A Hierarchical Clustering Method to Repair Gaps in Point Clouds of Powerline Corridor for Powerline Extraction
Abstract
:1. Introduction
- Explore a new method to repair gaps for powerline extraction, which solves the problem of over lustering and insufficient extraction caused by gaps in the existing method. The method has been tested in various gap situations, and experiments show that the method is of high robustness.
- Propose a method of searching pylon–powerline connections based on the slope change and reconstruct the powerline with multi–span.
2. Data Description
3. Methodology
3.1. Data Preprocessing
3.2. The Hierarchical Clustering Method
3.2.1. Segmentation and Powerline Candidate Selection
- (1)
- Determine the slope of all the clusters using LS (Least Square method) in plane corresponding to the direction of the powerline (in this paper, the plane is XOZ).
- (2)
- Rotate the clusters around the Y–axis that is perpendicular to the plane of the powerline run.
- (3)
- Distinguish powerline clusters in the cross–section. For each cluster, (horizontal span) and (vertical span) of the cross–section are calculated to reflect the cluster size, and clusters approximately equal to and (ratio of and larger than predefined value ) are regarded as powerline clusters. It should be mentioned that we set as the threshold of the horizontal and vertical span to further distinguish powerline clusters from others. Detail judgment is as follows:
3.2.2. Powerline Candidates Clustering and Gaps Repair
- (1)
- Gaps detection. In the above hierarchical clustering, candidates without a “matched” label in the starting segment can imply that they are discontinuous in the neighborhood, indicating the existence of gaps in the matching segment. Thus, gaps can be found with these “unmatched” candidates.
- (2)
- Centroid estimation. According to the ground truth that powerlines of the same span share the similar morphological characteristics, we can infer that centroids of powerline candidates in the same segment have similar variation tendency. Hence, centroids of gaps can be estimated to create continuous neighborhood relations. The formulas of estimation are as follows:
3.3. A Powerline Connection Finding Method Based on Slope Change
4. Results and Discussion
4.1. Powerline Extraction
4.2. Powerline Recosntruction
4.3. Parameter Setting
4.3.1. Step Length Setting
4.3.2. Parameters of Powerline Candidate Selection
4.4. Quantitative Evaluation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zou, R.; Fan, X.; Qian, C.; Ye, W.; Zhao, P.; Tang, J.; Liu, H. An Efficient and Accurate Method for Different Configurations Railway Extraction Based on Mobile Laser Scanning. Remote Sens. 2019, 11, 2929. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Bruggemann, T.S.; Ford, J.J.; Mejias, L.; Liu, Y. Toward automated power line corridor monitoring using advanced aircraft control and multisource feature fusion. J. Field Robot. 2011, 29, 4–24. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Kang, Z. Voxel-Based Extraction of Transmission Lines from Airborne LiDAR Point Cloud Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3892–3904. [Google Scholar] [CrossRef]
- Yadav, M.; Chousalkar, C.G. Extraction of power lines using mobile LiDAR data of roadway environment. Remote Sens. Appl. Soc. Environ. 2017, 8, 258–265. [Google Scholar] [CrossRef]
- Jung, J.; Che, E.; Olsen, M.J.; Shafer, K.C. Automated and efficient powerline extraction from laser scanning data using a voxel-based subsampling with hierarchical approach. ISPRS J. Photogramm. Remote Sens. 2020, 163, 343–361. [Google Scholar] [CrossRef]
