Spatial Analysis of Urbanization Patterns in Four Rapidly Growing South Asian Cities Using Sentinel-2 Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Overall Workflow
2.3. Data and Preparations
2.3.1. Satellite Data
2.3.2. Population Data
2.4. LULC Classification and Accuracy Assessments
2.4.1. Classification Scheme
2.4.2. LULC Classification
2.4.3. Post-Classification
2.4.4. Accuracy Assessment
2.5. Gradient Analysis
2.6. Spatial Metrics
2.7. Grid-based Analysis
3. Results
3.1. Accuracy Assessment Results
3.2. LULC Patterns
3.3. LULC Statistics
3.4. LULC along the Urban–Rural Gradient
3.5. Spatial Metrics
3.6. Grid-based Analysis Results
4. Discussion
4.1. Spatial Patterns of LULC
4.2. LULC along the Urban–Rural Gradient
4.3. Urban Landscape Configurations
4.4. Influence of Population for Urbanization
4.5. Urbanization Related Issues and Future Challenges
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Classified Data | Reference Data | ||||||
---|---|---|---|---|---|---|---|
Open Lands | Built-up | Croplands | Green Spaces | Water | Total | User’s Accuracy (%) | |
Open lands | 121 | 7 | 1 | 1 | 0 | 130 | 93.1 |
Built-up | 6 | 167 | 0 | 1 | 0 | 174 | 96.0 |
Croplands | 4 | 0 | 11 | 0 | 0 | 15 | 73.3 |
Green spaces | 6 | 4 | 2 | 150 | 0 | 162 | 92.6 |
Water | 0 | 1 | 0 | 0 | 18 | 19 | 94.7 |
Total | 137 | 179 | 14 | 152 | 18 | 500 | |
Producer’s Accuracy (%) | 88.3 | 93.3 | 78.6 | 98.7 | 100.0 |
Classified Data | Reference Data | ||||||
---|---|---|---|---|---|---|---|
Open Lands | Built-up | Croplands | Green Spaces | Water | Total | User’s Accuracy (%) | |
Open lands | 12 | 1 | 0 | 2 | 0 | 15 | 80.0 |
Built-up | 1 | 181 | 1 | 2 | 1 | 186 | 97.3 |
Croplands | 2 | 25 | 125 | 20 | 1 | 173 | 72.3 |
Green spaces | 0 | 0 | 11 | 101 | 0 | 112 | 90.2 |
Water | 0 | 0 | 0 | 1 | 13 | 14 | 92.9 |
Total | 15 | 207 | 137 | 126 | 15 | 500 | |
Producer’s Accuracy (%) | 80.0 | 87.4 | 91.2 | 80.2 | 86.7 |
Classified Data | Reference Data | ||||||
---|---|---|---|---|---|---|---|
Open Lands | Built-up | Croplands | Green Spaces | Water | Total | User’s Accuracy (%) | |
Open lands | 205 | 4 | 1 | 0 | 0 | 210 | 97.6 |
Built-up | 5 | 178 | 0 | 0 | 0 | 183 | 97.3 |
Croplands | 14 | 11 | 55 | 1 | 0 | 81 | 67.9 |
Green spaces | 0 | 0 | 1 | 15 | 0 | 16 | 93.8 |
Water | 1 | 0 | 0 | 0 | 9 | 10 | 90.0 |
Total | 225 | 193 | 57 | 16 | 9 | 500 | |
Producer’s Accuracy (%) | 91.1 | 92.2 | 96.5 | 93.8 | 100.0 |
Classified Data | Reference Data | ||||||
---|---|---|---|---|---|---|---|
Open Lands | Built-up | Croplands | Green Spaces | Water | Total | User’s Accuracy (%) | |
Open lands | 28 | 0 | 1 | 1 | 0 | 30 | 93.3 |
Built-up | 1 | 100 | 1 | 2 | 1 | 105 | 95.2 |
Croplands | 6 | 19 | 238 | 9 | 4 | 276 | 86.2 |
Green spaces | 0 | 0 | 9 | 49 | 0 | 58 | 84.5 |
Water | 0 | 0 | 0 | 0 | 31 | 31 | 100.0 |
Total | 35 | 119 | 249 | 61 | 36 | 500 | |
Producer’s Accuracy (%) | 80.0 | 84.0 | 95.6 | 80.3 | 86.1 |
References
- United Nations. World Urbanization Prospects 2018; United Nations: New York, NY, USA, 2018. [Google Scholar]
- National Geographic. Urbanization Causes and Impacts. Available online: https://www.nationalgeographic.com/environment/habitats/urban-threats/ (accessed on 12 November 2020).
