Multi-Epoch and Multi-Imagery (MEMI) Photogrammetric Workflow for Enhanced Change Detection Using Time-Lapse Cameras
Abstract
:1. Introduction
1.1. Basic Prinicples of SfM Photogrammetric Systems
1.2. Improvements of SfM Photogrammetric Workflows
2. Materials and Methods
2.1. Pilot Study Area
2.2. Equipment
2.3. Data Acquisition
2.4. From 2D to 4D–Workflow for Automatic Change Detection with Time-Lapse Imagery
2.4.1. Data Pre-Processing (Workflow Part I)
- (a)
- Image Quality Filter. The cliff is located in a mountainous area where fog, snow and heavy rainfall are frequent, making the use of quality filters mandatory. Images are filtered based on an image quality estimation made with the Open CV library [55]. The applied function is a Laplacian variation [56,57]. If images are not sharp enough due to unfavourable environmental conditions, the time-lapse photogrammetry processing workflow is stopped at this step.
- (b)
- Georeference. This tool allows one to determine if the cameras have changed their position, based on a reference image [58]. Although the camera systems are fixed to the ground, camera movements are possible, e.g., due to temperature changes, wind or animals. Also, changes in the interior camera geometry are likely due to heating and cooling of the housing [40,59]. In this study we used the Lucas–Kanade method [60,61], also implemented in OpenCV, which has been shown to be suitable for tracking targets in geoscience applications [62]. It is used to track control points, assigned in a reference image, in the target image. To ensure good georeferencing Ground Control Points (GCPs) are located in the images, thus providing their 2D coordinates, their corresponding 3D coordinates are assigned in object space. In this study, the real-world coordinates of GCPs were extracted from a TLS point cloud of the escarpment and were assigned manually by correlating TLS points with image pixels. The precision of this approach of GCP retrieval is discussed in Section 4.3.
- (c)
- Auto-mask generation. During the image-based 3D reconstruction steps a mask was applied to calculate a dense, high-resolution, large data volume point cloud only for the area of interest. Thus, the images are masked to the area of interest in their field of view. Due to changes in the camera geometry these masks need to be updated. The tracked GCPs allow calculation of the parameters of a perspective transformation to warp the binary masks from the reference images to the targeted images according to their movements.
2.4.2. Enhanced Photogrammetric Process (Workflow Part II)
2.4.3. Change Detection (Workflow Part III)
2.5. Performance Assessment
2.5.1. Relative Accuracy of Detected Changes
2.5.2. Interior Precision of the Point Clouds
2.5.3. Absolute Accuracy of a Single Point Cloud
3. Results
3.1. Relative Accuracy of Detected Changes
3.2. Interior Precision of the Point Clouds
3.3. Absolute Accuracy of a Single Point Cloud
4. Discussion
4.1. Automated and Multi-Epoch Multi-Imagery (MEMI) Workflow
4.2. Relative Accuracy of Detected Changes
4.3. Interior Precision of the Point Clouds
4.4. Absolute Accuracy of a Single Point Cloud
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cook, K.L.; Dietze, M. Short communication: A simple workflow for robust low-cost UAV-derived change detection without ground control points. Earth Surf. Dyn. Discuss. 2019, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Bartonek, D.; Buday, M. Problems of creation and usage of 3D model of structures and theirs possible solution. Symmetry 2020, 12, 181. [Google Scholar] [CrossRef] [Green Version]
- Meidow, J.; Usländer, T.; Schulz, K. Obtaining as-built models of manufacturing plants from point clouds. At-Automatisierungstechnik 2018, 66. [Google Scholar] [CrossRef]
- Artese, S.; Lerma, J.L.; Zagari, G.; Zinno, R. The survey, the representation and the structural modeling of a dated bridge. In Proceedings of the 8th International Congress on Archaeology, Computer Graphics, Cultural Heritage and Innovation, Valencia, Spain, 5–7 September 2016; Universitat Politecnica de Valencia: Valencia, Spain, 2016. [Google Scholar]
- Castellazzi, G.; D’Altri, A.M.; Bitelli, G.; Selvaggi, I.; Lambertini, A. From laser scanning to finite element analysis of complex buildings by using a semi-automatic procedure. Sensors 2015, 15, 8360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaboyedoff, M.; Oppikofer, T.; Abellán, A.; Derron, M.H.; Loye, A.; Metzger, R.; Pedrazzini, A. Use of LIDAR in landslide investigations: A review. Nat. Hazards 2012, 61, 5–28. [Google Scholar] [CrossRef] [Green Version]
- Abellán, A.; Oppikofer, T.; Jaboyedoff, M.; Rosser, N.J.; Lim, M.; Lato, M.J. Terrestrial laser scanning of rock slope instabilities. Earth Surf. Process. Landf. 2014, 39, 80–97. [Google Scholar] [CrossRef]
