang, P.; Bai, Y. Shallow groundwater plays an important role in enhancing irrigation water productivity in an arid area: The perspective from a regional agricultural hydrology simulation. Agric. Water Manag.
**2018**, 208, 43–58. [Google Scholar] [CrossRef] - Barrios, M.A.O.; De Felice, F.; Negrete, K.P.; Romero, B.A.; Arenas, A.Y.; Petrillo, A. An AHP-topsis integrated model for selecting the most appropriate tomography equipment. Int. J. Inf. Technol. Decis. Mak.
**2016**, 15, 861–885. [Google Scholar] [CrossRef] - Qin, X.S.; Huang, G.H.; Chakma, A.; Nie, X.H.; Lin, Q.G. A MCDM-based expert system for climate-change impact assessment and adaptation planning—A case study for the Georgia Basin, Canada. Expert Syst. Appl.
**2008**, 34, 2164–2179. [Google Scholar] [CrossRef] - Westerhoff, R.S. Using uncertainty of Penman and Penman–Monteith methods in combined satellite and ground-based evapotranspiration estimates. Remote Sens. Environ.
**2015**, 169, 102–112. [Google Scholar] [CrossRef] [Green Version] - Jensen, M.E. Water Deficit and Plant Growth; Kozlowski, T., Ed.; Academic Press: New York, NY, USA,, 1968. [Google Scholar]
- Xue, J.; Huo, Z.; Wang, F.; Kang, S.; Huang, G. Untangling the effects of shallow groundwater and deficit irrigation on irrigation water productivity in arid region: New conceptual model. Sci. Total Environ.
**2018**, 619–620, 1170–1182. [Google Scholar] [CrossRef] - Uchida, M.; Kurose, J. An Information-Theoretic Characterization of Weighted alpha-Proportional Fairness. In Proceedings of the IEEE INFOCOM 2009—The 28th Conference on Computer Communications, Rio de Janeiro, Brazil, 19–25 April 2009; pp. 1053–1061. [Google Scholar]
- Li, M.; Guo, P. A multi-objective optimal allocation model for irrigation water resources under multiple uncertainties. Appl. Math. Model.
**2014**, 38, 4897–4911. [Google Scholar] [CrossRef] - Sun, S.; Zhang, C.F.; Li, X.; Zhou, T.; Wang, Y.; Wu, P.; Cai, H. Sensitivity of crop water productivity to the variation of agricultural and climatic factors: A study of Hetao irrigation district, China. J. Clean. Prod.
**2017**, 142, 2562–2569. [Google Scholar] [CrossRef] - Sun, S.; Wu, P.; Wang, Y.; Zhao, X.; Liu, J.; Zhang, X. The impacts of interannual climate variability and agricultural inputs on water footprint of crop production in an irrigation district of China. Sci. Total Environ.
**2013**, 444, 498–507. [Google Scholar] [CrossRef] [PubMed] - Liu, Z.; Li, B. Spatial distribution of China grain output based on land use and population density. Trans. Chin. Soc. Agric. Eng.
**2012**, 28, 1–8. [Google Scholar] [CrossRef] - Zhang, X.; Guo, P.; Zhang, F.; Liu, X.; Yue, Q.; Wang, Y. Optimal irrigation water allocation in Hetao Irrigation District considering decision makers’ preference under uncertainties. Agric. Water Manag.
**2021**, 246, 106670. [Google Scholar] [CrossRef] - He, M.; Kimball, J.S.; Maneta, M.P.; Maxwell, B.D.; Moreno, A.; Beguería, S.; Wu, X. Regional crop gross primary productivity and yield estimation using fused landsat-MODIS data. Remote Sens.
**2018**, 10, 372. [Google Scholar] [CrossRef] [Green Version]

**Figure 4.**Some basic data of the study area. (

**a**) Cultivated land data of Inner Mongolia; (

**b**) NDVI data of Inner Mongolia; (

**c**) potential productivity of farmland data of Inner Mongolia; and (

**d**) population spatial distribution data of HID.

**Figure 7.**Spatial data of agricultural output value and grain yield in HID: (

**a**) Agricultural output value; (

**b**) grain yield.

Parameters | Definition |
---|---|

i | Index of response unit (i = 1, 2, 3…I) |

c | Index of crop type (c = 1, 2, 3…C) |

t | Index of month, from March to October (t = 1, 2, 3…T) |

AP_{p} | The revised grid agricultural output value, CNY |

AP_{r} | The grid agricultural output value estimated by regression model, CNY |

AP_{t} | The agricultural output value counted by city units, CNY |

AP_{s} | The sum of grid agricultural output value estimated by regression model within the scope of city unit, CNY |