- Hou, H.; Wang, R.; Murayama, Y. Scenario-based modelling for urban sustainability focusing on changes in cropland under rapid urbanization: A case study of Hangzhou from 1990 to 2035. Sci. Total Environ. 2019, 661, 422–431. [Google Scholar] [CrossRef]
- Alphan, H. Land-use change and urbanization of Adana, Turkey. Land Degrad. Dev. 2003, 14, 575–586. [Google Scholar] [CrossRef]
- Demissie, F.; Yeshitila, K.; Kindu, M.; Schneider, T. Land use/land cover changes and their causes in Libokemkem District of South Gonder, Ethiopia. Remote Sens. Appl. Soc. Environ. 2017, 8, 224–230. [Google Scholar] [CrossRef]
- Hou, H.; Estoque, R.C.; Murayama, Y. Spatiotemporal analysis of urban growth in three African capital cities: A grid-cell-based analysis using remote sensing data. J. Afr. Earth Sci. 2016, 123, 381–391. [Google Scholar] [CrossRef]
- Bagan, H.; Yamagata, Y. Land-cover change analysis in 50 global cities by using a combination of Landsat data and analysis of grid cells. Environ. Res. Lett. 2014, 9, 2000–2010. [Google Scholar] [CrossRef]
- Phiri, D.; Morgenroth, J. Developments in Landsat land cover classification methods: A review. Remote Sens. 2017, 9, 967. [Google Scholar] [CrossRef] [Green Version]
- Subasinghe, S.; Estoque, R.C.; Murayama, Y. Spatiotemporal analysis of urban growth using GIS and remote sensing: A case study of the Colombo Metropolitan Area, Sri Lanka. Int. J. Geo-Inf. 2016, 5, 197. [Google Scholar] [CrossRef] [Green Version]
- Ranagalage, M.; Dissanayake, D.; Murayama, Y.; Zhang, X.; Estoque, R.C.; Perera, E.; Morimoto, T. Quantifying surface urban heat island formation in the World Heritage Tropical Mountain City of Sri Lanka. ISPRS Int. J. Geo-Inf. 2018, 7, 341. [Google Scholar] [CrossRef] [Green Version]
- Dissanayake, D.; Morimoto, T.; Murayama, Y.; Ranagalage, M.; Perera, E. Analysis of life quality in a tropical mountain city using a multi-criteria geospatial technique: A case study of Kandy City, Sri Lanka. Sustainability 2020, 12, 2918. [Google Scholar] [CrossRef] [Green Version]
- Dissanayake, D.; Morimoto, T.; Ranagalage, M.; Murayama, Y. Land-use/land-cover changes and their impact on surface urban heat islands: Case study of Kandy City, Sri Lanka. Climate 2019, 7, 99. [Google Scholar] [CrossRef] [Green Version]
- Ranagalage, M.; Murayama, Y.; Dissanayake, D.; Simwanda, M. The impacts of landscape changes on annual mean land surface temperature in the tropical mountain city of Sri Lanka: A case study of Nuwara Eliya (1996–2017). Sustainability 2019, 11, 5517. [Google Scholar] [CrossRef] [Green Version]
- Ranagalage, M.; Wang, R.; Gunarathna, M.H.J.P.; Dissanayake, D.; Murayama, Y.; Simwanda, M. Spatial forecasting of the landscape in rapidly urbanizing hill stations of South Asia: A case study of Nuwara Eliya, Sri Lanka (1996–2037). Remote Sens. 2019, 11, 1743. [Google Scholar] [CrossRef] [Green Version]
- Ranagalage, M.; Ratnayake, S.S.; Dissanayake, D.; Kumar, L.; Wickremasinghe, H.; Vidanagama, J.; Cho, H.; Udagedara, S.; Jha, K.K.; Simwanda, M.; et al. Spatiotemporal variation of urban heat islands for implementing nature-based solutions: A case study of Kurunegala, Sri Lanka. ISPRS Int. J. Geo-Inf. 2020, 9, 461. [Google Scholar] [CrossRef]
- Dissanayake, D. Land use change and its impacts on land surface temperature in Galle City, Sri Lanka. Climate 2020, 8, 65. [Google Scholar] [CrossRef]
- Moghadam, H.S.; Helbich, M. Spatiotemporal urbanization processes in the megacity of Mumbai, India: A Markov chains-cellular automata urban growth model. Appl. Geogr. 2013, 40, 140–149. [Google Scholar] [CrossRef]
- Kamini, J.; Jayanthi, S.C.; Raghavswamy, V. Spatio-temporal analysis of land use in urban Mumbai-using multi-sensor satellite data and GIS techniques. J. Indian Soc. Remote Sens. 2006, 34, 385–396. [Google Scholar] [CrossRef]
- Zope, P.E.; Eldho, T.I.; Jothiprakash, V. Impacts of urbanization on flooding of a coastal urban catchment: A case study of Mumbai City, India. Nat. Hazards 2015, 75, 887–908. [Google Scholar] [CrossRef]
