The DLR FireBIRD Small Satellite Mission: Evaluation of Infrared Data for Wildfire Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Atmospheric Correction of FireBIRD Infrared Band Information
- The emissivity of the surface is derived from the ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) GED (Global Emissivity Database [22]). Unfortunately, the ASTER sensor does not feature a MWIR band. Therefore, the emissivity can only be derived using the LWIR information. The emissivity of the combined ASTER bands at 8.6 μm and 9.1 μm is used as these bands are similar to the LWIR band of HSRS. A high spatial resolution global MWIR emissivity database is not available. Therefore, following Salisbury and D’Aria [23] and Giglio et al. [24], the approximation was chosen for the processing since it was found to be more valid than the regularly used assumption of .
- Since atmospheric water vapor, which strongly influences the radiation, cannot be derived from the available HSRS bands, the dataset of the MODIS MOD05 water vapor product [25] featuring the shortest temporal distance to the FireBIRD acquisition is used as an external source.
- As the water vapor also depends on the topographical elevation of the ground, the ASTER GDEM (Global Digital Elevation Model [26]) is used as an auxiliary dataset during the atmospheric correction. This correction is based on look-up tables derived from the MODTRAN-5 radiative transfer code [27]. Finally, the resulting MWIR and LWIR surface radiances are converted to surface temperatures according to Planck’s equation.
2.2. FireBIRD Active Fire Detection and Analysis at Subpixel Level
2.2.1. Active Fire Detection
2.2.2. FRP Derivation
2.3. Gridding
2.4. Methodology of Comparison
- True positives (TP): The ratio between the number of fire grid cells in the FireBIRD data which correspond to the reference data, and the total number of fire grid cells in this reference data.
- False negatives (FN): The ratio between the number of non-fire grid cells in the FireBIRD data which do not correspond to the reference data, and the total number of fire grid cells in this reference data.
- False positives (FP): The ratio between the number of fire grid cells in the FireBIRD data which do not correspond to the reference data, and the total number of fire grid cells in this reference data. To illustrate that the given number refers to fire grid cells supplementary to the ones in the reference, the value 1.0 is added to represent those reference cells. The resulting ratio is therefore always ≥1.
2.5. Description of Study Regions
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Sensor | Timestamp UTC | Cells | Mean FRP | Reference | Offset (min) | Ref Cells | Ref Mean FRP | Cell Ratio | TP FRP Ratio | TP Mean Bias (MW) | TP | FN | FP | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MWIR | MWIR/ LWIR | MWIR | MWIR/ LWIR | MWIR | MWIR/ LWIR | MWIR | MWIR/ LWIR | MWIR | MWIR/ LWIR | MWIR | MWIR/ LWIR | MWIR | MWIR/ LWIR | MWIR | MWIR/ LWIR | ||||||