GY_{p} | The revised grid grain yield, kg |

GY_{r} | The grid grain yield estimated by regression model, kg |

GY_{t} | The grain yield counted by administrative units, kg |

GY_{s} | The sum of grid grain yield estimated by regression model within the scope of each city unit, kg |

O_{g} | Measured value of the county g (provinces govern cities and cities govern counties) |

S_{g} | Simulation value of the county g |

ET_{0} | Reference evapotranspiration, mm |

Δ | Slope of the saturated vapor pressure and air temperature curve, kPa/°C |

R_{n} | Net radiation, MJ/(m^{2}·d) |

G | Soil heat flux, MJ/(m^{2}·d) |

γ | Hygrometer constant, kPa/°C |

T | Average air temperature, °C |

u_{2} | Wind speed at a height of 2 m above the ground, m/s |

e_{s} | Air saturated vapor pressure, kPa |

e_{a} | Actual vapor pressure, kPa |

K_{c} | Crop coefficient |

ET_{ict} | Actual evapotranspiration of crop c in the t month of response unit i, mm |

ET_{mct} | Maximum evapotranspiration of crop c in the t month, mm; |

λ_{ict} | Water sensitivity parameters of crop c in the t month of response unit i |

A_{ic} | Irrigated area of crop c in response unit i, ha |

B_{c} | The unit price of crop c, CNY |

GPm_{ic} | Maximum yield per unit area of crop c in response unit i, kg/ha |

M_{ai} | Actual water consumption of response unit i, m^{3} |

Ma_{ei} | The amount of water required by response unit i, m^{3} |

M_{ak} | Actual water consumption of response unit k, m^{3} |

M_{ek} | The amount of water required by response unit k, m^{3} |

h_{ict} | Available water in root zone of crop c in the month t of response unit i, mm |

m_{ict} | Irrigation water of crop c in the month t of response unit i |

p_{t} | Effective precipitation of month t, mm |

Ge_{ict} | Groundwater recharge of crop c in the month t of response unit i |

h_{m} | Maximum available water in root zone, mm |

Q_{t} | Available water in month t, m^{3} |

η | Irrigation water utilization coefficient |

A_{maxic}, A_{minic} | Maximum and minimum irrigation area, respectively, of crop c in response unit i, ha. |

ZY_{minc} | Minimum yield of crop c, kg |

Ge | Total groundwater recharge, m^{3} |

p | Total effective precipitation, m^{3} |

α, σ | Proportional fairness coefficient, the degree of proportional fairness |

x_{1}, x_{2} | Potential yield of farmland, kg/ha, NDVI |

Irrigation Districts | Length of Main Canal (km) | Design Discharge of Canal (m^{3}/s) | Number of Branch Canals |
---|---|---|---|

YG | 17 | 65 | 17 |

WLH | 53.4 | 27.4 | 15 |

YJH | 58.5 | 53 | 25 |

HJ | 81.4 | 58 | 34 |

YJ | 49.4 | 106 | 39 |

FJ | 105 | 60 | 36 |

ZH | 52 | 29.2 | 23 |

SH | 80 | 31.4 | 20 |

YH | 83 | 33 | 24 |

TJ | 67.9 | 31 | 24 |

CJ | 53.5 | 24 | 20 |

TB | 44.5 | 22 | 21 |

Month | ETm (mm) | Effective Precipitation (mm) | Available Water (10^{8} m^{3}) | ||
---|---|---|---|---|---|

Wheat | Corn | Sunflower | |||

3 | 35.99 | 0 | 0 | 0 | 0 |

4 | 103.55 | 0 | 0 | 0 | 2.16 |

5 | 199.95 | 114.70 | 0 | 0 | 10.67 |

6 | 112.00 | 147.20 | 155.20 | 7.65 | 4.17 |

7 | 0 | 179.30 | 151.59 | 4.59 | 5.37 |

8 | 0 | 90.35 | 68.11 | 17.13 | 2.02 |

9 | 0 | 0 | 48.48 | 0 | 1.46 |

Crop | Local Crop Prices (CNY/kg) | Crop Minimum Yield (10^{4} kg) |
---|---|---|