- Sultana, S.; Satyanarayana, A.N.V. Assessment of urbanisation and urban heat island intensities using landsat imageries during 2000–2018 over a sub-tropical Indian City. Sustain. Cities Soc. 2020, 52, 1–14. [Google Scholar] [CrossRef]
- Naikoo, M.W.; Rihan, M.; Ishtiaque, M. Analyses of land use land cover (LULC) change and built-up expansion in the suburb of a metropolitan city: Spatio-temporal analysis of Delhi NCR using landsat datasets. J. Urban Manag. 2020, 9, 347–359. [Google Scholar] [CrossRef]
- Ramachandra, T.V.; Bharath, A.H.; Sowmyashree, M.V. Monitoring urbanization and its implications in a mega city from space: Spatiotemporal patterns and its indicators. J. Environ. Manag. 2015, 148, 67–81. [Google Scholar] [CrossRef]
- Verma, R.; Kundapura, S. Urban Weighted Green Index—A study of urban green space in relation to Land Surface Temperature for Lucknow city, India. Remote Sens. Appl. Soc. Environ. 2020, 20, 100429. [Google Scholar] [CrossRef]
- Singh, P.; Kikon, N.; Verma, P. Impact of land use change and urbanization on urban heat island in Lucknow city, Central India. A remote sensing based estimate. Sustain. Cities Soc. 2017, 32, 100–114. [Google Scholar] [CrossRef]
- Shukla, A.; Jain, K. Analyzing the impact of changing landscape pattern and dynamics on land surface temperature of Lucknow city, India. Urban For. Urban Green. 2020, 58, 126877. [Google Scholar] [CrossRef]
- Mohanta, K.; Sharma, L.K. Assessing the impacts of urbanization on the thermal environment of Ranchi City (India) using geospatial technology. Remote Sens. Appl. Soc. Environ. 2017, 8, 54–63. [Google Scholar] [CrossRef]
- Gohain, K.J.; Mohammad, P.; Goswami, A. Assessing the impact of land use land cover changes on land surface temperature over Pune city, India. Quat. Int. 2021, 575–576, 259–269. [Google Scholar] [CrossRef]
- Sahana, M.; Hong, H.; Sajjad, H. Analyzing urban spatial patterns and trend of urban growth using urban sprawl matrix: A study on Kolkata urban agglomeration, India. Sci. Total Environ. 2018, 628–629, 1557–1566. [Google Scholar] [CrossRef]
- Butt, A.; Shabbir, R.; Ahmad, S.S.; Aziz, N. Land use change mapping and analysis using Remote Sensing and GIS: A case study of Simly watershed, Islamabad, Pakistan. Egypt. J. Remote Sens. Space Sci. 2015, 18, 251–259. [Google Scholar] [CrossRef] [Green Version]
- Rizvi, S.H.; Fatima, H.; Iqbal, M.J.; Alam, K. The effect of urbanization on the intensification of SUHIs: Analysis by LULC on Karachi. J. Atmos. Solar-Terr. Phys. 2020, 207, 105374. [Google Scholar] [CrossRef]
- Akhtar, M.; Zhao, Y.; Gao, G.; Gulzar, Q. Regional sustainability assessment of ecosystem services value in response to prevailing and future land use/cover changes in Lahore, Pakistan. Reg. Sustain. 2020, 1, 37–47. [Google Scholar] [CrossRef]
- Roy, S.; Pandit, S.; Eva, E.A.; Bagmar, M.S.H.; Papia, M.; Banik, L.; Dube, T.; Rahman, F.; Razi, M.A. Examining the nexus between land surface temperature and urban growth in Chattogram Metropolitan Area of Bangladesh using long term Landsat series data. Urban Clim. 2020, 32, 100593. [Google Scholar] [CrossRef]
- Dewan, A.M.; Yamaguchi, Y. Land use and land cover change in Greater Dhaka, Bangladesh: Using remote sensing to promote sustainable urbanization. Appl. Geogr. 2009, 29, 390–401. [Google Scholar] [CrossRef]
- Dewan, A.M.; Yamaguchi, Y. Using remote sensing and GIS to detect and monitor land use and land cover change in Dhaka Metropolitan of Bangladesh during 1960–2005. Environ. Monit. Assess. 2009, 150, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Thapa, R.B.; Murayama, Y. Examining spatiotemporal urbanization patterns in Kathmandu Valley, Nepal: Remote sensing and spatial metrics approaches. Remote Sens. 2009, 1, 534–556. [Google Scholar] [CrossRef] [Green Version]
- Phiri, D.; Simwanda, M.; Salekin, S.; Nyirenda, V.R.; Murayama, Y.; Ranagalage, M. Sentinel-2 Data for Land Cover/Use Mapping: A Review. Remote Sens. 2020, 12, 2291. [Google Scholar] [CrossRef]
- ESA Sentinel-2-Missions-Sentinel Online. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-2 (accessed on 17 November 2020).