- Eltner, A.; Schneider, D. Analysis of different methods for 3D reconstruction of natural surfaces from parallel-axes UAV images. Photogramm. Rec. 2015, 30, 279–299. [Google Scholar] [CrossRef]
- Eltner, A.; Kaiser, A.; Castillo, C.; Rock, G.; Neugirg, F.; Abellán, A. Image-based surface reconstruction in geomorphometry-merits, limits and developments. Earth Surf. Dyn. 2016, 4, 359–389. [Google Scholar] [CrossRef] [Green Version]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. “Structure-from-Motion” photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef] [Green Version]
- Anderson, K.; Westoby, M.J.; James, M.R. Low-budget topographic surveying comes of age: Structure from motion photogrammetry in geography and the geosciences. Prog. Phys. Geogr. 2019, 43, 163–173. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S. Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application. J. Geophys. Res. Earth Surf. 2012, 117, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Blanch, X.; Abellan, A.; Guinau, M. Point cloud stacking: A workflow to enhance 3D monitoring capabilities using time-lapse cameras. Remote Sens. 2020, 12, 1240. [Google Scholar] [CrossRef]
- Micheletti, N.; Chandler, J.H.; Lane, S.N. Investigating the geomorphological potential of freely available and accessible structure-from-motion photogrammetry using a smartphone. Earth Surf. Process. Landf. 2015, 40, 473–486. [Google Scholar] [CrossRef] [Green Version]
- Eltner, A.; Sofia, G. Structure from motion photogrammetric technique. Dev. Earth Surf. Process. 2020, 23, 1–24. [Google Scholar] [CrossRef]
- Kromer, R.; Walton, G.; Gray, B.; Lato, M.; Group, R. Development and optimization of an automated fixed-location time lapse photogrammetric rock slope monitoring system. Remote Sens. 2019, 11, 1890. [Google Scholar] [CrossRef] [Green Version]
- Giacomini, A.; Thoeni, K.; Santise, M.; Diotri, F.; Booth, S.; Fityus, S.; Roncella, R. Temporal-spatial frequency rockfall data from open-pit highwalls using a low-cost monitoring system. Remote Sens. 2020, 12, 2459. [Google Scholar] [CrossRef]
- Verma, A.K.; Bourke, M.C. A method based on structure-from-motion photogrammetry to generate sub-millimetre-resolution digital elevation models for investigating rock breakdown features. Earth Surf. Dyn. 2019, 7, 45–66. [Google Scholar] [CrossRef] [Green Version]
- Gaffey, C.; Bhardwaj, A. Applications of unmanned aerial vehicles in cryosphere: Latest advances and prospects. Remote Sens. 2020, 12, 948. [Google Scholar] [CrossRef] [Green Version]
- Tannant, D. Review of photogrammetry-based techniques for characterization and hazard assessment of rock faces. Int. J. Geohazards Environ. 2015, 1, 76–87. [Google Scholar] [CrossRef] [Green Version]
- Nesbit, P.R.; Hugenholtz, C.H. Enhancing UAV-SfM 3D model accuracy in high-relief landscapes by incorporating oblique images. Remote Sens. 2019, 11, 239. [Google Scholar] [CrossRef] [Green Version]
- Nex, F.; Remondino, F. UAV for 3D mapping applications: A review. Appl. Geomat. 2014, 6, 1–15. [Google Scholar] [CrossRef]
- Liu, W.; Wang, C.; Zang, Y.; Lai, S.H.; Weng, D.; Sian, X.; Lin, X.; Shen, X.; Li, J. Ground camera images and UAV 3D model registration for outdoor augmented reality. In Proceedings of the 26th IEEE Conference on Virtual Reality and 3D User Interfaces, VR 2019, Osaka, Japan, 23–27 March 2019. [Google Scholar]
- Wu, Z.; Ni, M.; Hu, Z.; Wang, J.; Li, Q.; Wu, G. Mapping invasive plant with UAV-derived 3D mesh model in mountain area—A case study in Shenzhen Coast, China. Int. J. Appl. Earth Obs. Geoinf. 2019, 77. [Google Scholar] [CrossRef]
- Feurer, D.; Vinatier, F. Joining multi-epoch archival aerial images in a single SfM block allows 3-D change detection with almost exclusively image information. ISPRS J. Photogramm. Remote Sens. 2018, 146, 495–506. [Google Scholar] [CrossRef] [Green Version]
- Parente, L.; Chandler, J.H.; Dixon, N. Optimising the quality of an SfM-MVS slope monitoring system using fixed cameras. Photogramm. Rec. 2019, 34, 408–427. [Google Scholar] [CrossRef]
- Roncella, R.; Forlani, G.; Fornari, M.; Diotri, F. Landslide monitoring by fixed-base terrestrial stereo-photogrammetry. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 2, 297–304. [Google Scholar] [CrossRef] [Green Version]
- Motta, M.; Gabrieli, F.; Corsini, A.; Manzi, V.; Ronchetti, F.; Cola, S. Landslide Displacement Monitoring from Multi-Temporal Terrestrial Digital Images: Case of the Valoria Landslide Site. In Landslide Science and Practice; Margottini, C., Canuti, P., Sassa, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 2, pp. 73–78. [Google Scholar]
- Raspberry Pi Foundation. Raspberry Pi 3 Model B. 2016. Available online: https://www.raspberrypi.org/ (accessed on 1 April 2020).