Wheat | 3.00 | 28,862.22 |

Corn | 1.70 | 98,154.24 |

Sunflower | 6.30 | 42,126.28 |

Impact Factors | Cultivated Land Area | NDVI | Potential Yield of Farmland | |
---|---|---|---|---|

Statistical Data | ||||

Agricultural output value | 0.93 ** | 0.78 ** | 0.65 * | |

Grain yield | 0.87 ** | 0.86 ** | 0.73 ** |

Factor | Algorithm | Agricultural Output Value | Grain Yield | ||
---|---|---|---|---|---|

R^{2} | F | R^{2} | F | ||

NDVI | Linear algorithm | 0.61 | 15.37 | 0.74 | 28.203 |

Quadratic polynomial algorithm | 0.61 | 6.92 | 0.8 | 18.56 | |

Exponential algorithm | 0.65 | 18.23 | 0.73 | 27.10 | |

Power function algorithm | 0.72 | 25.42 | 0.77 | 33.124 | |

Potential yield of farmland | Linear algorithm | 0.42 | 7.223 | 0.53 | 11.18 |

Quadratic polynomial algorithm | 0.44 | 3.619 | 0.73 | 12.22 | |

Exponential algorithm | 0.56 | 12.64 | 0.61 | 15.41 | |

Power function algorithm | 0.63 | 16.87 | 0.56 | 12.56 | |

Multiple linear regression | 0.81 | 20.86 | 0.74 | 13.94 |

Factor | Algorithm | MAPE | RMSE |
---|---|---|---|

Agricultural output value (10^{4} CNY) | Area weighted algorithm | 28.37% | 60,183 |

NDVI power function algorithm | 12.18% | 40,283 | |

Multiple linear regression | 25.54% | 48,252 | |

Grain yield (kg) | NDVI power function algorithm | 16.69% | 62,953 |

NDVI quadratic polynomial algorithm | 14.92% | 61,161 | |

Multiple linear regression | 14.66% | 60,101 |

Objective | Weight | CR |
---|---|---|

Economic benefit | 0.18 | 0.04 |

Water allocation priority satisfaction | 0.24 | |

Grain yield | 0.37 | |

Equity | 0.21 |

County | Grain Yield (10^{3} kg) | Agricultural Output Value (10^{4} CNY) | ||||
---|---|---|---|---|---|---|

Statistical Data | Estimation Results | MAPE (%) | Statistical Data | Estimation Results | MAPE (%) | |

Linhe | 557,750.00 | 517,682.00 | 7.18 | 346,934.50 | 280,051.00 | 19.28 |

Wuyuan | 419,200.00 | 494,521.00 | 17.96 | 244,794.50 | 298,946.00 | 22.12 |

Hangjing Houqi | 420,180.00 | 417,076.00 | 0.74 | 248,715.20 | 225,567.00 | 9.31 |

Urat Qianqi | 500,225.00 | 413,854.00 | 17.23 | 317,690.50 | 305,545.00 | 3.82 |

Dengkou | 191,000.00 | 248,555.00 | 30.13 | 78,170.99 | 83,150.00 | 6.37 |

Attribute | Gini | Minimum Envy Fairness |
---|---|---|

p | 0.39 | 0.47 |

Grain yield (10^{8} kg) | 18.07 | 21.83 |

Economic benefit (10^{8} CNY) | 74.43 | 80.98 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Luo, B.; Zhang, F.; Liu, X.; Pan, Q.; Guo, P.
Managing Agricultural Water Considering Water Allocation Priority Based on Remote Sensing Data. *Remote Sens.* **2021**, *13*, 1536.
https://doi.org/10.3390/rs13081536

**AMA Style**

Luo B, Zhang F, Liu X, Pan Q, Guo P.
Managing Agricultural Water Considering Water Allocation Priority Based on Remote Sensing Data. *Remote Sensing*. 2021; 13(8):1536.
https://doi.org/10.3390/rs13081536

**Chicago/Turabian Style**

Luo, Biao, Fan Zhang, Xiao Liu, Qi Pan, and Ping Guo.
2021. "Managing Agricultural Water Considering Water Allocation Priority Based on Remote Sensing Data" *Remote Sensing* 13, no. 8: 1536.
https://doi.org/10.3390/rs13081536