- Malenovský, Z.; Rott, H.; Cihlar, J.; Schaepman, M.E.; García-Santos, G.; Fernandes, R.; Berger, M. Sentinels for science: Potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land. Remote Sens. Environ. 2012, 120, 91–101. [Google Scholar] [CrossRef]
- Korhonen, L.; Hadi; Packalen, P.; Rautiainen, M. Comparison of Sentinel-2 and Landsat 8 in the estimation of boreal forest canopy cover and leaf area index. Remote Sens. Environ. 2017, 195, 259–274. [Google Scholar] [CrossRef]
- Immitzer, M.; Vuolo, F.; Atzberger, C. First experience with Sentinel-2 data for crop and tree species classifications in central Europe. Remote Sens. 2016, 8, 166. [Google Scholar] [CrossRef]
- Sánchez-Espinosa, A.; Schröder, C. Land use and land cover mapping in wetlands one step closer to the ground: Sentinel-2 versus landsat 8. J. Environ. Manag. 2019, 247, 484–498. [Google Scholar] [CrossRef] [PubMed]
- Castillo, E.B.; Cayo, E.Y.T.; De Almeida, C.M.; López, R.S.; Briceño, N.B.R.; López, J.O.S.; Gurbillón, M.Á.B.; Oliva, M.; Espinoza-Villar, R. Monitoring wildfires in the northeastern peruvian amazon using landsat-8 and sentinel-2 imagery in the GEE platform. ISPRS Int. J. Geo-Inf. 2020, 9, 564. [Google Scholar] [CrossRef]
- Xu, F.; Li, Z.; Zhang, S.; Huang, N.; Quan, Z.; Zhang, W.; Liu, X.; Jiang, X.; Pan, J.; Prishchepov, A.V. Mapping winter wheat with combinations of temporally aggregated Sentinel-2 and Landsat-8 data in Shandong Province, China. Remote Sens. 2020, 12, 2065. [Google Scholar] [CrossRef]
- Hu, L.; Xu, N.; Liang, J.; Li, Z.; Chen, L.; Zhao, F. Advancing the mapping of mangrove forests at national-scale using Sentinel-1 and Sentinel-2 time-series data with Google Earth Engine: A case study in China. Remote Sens. 2020, 12, 3120. [Google Scholar] [CrossRef]
- Steinhausen, M.J.; Wagner, P.D.; Narasimhan, B.; Waske, B. Combining Sentinel-1 and Sentinel-2 data for improved land use and land cover mapping of monsoon regions. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 595–604. [Google Scholar] [CrossRef]
- Hunt, M.L.; Blackburn, G.A.; Carrasco, L.; Redhead, J.W.; Rowland, C.S. High resolution wheat yield mapping using Sentinel-2. Remote Sens. Environ. 2019, 233, 111410. [Google Scholar] [CrossRef]
- Foresman, T.W.; Pickett, S.T.A.; Zipperer, W.C. Methods for spatial and temporal land use and land cover assessment for urban ecosystems and application in the greater Baltimore-Chesapeake region. Urban Ecosyst. 1997, 1, 201–216. [Google Scholar] [CrossRef]
- Long, H.; Wu, X.; Wang, W.; Dong, G. Analysis of urban-rural land-use change during 1995-2006 and its policy dimensional driving forces in Chongqing, China. Sensors 2008, 8, 681–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haase, D.; Nuissl, H. The urban-to-rural gradient of land use change and impervious cover: A long-term trajectory for the city of Leipzig. J. Land Use Sci. 2010, 5, 123–141. [Google Scholar] [CrossRef]
- Maimaitijiang, M.; Ghulama, A.; Sandoval, J.S.O.; Maimaitiyiming, M. Drivers of land cover and land use changes in St. Louis metropolitan area over the past 40 years characterized by remote sensing and census population data. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 161–174. [Google Scholar] [CrossRef]
- Qian, T.; Bagan, H.; Kinoshita, T.; Yamagata, Y. Spatial-temporal analyses of surface coal mining dominated land degradation in holingol, Inner Mongolia. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1675–1687. [Google Scholar] [CrossRef]
- Aguilera, F.; Valenzuela, L.M.; Botequilha-Leitão, A. Landscape metrics in the analysis of urban land use patterns: A case study in a Spanish metropolitan area. Landsc. Urban Plan. 2011, 99, 226–238. [Google Scholar] [CrossRef]
- Fan, C.; Myint, S. A comparison of spatial autocorrelation indices and landscape metrics in measuring urban landscape fragmentation. Landsc. Urban Plan. 2014, 121, 117–128. [Google Scholar] [CrossRef]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015; Volume 16301. [Google Scholar]
- United Nations. The World’s Cities in 2018. In World’s Cities 2018-Data Booklet (ST/ESA/ SER.A/417); United Nations: New York, NY, USA, 2018; pp. 1–34. [Google Scholar]
- About Karachi. Available online: http://www.kmc.gos.pk/Contents.aspx?id=14 (accessed on 4 November 2020).