- Eltner, A.; Elias, M.; Sardemann, H.; Spieler, D. Automatic image-based water stage measurement for long-term observations in ungauged catchments. Water Resour. Res. 2018, 54, 10362–10371. [Google Scholar] [CrossRef]
- Santise, M.; Thoeni, K.; Roncella, R.; Sloan, S.W.; Giacomini, A. Preliminary tests of a new low-cost photogrammetric system. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2017, 42, 229–236. [Google Scholar] [CrossRef] [Green Version]
- Mallalieu, J.; Carrivick, J.L.; Quincey, D.J.; Smith, M.W.; James, W.H.M. An integrated structure-from-motion and time-lapse technique for quantifying ice-margin dynamics. J. Glaciol. 2017, 63, 937–949. [Google Scholar] [CrossRef] [Green Version]
- Ntregka, A.; Georgopoulos, A.; Quintero, M.S. Photogrammetric exploitation of hdr images for cultural heritage documentation. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, 2, 209–214. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Gutiérrez, Á.; de Sanjosé-Blasco, J.J.; Lozano-Parra, J.; Berenguer-Sempere, F.; de Matías-Bejarano, J. Does HDR pre-processing improve the accuracy of 3D models obtained by means of two conventional SfM-MVS software packages? The case of the corral del veleta rock glacier. Remote Sens. 2015, 7, 10269–10294. [Google Scholar] [CrossRef] [Green Version]
- Romeo, S.; di Matteo, L.; Kieffer, D.S.; Tosi, G.; Stoppini, A.; Radicioni, F. The use of gigapixel photogrammetry for the understanding of landslide processes in alpine terrain. Geosciences 2019, 9, 99. [Google Scholar] [CrossRef] [Green Version]
- Lato, M.J.; Bevan, G.; Fergusson, M. Gigapixel imaging and photogrammetry: Development of a new long range remote imaging technique. Remote Sens. 2012, 4, 3006–3021. [Google Scholar] [CrossRef] [Green Version]
- Guidi, G.; Gonizzi, S.; Micoli, L.L. Image pre-processing for optimizing automated photogrammetry performances. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 2, 145–152. [Google Scholar] [CrossRef] [Green Version]
- James, M.R.; Robson, S. Mitigating systematic error in topographic models derived from UAV and ground-based image networks. Earth Surf. Process. Landf. 2014, 39, 1413–1420. [Google Scholar] [CrossRef] [Green Version]
- Luhmann, T.; Fraser, C.; Maas, H.G. Sensor modelling and camera calibration for close-range photogrammetry. ISPRS J. Photogramm. Remote Sens. 2016, 115, 37–46. [Google Scholar] [CrossRef]
- Elias, M.; Eltner, A.; Liebold, F.; Maas, H.G. Assessing the influence of temperature changes on the geometric stability of smartphone-and raspberry Pi cameras. Sensors 2020, 20, 643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eltner, A.; Kaiser, A.; Abellan, A.; Schindewolf, M. Time lapse structure-from-motion photogrammetry for continuous geomorphic monitoring. Earth Surf. Process. Landf. 2017, 42, 2240–2253. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S.; Smith, M.W. 3-D uncertainty-based topographic change detection with structure-from-motion photogrammetry: Precision maps for ground control and directly georeferenced surveys. Earth Surf. Process. Landf. 2017, 42, 1769–1788. [Google Scholar] [CrossRef]
- Lague, D.; Brodu, N.; Leroux, J. Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z). ISPRS J. Photogramm. Remote Sens. 2013, 82, 10–26. [Google Scholar] [CrossRef] [Green Version]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes classification of landslide types, an update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Vidal, L.M. Nota acerca de los hundimientos ocurridos en la Cuenca de Tremp (Lérida) en Enero de 1881. In Boletín de la Comisión del Mapa Geológico de España VIII; Imprenta Y Fundición de Manuel Tello: Madrid, Spain, 1881; pp. 113–129. [Google Scholar]