- Ye, W.; Qian, C.; Tang, J.; Liu, H.; Fan, X.; Liang, X.; Zhang, H. Improved 3D Stem Mapping Method and Elliptic Hypothesis-Based DBH Estimation from Terrestrial Laser Scanning Data. Remote Sens. 2020, 12, 352. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Yang, H.; Zhou, Z.; Yang, L. Research on High Voltage Power Line extraction based on Transmission Line Point Cloud characteristics and Model fitting. IOP Conf. Ser. Earth Environ. Sci. 2020, 446, 042011. [Google Scholar] [CrossRef]
- Shen, X.; Qin, C.; Du, Y.; Yu, X.; Zhang, R. An automatic extraction algorithm of high voltage transmission lines from airborne LIDAR point cloud data. Turk. J. Electr. Eng. Comput. Sci. 2018, 26, 2043–2055. [Google Scholar] [CrossRef]
- Zhu, L.; Hyyppä, J. Fully-Automated Power Line Extraction from Airborne Laser Scanning Point Clouds in Forest Areas. Remote Sens. 2014, 6, 11267–11282. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, C.R.; Pachêco, A.D.P.; Valente, S.; Centeno, J.A.S. Automatic Extraction of Power Transmission Lines Using Laser Scanner Data. J. Remote Sens. Technol. 2015, 3, 46–54. [Google Scholar] [CrossRef]
- Guan, H.; Yu, Y.; Li, J.; Ji, Z.; Zhang, Q. Extraction of power-transmission lines from vehicle-borne lidar data. Int. J. Remote Sens. 2016, 37, 229–247. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Q.; Liu, L.; Li, K. A Hierarchical unsupervised method for power line classification from airborne LiDAR data. Int. J. Digit. Earth 2019, 12, 1406–1422. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Q.; Liu, L.; Zheng, D.; Li, C.; Li, K. Supervised Classification of Power Lines from Airborne LiDAR Data in Urban Areas. Remote Sens. 2017, 9, 771. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.; Tong, L.; Wang, Y.; Li, M. Extraction of Urban Power Lines from Vehicle-Borne LiDAR Data. Remote Sens. 2014, 6, 3302–3320. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Wang, R. Power Line Extraction from Mobile LiDAR Point Clouds. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 734–743. [Google Scholar] [CrossRef]
- Jwa, Y.; Sohn, G.; Kim, H.B. Automatic 3D powerline reconstruction using airborne lidar data. Int. Arch. Photogramm. Remote Sens. 2009, 38, 105–110. [Google Scholar]
- Guo, B.; Huang, X.; Zhang, F.; Sohn, G. Classification of airborne laser scanning data using Joint Boost. ISPRS J. Photogramm. Remote Sens. 2015, 100, 71–83. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.; Hayward, R.; Walker, R.; Jin, H. Classification of Airborne LIDAR Intensity Data Using Statistical Analysis and Hough Transform with Application to Power Line Corridors. In Proceedings of the 2009 Digital Image Computing: Techniques and Applications, Melbourne, VIC, Australia, 1–3 December 2009; pp. 462–467. [Google Scholar] [CrossRef] [Green Version]
- Grigillo, D.; Ozvaldĭc, S.; Vrěcko, A.; Kosmatin Fras, M. Extraction of Power Lines from Airborne and Terrestrial Laser Scanning Data Using the Hough Transform. Geod. Vestn. 2015, 59, 246–261. [Google Scholar] [CrossRef]
- Nasseri, M.H.; Moradi, H.; Nasiri, S.; Hosseini, R. Power Line Detection and Tracking Using Hough Transform and Particle Filter. In Proceedings of the 2018 6th RSI International Conference on Robotics and Mechatronics (IcRoM), Tehran, Iran, 23–25 October 2018; pp. 130–134. [Google Scholar]
- Tilawat, J.; Theera-Umpon, N.; Auephanwiriyakul, S. Automatic detection of electricity pylons in aerial video sequences. In Proceedings of the 2010 International Conference on Electronics and Information Engineering, Kyoto, Japan, 1–3 August 2010; Volume 1, p. V1-342. [Google Scholar]
- Zhang, R.; Yang, B.; Xiao, W.; Liang, F.; Liu, Y.; Wang, Z. Automatic Extraction of High-Voltage Power Transmission Objects from UAV Lidar Point Clouds. Remote Sens. 2019, 11, 2600. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Liang, J.; Zhang, J. Power lines extraction from airborne lidar data using spatial domain segmentation. J. Remote Sens. 2014, 18, 61–76. [Google Scholar]