- Bruzzone, L.; Bovolo, F.; Paris, C.; Solano-Correa, Y.T.; Zanetti, M.; Fernandez-Prieto, D. Analysis of Multitemporal Sentinel-2 Images in the Framework of the ESA Scientific Exploitation of Operational Missions. In 2017 9th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp), Bruges, Belgium, 7-29 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 2–5. [Google Scholar] [CrossRef]
- Novelli, A.; Aguilar, M.A.; Nemmaoui, A.; Aguilar, F.J.; Tarantino, E. Performance evaluation of object based greenhouse detection from Sentinel-2 MSI and Landsat 8 OLI data: A case study from Almería (Spain). Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 403–411. [Google Scholar] [CrossRef] [Green Version]
- Turner, W.; Rondinini, C.; Pettorelli, N.; Mora, B.; Leidner, A.K.; Szantoi, Z.; Buchanan, G.; Dech, S.; Dwyer, J.; Herold, M.; et al. Free and open-access satellite data are key to biodiversity conservation. Biol. Conserv. 2015, 182, 173–176. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4-7, 8, and Sentinel 2 images. Remote Sens. Environ. 2015, 159, 269–277. [Google Scholar] [CrossRef]
- Chaves, M.E.D.; Picoli, M.C.A.; Sanches, I.D. Recent applications of Landsat 8/OLI and Sentinel-2/MSI for land use and land cover mapping: A systematic review. Remote Sens. 2020, 12, 3062. [Google Scholar] [CrossRef]
- Ranagalage, M.; Gunarathna, M.H.J.P.; Surasinghe, T.D.; Dissanayake, D.; Simwanda, M.; Murayama, Y.; Morimoto, T.; Phiri, D.; Nyirenda, V.R.; Premakantha, K.T.; et al. Multi-decadal forest-cover dynamics in the tropical realm: Past trends and policy insights for forest conservation in dry zone of Sri Lanka. Forests 2020, 11, 836. [Google Scholar] [CrossRef]
- Page, B.P.; Olmanson, L.G.; Mishra, D.R. A harmonized image processing workflow using Sentinel-2/MSI and Landsat-8/OLI for mapping water clarity in optically variable lake systems. Remote Sens. Environ. 2019, 231, 111284. [Google Scholar] [CrossRef]
- Bondarenko, M.; Kerr, D.; Sorichetta, A.; Tatem, A.J. Census/Projection-Disaggregated Gridded Population Datasets for 189 Countries in 2020 Using Built-Settlement Growth Model (BSGM) Outputs; University of Southampton: Southampton, UK, 2020. [Google Scholar]
- R Development Core Team; R Foundation for Statistical Computing. R: A Language and Environment for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 7 November 2019).
- Blaschke, T.; Lang, S.; Lorup, E.; Strobl, J.; Zeil, P. Object-oriented image processing in an integrated GIS/remote sensing environment and perspectives for environmental applications. Environmental information for planning, politics and the public. Environ. Inf. Plan. Polit. Public 2000, 2, 555–570. [Google Scholar]
- Simwanda, M.; Murayama, Y. Integrating geospatial techniques for urban land use classification in the developing sub-Saharan African City of Lusaka, Zambia. ISPRS Int. J. Geo-Inf. 2017, 6, 102. [Google Scholar] [CrossRef] [Green Version]
- Priyankara, P.; Ranagalage, M.; Dissanayake, D.; Morimoto, T.; Murayama, Y. Spatial process of surface urban heat island in rapidly growing Seoul Metropolitan area for sustainable urban planning using Landsat Data. Climate 2019, 7, 110. [Google Scholar] [CrossRef] [Green Version]
- Estoque, R.C.; Murayama, Y. Monitoring surface urban heat island formation in a tropical mountain city using Landsat data (1987–2015). ISPRS J. Photogramm. Remote Sens. 2017, 133, 18–29. [Google Scholar] [CrossRef]
- Pal, S.; Ziaul, S. Detection of land use and land cover change and land surface temperature in English Bazar urban centre. Egypt. J. Remote Sens. Space Sci. 2017, 20, 125–145. [Google Scholar] [CrossRef] [Green Version]
- Rousta, I.; Sarif, M.O.; Gupta, R.D.; Olafsson, H.; Ranagalage, M.; Murayama, Y.; Zhang, H.; Mushore, T.D. Spatiotemporal analysis of land use/land cover and its effects on surface urban heat island using Landsat Data: A case study of Metropolitan City Tehran (1988–2018). Sustainability 2018, 10, 4433. [Google Scholar] [CrossRef] [Green Version]
- Modica, G.; Vizzari, M.; Pollino, M.; Fichera, C.R.; Zoccali, P.; Di Fazio, S. Spatio-temporal analysis of the urban-rural gradient structure: An application in a Mediterranean mountainous landscape (Serra San Bruno, Italy). Earth Syst. Dyn. 2012, 3, 263–279. [Google Scholar] [CrossRef] [Green Version]
- Luck, M.; Wu, J. A gradient analysis of urban landscape pattern: A case study from the Phoenix metropolitan region, Arizona, USA. Landsc. Ecol. 2002, 17, 327–339. [Google Scholar] [CrossRef]
- Simwanda, M.; Ranagalage, M.; Estoque, R.C.; Murayama, Y. Spatial analysis of surface urban heat islands in four rapidly growing African Cities. Remote Sens. 2019, 11, 1645. [Google Scholar] [CrossRef] [Green Version]
- Estoque, R.C.; Murayama, Y.; Myint, S.W. Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia. Sci. Total Environ. 2017, 577, 349–359. [Google Scholar] [CrossRef]
- Mcgarigal, K. FRAGSTATS v4.2: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Computer Produced by the Authors. 2015, pp. 1–182. Available online: https://www.umass.edu/landeco/research/fragstats/downloads/fragstats_downloads.html/ (accessed on 23 January 2021).