- Corominas, J.; Alonso, E. Inestabilidad de laderas en el Pirineo catalán. Ponen. Comun. ETSICCP-UPC C.1 C.53 1984. [Google Scholar]
- Abellán, A.; Calvet, J.; Vilaplana, J.M.; Blanchard, J. Detection and spatial prediction of rockfalls by means of terrestrial laser scanner monitoring. Geomorphology 2010, 119, 162–171. [Google Scholar] [CrossRef]
- Tonini, M.; Abellan, A. Rockfall detection from terrestrial LiDAR point clouds: A clustering approach using R. J. Spat. Inf. Sci. 2014, 8, 95–110. [Google Scholar] [CrossRef]
- Royán, M.J.; Abellán, A.; Jaboyedoff, M.; Vilaplana, J.M.; Calvet, J. Spatio-temporal analysis of rockfall pre-failure deformation using Terrestrial LiDAR. Landslides 2014, 11, 697–709. [Google Scholar] [CrossRef]
- Royán, M.J.; Abellán, A.; Vilaplana, J.M. Progressive failure leading to the 3 December 2013 rockfall at Puigcercós scarp (Catalonia, Spain). Landslides 2015, 12, 585–595. [Google Scholar] [CrossRef]
- Khazaradze, G.; Guinau, M.; Blanch, X.; Abellan, A.; Vilaplana, J.M.; Royan, M.; Tapia, M.; Roig, P.; Furdada, G.; Suriñach, E. Puigcercós: A natural laboratory to study landslides and rockfalls in the Catalan Pyrenees. Multi-scale analysis of Slopes under climate change. A cross-disciplinary work. MUSLOC 2019. [Google Scholar]
- Khazaradze, G.; Guinau, M.; Blanch, X.; Abellán, A.; Tapia, M.; Furdada, G.; Suriñach, E. Multidisciplinary studies of the Puigcercós historical landslide in the Catalan Pyrenees. Geophys. Res. Abstr. 2020, 22, 7796. [Google Scholar]
- Suriñach, E.; Tapia, M.; Roig, P.; Blanch, X. On the effect of the ground seismic characteristics in the estimation of mass movements based on seismic observation. Geophys. Res. Abstr. 2018, EGU8479, 20. [Google Scholar]
- Python Core Team. Python: A Dynamic, Open Source Programming Language. Python Software Foundation. 2020. Available online: https://www.python.org/ (accessed on 1 April 2020).
- Bradski, G. The OpenCV Library. Dr Dobbs J. Softw. Tools 2000. [Google Scholar] [CrossRef]
- Pech-Pacheco, J.L.; Cristöbal, G.; Chamorro-Martínez, J.; Fernândez-Valdivia, J. Diatom autofocusing in brightfield microscopy: A comparative study. Proc. Int. Conf. Pattern Recognit. 2000, 15, 314–317. [Google Scholar] [CrossRef]
- Pertuz, S.; Puig, D.; Garcia, M.A. Analysis of focus measure operators for shape-from-focus. Pattern Recognit. 2013, 46, 1415–1432. [Google Scholar] [CrossRef]
- Yilmaz, A.; Javed, O.; Shah, M. Object tracking: A survey. ACM Comput. Surv. 2006, 38, 13-es. [Google Scholar] [CrossRef]
- Schwalbe, E.; Maas, H.-G. Determination of high resolution spatio-temporal glacier motion fields from time-lapse sequences. Earth Surf. Dyn. Discuss. 2017, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Lucas, B.D.; Kanade, T. Iterative image registration technique with an application to stereo vision. In Proceedings of the 7th International Joint Conference on Artificial Intelligence (IJCAI), Vancouver, BC, Canada, 24–28 August 1981; Volume 2, pp. 674–679. [Google Scholar]
- Baker, S.; Matthews, I. Lucas-Kanade 20 years on: A unifying framework. Int. J. Comput. Vis. 2004, 56, 221–255. [Google Scholar] [CrossRef]
- Lin, D.; Grundmann, J.; Eltner, A. Evaluating image tracking approaches for surface velocimetry with thermal tracers. Water Resour. Res. 2019, 55, 3122–3136. [Google Scholar] [CrossRef]
- Chen, Y.; Medioni, G.G. Object modelling by registration of multiple range images. Image Vis. Comput. 1992, 10, 145–155. [Google Scholar] [CrossRef]
- Agisoft Metashape Professional Edition (Version 1.6.6). Software. 2020. Available online: http://www.agisoft.com/downloads/installer/ (accessed on 1 April 2020).