- Awrangjeb, M. Extraction of Power Line Pylons and Wires Using Airborne LiDAR Data at Different Height Levels. Remote Sens. 2019, 11, 1798. [Google Scholar] [CrossRef] [Green Version]
- McCulloch, J.; Green, R. Density Based Recovery of Urban Power Lines Using Vehicle-Mounted LiDAR. In Proceedings of the 2018 International Conference on Image and Vision Computing New Zealand (IVCNZ), Auckland, New Zealand, 19–21 November 2018; pp. 1–5. [Google Scholar]
- Liang, J.; Zhang, J.; Deng, K.; Liu, Z.; Shi, Q. A New Power-Line Extraction Method Based on Airborne LiDAR Point Cloud Data. In Proceedings of the 2011 International Symposium on Image and Data Fusion, Tengchong, China, 9–11 August 2011; pp. 1–4. [Google Scholar]
- Awrangjeb, M.; Gao, Y.; Lu, G. Point cloud data. In Proceedings of the 2018 Digital Image Computing: Techniques and Applications, International Conference on Digital Image Computing: Techniques and Applications (DICTA), Canberra, Australia, 30 November–2 December 2018; pp. 1–7. [Google Scholar]
- Lai, X.; Dai, D.; Min, Z.; Yong, D.U. Powerline three-dimensional reconstruction for lidar point cloud data. J. Remote Sens. 2014, 18, 1223–1229. [Google Scholar]
- Ortega, S.; Trujillo, A.; Santana, J.M.; Suárez, J.P.; Santana, J. Characterization and modeling of power line corridor elements from LiDAR point clouds. ISPRS J. Photogramm. Remote Sens. 2019, 152, 24–33. [Google Scholar] [CrossRef]
- Yin, H.Z.; Sun, X.; Nie, Z.G. An automated extraction algorithm of power lines based on airborne laser scanning data. Geogr. Geo-Inf. Sci. 2012, 28, 30–31. [Google Scholar]
- Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation. Remote Sens. 2016, 8, 501. [Google Scholar] [CrossRef]
Parameters Type | Values |
---|---|
Scan radius | 120 m |
Horizontal scan range | 300° |
Vertical scan range | 360° |
Ranging error | ±2 mm |
Scan speed | 976,000 p/s |
Color options | 70 million built–in pixels |
Parameter | Description | Values |
---|---|---|
Step length | 0.5 m | |
Constraint distance of EC | 0.3 m | |
Radius of powerline candidates | 0.02 m | |
Ratio of vertical span and horizontal span | 0.7 |
Gap Width (m) | Average Precision (%) | Average Recall (%) | Average F1-Score (%) |
---|---|---|---|
0 | 100 | 98.3 | 99.1 |
100 | 98.3 | 99.1 | |
2 | 100 | 98 | 98.9 |
4 | 100 | 97.5 | 98.5 |
8 | 100 | 97.3 | 98.2 |
12 | 100 | 97.1 | 98.1 |
Line | X_Error (cm) | Y_Error (cm) | Z_Error (cm) | RMSE (cm) |
---|---|---|---|---|
1 | 2.89 | 3.80 | 2.71 | 0.019 |
2 | 2.76 | 3.51 | 2.23 | 0.018 |
3 | 2.74 | 3.09 | 1.99 | 0.017 |
4 | −0.87 | −1.12 | −0.61 | 0.012 |
5 | 0.76 | 1.22 | 0.34 | 0.012 |
6 | 0.51 | 1.04 | 0.29 | 0.012 |
7 | 2.87 | 2.95 | 2.13 | 0.017 |
8 | 1.33 | 2.02 | 0.98 | 0.013 |
9 | 1.71 | 2.37 | 1.38 | 0.013 |
10 | 2.91 | 4.17 | 2.60 | 0.019 |
11 | 3.84 | 4.21 | 3.41 | 0.021 |
12 | −1.56 | −1.83 | −0.74 | 0.013 |
13 | 1.28 | 2.43 | 0.83 | 0.013 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Y.; Zou, R.; Fan, X.; Dong, R.; Xie, M. A Hierarchical Clustering Method to Repair Gaps in Point Clouds of Powerline Corridor for Powerline Extraction. Remote Sens. 2021, 13, 1502. https://doi.org/10.3390/rs13081502
Fan Y, Zou R, Fan X, Dong R, Xie M. A Hierarchical Clustering Method to Repair Gaps in Point Clouds of Powerline Corridor for Powerline Extraction. Remote Sensing. 2021; 13(8):1502. https://doi.org/10.3390/rs13081502
Chicago/Turabian StyleFan, Yongzhao, Rong Zou, Xiaoyun Fan, Rendong Dong, and Mengyou Xie. 2021. "A Hierarchical Clustering Method to Repair Gaps in Point Clouds of Powerline Corridor for Powerline Extraction" Remote Sensing 13, no. 8: 1502. https://doi.org/10.3390/rs13081502
APA StyleFan, Y., Zou, R., Fan, X., Dong, R., & Xie, M. (2021). A Hierarchical Clustering Method to Repair Gaps in Point Clouds of Powerline Corridor for Powerline Extraction. Remote Sensing, 13(8), 1502. https://doi.org/10.3390/rs13081502