- Anderson, J.R. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; Geological Survey Professional Paper, USGS: Reston, VA, USA, 1976. [Google Scholar]
- Ameen, R.F.M.; Mourshed, M. Urban environmental challenges in developing countries—A stakeholder perspective. Habitat Int. 2017, 64, 1–10. [Google Scholar] [CrossRef]
- Ranagalage, M.; Estoque, R.C.; Zhang, X.; Murayama, Y. Spatial changes of urban heat island formation in the Colombo District, Sri Lanka: Implications for sustainability planning. Sustainability 2018, 10, 1367. [Google Scholar] [CrossRef] [Green Version]
- Fonseka, H.P.U.; Zhang, H.; Sun, Y.; Su, H.; Lin, H.; Lin, Y. Urbanization and its impacts on land surface temperature in Colombo Metropolitan Area, Sri Lanka, from 1988 to 2016. Remote Sens. 2019, 11, 926. [Google Scholar] [CrossRef] [Green Version]
- Ranagalage, M.; Estoque, R.C.; Murayama, Y. An urban heat island study of the Colombo Metropolitan area, Sri Lanka, Based on Landsat Data (1997–2017). ISPRS Int. J. Geo-Inf. 2017, 6, 189. [Google Scholar] [CrossRef] [Green Version]
- Dwivedi, A.; Khire, M.V. Application of split-window algorithm to study Urban Heat Island effect in Mumbai through land surface temperature approach. Sustain. Cities Soc. 2018, 41, 865–877. [Google Scholar] [CrossRef]
- Lee, K.; Kim, Y.; Sung, H.C.; Jang, R.; Ryu, J.; Jeon, S.W. Trend analysis of urban heat island intensity according to urban area change in Asian mega cities. Sustainability 2020, 12, 112. [Google Scholar] [CrossRef] [Green Version]
- Grover, A.; Singh, R.B. Analysis of urban heat island (Uhi) in relation to normalized difference vegetation index (ndvi): A comparative study of Delhi and Mumbai. Environments 2015, 2, 125–138. [Google Scholar] [CrossRef] [Green Version]
- Ramaiah, M.; Avtar, R. Urban green spaces and their need in cities of rapidly urbanizing India: A review. Urban Sci. 2019, 3, 94. [Google Scholar] [CrossRef] [Green Version]
- Imam, A.U.K.; Banerjee, U.K. Urbanisation and greening of Indian cities: Problems, practices, and policies. Ambio 2016, 45, 442–457. [Google Scholar] [CrossRef] [Green Version]
- Mia, B.; Bhattacharya, R.; Woobaidullah, A.S.M. Correlation and monitoring of land surface temperature, urban heat island with land use-land cover of Dhaka City using satellite imageries. Int. J. Res. Geogr. 2017, 3, 10–20. [Google Scholar] [CrossRef]
- Tashnim, J.; Anwar, A. Reasons and remides of heat island phenomena for Dhaka City: A review. In Proceedings of the 3rd International Conference on Civil Engineering for Sustainable Development, Khulna, Bangladesh, 2–14 February 2016; pp. 228–234. [Google Scholar]
- Chang, C.R.; Li, M.H.; Chang, S.D. A preliminary study on the local cool-island intensity of Taipei city parks. Landsc. Urban Plan. 2007, 80, 386–395. [Google Scholar] [CrossRef]
- Zhang, X.; Zhong, T.; Feng, X.; Wang, K. Estimation of the relationship between vegetation patches and urban land surface temperature with remote sensing. Int. J. Remote Sens. 2009, 30, 2105–2118. [Google Scholar] [CrossRef]
- Zhang, X.; Estoque, R.C.; Murayama, Y.; Ranagalage, M. Capturing urban heat island formation in a subtropical city of China based on Landsat images: Implications for sustainable urban development. Environ. Monit. Assess. 2021, 193, 1–13. [Google Scholar] [CrossRef]
- Dewan, A.M.; Yamaguchi, Y.; Rahman, M.Z. Dynamics of land use/cover changes and the analysis of landscape fragmentation in Dhaka Metropolitan, Bangladesh. GeoJournal 2012, 77, 315–330. [Google Scholar] [CrossRef]
- Wu, J. Urban sustainability: An inevitable goal of landscape research. Landsc. Ecol. 2010, 25, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Arshad, A.; Ashraf, M.; Sundari, R.S.; Qamar, H.; Wajid, M.; Hasan, M.U. Vulnerability assessment of urban expansion and modelling green spaces to build heat waves risk resiliency in Karachi. Int. J. Disaster Risk Reduct. 2020, 46, 101468. [Google Scholar] [CrossRef]
- Rahman, M.; Avtar, R.; Yunus, A.P.; Dou, J.; Misra, P.; Takeuchi, W.; Sahu, N.; Kumar, P.; Johnson, B.A. Monitoring Effect of Spatial Growth on Land Surface Temperature in Dhaka. Remote Sens. 2020, 12, 1191. [Google Scholar] [CrossRef] [Green Version]