- Agisoft LLC. Metashape Python Reference, Release 1.6.0; Agisoft LLC: Petersburg, Russia, 2018; pp. 1–199. [Google Scholar]
- CloudCompare (Version 2.11). 2021. Available online: http://www.cloudcompare.org/ (accessed on 1 April 2020).
- Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. Kdd 1996, 96, 226–231. [Google Scholar] [CrossRef]
Classic Workflow | MESI Workflow | Mild MEMI Workflow | Full MEMI Workflow | |
---|---|---|---|---|
Tie points | 55,106 | 67,950 | 177,451 | 217,619 |
Matching time | 20 s | 1 min 6 s | 3 min 30 s | 8 min 53 s |
Matching memory | 4.85 GB | 4.90 GB | 5.18 GB | 5.07 GB |
Alignment time | 4 s | 27 s | 2 min 41 s | 6 min 2 s |
Dense Point Cloud (points) | 11,432,934 | 11,336,012 | 10,453,432 | 11,101,038 |
Depth map time | 23 s | 31 s | 1 min 30 s | 4 min 32 s |
Dense Cloud time | 35 s | 36 s | 59 s | 1 min 51 s |
Mean M3C2 distance (mm) | −0.55 | 1.01 | 1.03 | 0.78 |
St. Dev M3C2 (cm) | 3.37 | 3.00 | 2.22 | 1.68 |
Classic Workflow | MESI Workflow | MEMI Workflow | |
---|---|---|---|
Tie points | 39,953 | 89,681 | 204,939 |
Matching time | 18 s | 1 min 3 s | 8 min 36 s |
Matching memory | 4.86 GB | 4.87 GB | 5.13 GB |
Alignment time | 4 s | 31 s | 5 min 56 s |
Dense Point Cloud (points) | 11,263,507 | 11,242,875 | 10,961,212 |
Depth map time | 36 s | 431 s | 5 min 52 s |
Dense Cloud time | 39 s | 39 s | 1 min 55 s |
Mean M3C2 distance (mm) | 0.87 | 0.47 | 0.09 |
St. Dev M3C2 (cm) | 2.83 | 2.45 | 1.54 |
Classic Workflow | MESI Workflow | MEMI Workflow | |
---|---|---|---|
σx (mean) | 37.5 cm | 3.0 cm | 1.7 cm |
σy (mean) | 44.8 cm | 5.4 cm | 3.0 cm |
σz (mean) | 15.5 cm | 1.9 cm | 1.1 cm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blanch, X.; Eltner, A.; Guinau, M.; Abellan, A. Multi-Epoch and Multi-Imagery (MEMI) Photogrammetric Workflow for Enhanced Change Detection Using Time-Lapse Cameras. Remote Sens. 2021, 13, 1460. https://doi.org/10.3390/rs13081460
Blanch X, Eltner A, Guinau M, Abellan A. Multi-Epoch and Multi-Imagery (MEMI) Photogrammetric Workflow for Enhanced Change Detection Using Time-Lapse Cameras. Remote Sensing. 2021; 13(8):1460. https://doi.org/10.3390/rs13081460
Chicago/Turabian StyleBlanch, Xabier, Anette Eltner, Marta Guinau, and Antonio Abellan. 2021. "Multi-Epoch and Multi-Imagery (MEMI) Photogrammetric Workflow for Enhanced Change Detection Using Time-Lapse Cameras" Remote Sensing 13, no. 8: 1460. https://doi.org/10.3390/rs13081460
APA StyleBlanch, X., Eltner, A., Guinau, M., & Abellan, A. (2021). Multi-Epoch and Multi-Imagery (MEMI) Photogrammetric Workflow for Enhanced Change Detection Using Time-Lapse Cameras. Remote Sensing, 13(8), 1460. https://doi.org/10.3390/rs13081460