- US Environmental Protection Agency (EPA). Reducing Urban Heat Islands: Compendium of Strategies Urban Heat Island Basics; EPA: Washington, DC, USA, 2008. [Google Scholar]
- Rizwan, A.M.; Dennis, L.Y.C.; Liu, C. A review on the generation, determination and mitigation of Urban Heat Island. J. Environ. Sci. 2008, 20, 120–128. [Google Scholar] [CrossRef]
- Zope, P.E.; Eldho, T.I.; Jothiprakash, V. Impacts of land use-land cover change and urbanization on flooding: A case study of Oshiwara River Basin in Mumbai, India. Catena 2016, 145, 142–154. [Google Scholar] [CrossRef]
- Ramesh, V.; Iqbal, S.S. Urban flood susceptibility zonation mapping using evidential belief function, frequency ratio and fuzzy gamma operator models in GIS: A case study of Greater Mumbai, Maharashtra, India. Geocarto Int. 2020, 1–26. [Google Scholar] [CrossRef]
- Hewawasam, V.; Matsui, K. Equitable resilience in flood prone urban areas in Sri Lanka: A case study in Colombo Divisional Secretariat Division. Glob. Environ. Chang. 2020, 62, 102091. [Google Scholar] [CrossRef]
- Karunarathne, A.Y.; Lee, G. Developing a multi-facet social vulnerability measure for flood disasters at the micro-level assessment. Int. J. Disaster Risk Reduct. 2020, 49, 101679. [Google Scholar] [CrossRef]
- Moufar, M.; Perera, E. Floods and Countermeasures Impact Assessment for the Metro Colombo Canal System, Sri Lanka. Hydrology 2018, 5, 11. [Google Scholar] [CrossRef] [Green Version]
- Zafar, S.; Zaidi, A. Impact of urbanization on basin hydrology: A case study of the Malir Basin, Karachi, Pakistan. Reg. Environ. Chang. 2019, 19, 1815–1827. [Google Scholar] [CrossRef]
- Fatemi, M.N.; Okyere, S.A.; Diko, S.K.; Kita, M.; Shimoda, M.; Matsubara, S. Physical vulnerability and local responses to flood damage in peri-urban areas of Dhaka, Bangladesh. Sustainability 2020, 12, 3957. [Google Scholar] [CrossRef]
- Khaddar, S.; Perumal, V.; Gupta, S. Understanding effect of traffic and driver related characteristics on seat belt usage in Mumbai city using random parameter logit approach and time series analysis. Int. J. Inj. Contr. Saf. Promot. 2020, 27, 458–464. [Google Scholar] [CrossRef]
- Thilakshan, T.; Rajapaksha, G.; Bandara, S. An Approach to Identify Bottlenecks in Road Networks Using Travel Time Variations: A Case Study in the City of Colombo and Suburbs. In 2020 Moratuwa Engineering Research Conference (MERCon); IEEE: Moratuwa, Sri Lanka, 2020; pp. 372–377. [Google Scholar] [CrossRef]
- Hoque, M.M.M.; Islam, M.A.; Kabir, M.H. Traffic induced noise level in different places at the Dhaka capital city of Bangladesh. Bangladesh J. Environ. Sci. 2020, 38, 41–46. [Google Scholar]
- Aamir, M.; Masroor, S.; Ali, Z.A.; Ting, B.T. Sustainable framework for smart transportation system: A case study of Karachi. Wirel. Pers. Commun. 2019, 106, 27–40. [Google Scholar] [CrossRef]
- Dutt, A.K.; Noble, A.G. Challenges to Asian Urbanization in the 21st Century: An Introduction; Springer: Dordrecht, The Netherlands, 2004; ISBN 1402025319. [Google Scholar]
Spatial Resolution (m) | Bands | Central Wavelength (nm) | Bandwidth (nm) |
---|---|---|---|
10 | Band 2—Blue | 492.4 | 66 |
Band 3—Green | 559.8 | 36 | |
Band 4—Red | 664.6 | 31 | |
Band 8—NIR | 832.8 | 106 | |
20 | Band 6—Red edge | 740.5 | 15 |
Band 7—Red edge | 782.8 | 20 | |
Band 8A—Narrow NIR | 864.7 | 21 | |
Band 11—SWIR | 1613.7 | 91 | |
Band 12—SWIR | 2202.4 | 175 | |
60 | Band 1—Coastal aerosol | 442.7 | 21 |
Band 9—Water vapor | 945.1 | 20 | |
Band 10—SWIR–Cirrus | 1373.5 | 31 |
LULC | Description |
---|---|
Open land | Bareland, bare soil, exposed soils, landfill sites, active excavation, open lands, and other all land not accounted for in the below four categories |
Built-up | Residential, commercial, industrial, mixed urban and other urban, transportation, road, and other construction sites |
Cropland | Agricultural area, paddy land, vegetable land, and mixed lands |
Green spaces | Forest, marshlands, mangrove, and grassland |
Water | All water bodies |
Metric | Description | Unit | Range | Measure |
---|---|---|---|---|
Landscape-Level Metrics | ||||
Contagion (CONTAG) | The overall probability that a cell of a patch type is adjacent to cells of the same type. | Percent | 0 < CONTAG ≤ 100 | Fragmentation/aggregation |
Landscape shape index (LSI) | Patch perimeter divided by the minimum perimeter possible for a maximally compact patch of the corresponding patch area. | None | LSI ≥ 1 | Shape and complexity |
Shannon’s diversity index (SHDI) | The minus sum, across all patch types, of the proportional abundance of each patch type multiplied by the logarithm of that proportion. | None | SHDI ≥ 0 | Diversity |
Class-Level Metrics | ||||
Percentage of landscape (PLAND) | The sum of the built-up class divided by the total landscape area, multiplied by 100. | Percent | 0<PLAND≤100 | Dominance/abundance |
Path density (PD) | Number of built-up patches divided by the total landscape area. | Numbers per 100 hectares | PD ≥ 1, no limit | Fragmentation |
Mean patch size (Area_MN) | The average size of the built-up patches. | Hectares | AREA_MN ≥ 0, no limit. | Composition |
Area-weighted mean patch fractal dimension (Frac_AM) | Area weighted mean value of the fractal dimension values of all built-up patches. Note: the fractal dimension of a patch equals 2 times the logarithm of the patch perimeter (m) divided by the logarithm of the patch area (m2); the perimeter is adjusted to correct for the raster bias in the perimeter. | None | 1≤ FRAC_AM≤ 2 | Shape and complexity |
Mean Euclidean nearest neighbor distance (ENN_MN) | The distance (m) mean value over all built-up patches to the nearest neighboring patch is based on the shortest edge-to-edge distance from the cell center to the cell center. | Meters | ENN_MN > 0, no limit | Complexity |
Accuracy | LULC Category | Mumbai | Colombo | Karachi | Dhaka |
---|---|---|---|---|---|
User’s accuracy (%) | Open land | 93.1 | 80.0 | 97.6 | 93.3 |
Built-up | 96.0 | 97.3 | 97.3 | 95.2 | |
Croplands | 73.3 | 72.3 | 67.9 | 86.2 | |
Green spaces | 92.6 | 90.2 | 93.8 | 84.5 | |
Water | 94.7 | 92.9 | 90.0 | 100.0 | |
Producer’s accuracy (%) | Open land | 88.3 | 80.0 | 91.1 | 80.0 |
Built-up | 93.3 | 87.4 | 92.2 | 84.0 | |
Croplands | 78.6 | 91.2 | 96.5 | 95.6 | |
Green spaces | 98.7 | 80.2 | 93.8 | 80.3 | |
Water | 100.0 | 86.7 | 100.0 | 86.1 | |
Overall Accuracy (%) | 93.0 | 86.0 | 92.0 | 89.0 |
LULC | Area (ha) | LULC Composition (%) | ||||||
---|---|---|---|---|---|---|---|---|
Mumbai | Colombo | Karachi | Dhaka | Mumbai | Colombo | Karachi | Dhaka | |
Open land | 22,978.8 | 2,067.7 | 43,474.1 | 9,674.2 | 25.4 | 2.8 | 42.0 | 6.0 |
Built-up | 32,688.0 | 27,200.9 | 38,433.9 | 33,483.6 | 36.1 | 37.2 | 37.1 | 21.0 |
Croplands | 2,457.1 | 25,309.8 | 16,861.2 | 88,186.3 | 2.7 | 34.7 | 16.3 | 55.1 |
Green spaces | 28,900.6 | 16,360.3 | 3,354.3 | 18,671.1 | 32.0 | 22.4 | 3.2 | 11.7 |
Water | 3,471.2 | 2,102.4 | 1,469.9 | 9,984.8 | 3.8 | 2.9 | 1.4 | 6.2 |
Total | 90,495.9 | 73,041.1 | 103,593.5 | 160,000.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ranagalage, M.; Morimoto, T.; Simwanda, M.; Murayama, Y. Spatial Analysis of Urbanization Patterns in Four Rapidly Growing South Asian Cities Using Sentinel-2 Data. Remote Sens. 2021, 13, 1531. https://doi.org/10.3390/rs13081531
Ranagalage M, Morimoto T, Simwanda M, Murayama Y. Spatial Analysis of Urbanization Patterns in Four Rapidly Growing South Asian Cities Using Sentinel-2 Data. Remote Sensing. 2021; 13(8):1531. https://doi.org/10.3390/rs13081531
Chicago/Turabian StyleRanagalage, Manjula, Takehiro Morimoto, Matamyo Simwanda, and Yuji Murayama. 2021. "Spatial Analysis of Urbanization Patterns in Four Rapidly Growing South Asian Cities Using Sentinel-2 Data" Remote Sensing 13, no. 8: 1531. https://doi.org/10.3390/rs13081531
APA StyleRanagalage, M., Morimoto, T., Simwanda, M., & Murayama, Y. (2021). Spatial Analysis of Urbanization Patterns in Four Rapidly Growing South Asian Cities Using Sentinel-2 Data. Remote Sensing, 13(8), 1531. https://doi.org/10.3390/rs13081531