Portugal 2016/08 | |||||||||||||||||||||
TET-1 | 2016/08/11, 13:35:32 | 113 | 110 | 0.53 | 0.78 | M6/Aqua | −48 | 13 | 0.32 | 8.69 | 8.46 | 2.88 | 3.16 | 0.36 | 0.41 | 0.62 | 0.62 | 0.38 | 0.38 | 9.08 | 8.85 |
V1/Suomi-NPP | −24 | 68 | 0.75 | 1.66 | 1.62 | 0.99 | 1.32 | −0.01 | 0.26 | 0.82 | 0.81 | 0.18 | 0.19 | 1.84 | 1.81 | ||||||
TET-1 | 2016/08/12, 02:28:55 | 89 | 88 | 0.52 | 0.79 | M6/Aqua | 5 | 49 | 0.29 | 1.82 | 1.8 | 2.41 | 3.39 | 0.5 | 0.86 | 0.76 | 0.73 | 0.24 | 0.27 | 2.06 | 2.06 |
V1/Suomi-NPP | 10 | 68 | 0.59 | 1.31 | 1.29 | 1.12 | 1.64 | 0.08 | 0.42 | 0.88 | 0.88 | 0.12 | 0.12 | 1.43 | 1.41 | ||||||
TET-1 | 2016/08/13, 13:51:32 | 58 | 54 | 1.02 | 1.21 | M6/Aqua | −20 | 21 | 0.76 | 2.76 | 2.57 | 1.4 | 1.59 | 0.42 | 0.62 | 0.52 | 0.52 | 0.48 | 0.48 | 3.24 | 3.05 |
V1/Suomi-NPP | 29 | 34 | 1.84 | 1.71 | 1.59 | 0.81 | 0.89 | −0.37 | −0.21 | 0.88 | 0.88 | 0.12 | 0.12 | 1.82 | 1.71 | ||||||
TET-1 | 2016/08/14, 02:44:57 | 71 | 70 | 0.25 | 0.35 | M6/Aqua | 33 | 16 | 0.15 | 4.44 | 4.38 | 1.65 | 2.68 | 0.11 | 0.26 | 0.88 | 0.81 | 0.12 | 0.19 | 4.56 | 4.56 |
V1/Suomi-NPP | −36 | 38 | 0.17 | 1.87 | 1.84 | 3.06 | 3.88 | 0.27 | 0.38 | 0.76 | 0.76 | 0.24 | 0.24 | 2.11 | 2.08 | ||||||
Palestine 2016/11 | |||||||||||||||||||||
TET-1 | 2016/11/25, 11:19:03 | 15 | 14 | 0.13 | 0.53 | M6/Aqua | 76 | 3 | 0.08 | 5.0 | 4.67 | None | None | None | None | 0.0 | 0.0 | 1.0 | 1.0 | 6.0 | 5.67 |
V1/Suomi−NPP | 31 | 6 | 1.36 | 2.5 | 2.33 | 0.2 | 0.72 | −1.27 | −0.45 | 0.83 | 0.83 | 0.17 | 0.17 | 2.67 | 2.5 | ||||||
Chile 2017/01 | |||||||||||||||||||||
TET-1 | 2017/01/26, 06:37:54 | 1137 | 1083 | 0.96 | 1.85 | M6/Aqua | 29 | 583 | 1.1 | 1.95 | 1.86 | 0.96 | 1.8 | −0.05 | 1.01 | 0.85 | 0.82 | 0.15 | 0.18 | 2.1 | 2.03 |
V1/Suomi-NPP | −675 | 441 | 1.01 | 2.58 | 2.46 | 1.05 | 1.72 | 0.05 | 0.73 | 0.54 | 0.52 | 0.46 | 0.48 | 3.04 | 2.94 | ||||||
TET-1 | 2017/01/31, 06:24:03 | 43 | 41 | 0.25 | 0.4 | M6/Aqua | −3 | 7 | 0.13 | 6.14 | 5.86 | 3.91 | 7.29 | 0.33 | 0.72 | 0.71 | 0.71 | 0.29 | 0.29 | 6.43 | 6.14 |
V1/Suomi-NPP | 46 | 33 | 0.29 | 1.3 | 1.24 | 1.29 | 1.88 | 0.09 | 0.29 | 0.73 | 0.7 | 0.27 | 0.3 | 1.58 | 1.55 | ||||||
California/US 2017/12 | |||||||||||||||||||||
TET-1 | 2017/12/12, 11:30:12 | 118 | 116 | 0.54 | 0.82 | M6/Aqua | 142 | 28 | 0.17 | 4.21 | 4.14 | 3.95 | 6.06 | 0.62 | 1.06 | 0.43 | 0.43 | 0.57 | 0.57 | 4.79 | 4.71 |
V1/Suomi-NPP | 74 | 51 | 0.39 | 2.31 | 2.27 | 2.69 | 3.71 | 0.73 | 1.2 | 0.8 | 0.78 | 0.2 | 0.22 | 2.51 | 2.49 | ||||||
California/US 2018/11 | |||||||||||||||||||||
TET-1 | 2018/11/10, 00:19:25 | 126 | 125 | 0.65 | 0.72 | M6/Aqua | 223 | 21 | 0.74 | 6.0 | 5.95 | 1.11 | 1.22 | 0.09 | 0.19 | 0.57 | 0.57 | 0.43 | 0.43 | 6.43 | 6.38 |
V1/Suomi-NPP | 188 | 101 | 1.23 | 1.25 | 1.24 | 0.64 | 0.7 | −0.45 | −0.37 | 0.98 | 0.98 | 0.02 | 0.02 | 1.27 | 1.26 | ||||||
TET-1 | 2018/11/12, 13:14:28 | 137 | 128 | 0.87 | 0.98 | M6/Aqua | 192 | 66 | 0.59 | 2.08 | 1.94 | 2.11 | 2.13 | 0.72 | 0.76 | 0.79 | 0.76 | 0.21 | 0.24 | 2.29 | 2.18 |
V1/Suomi-NPP | 161 | 120 | 0.57 | 1.14 | 1.07 | 1.77 | 1.85 | 0.48 | 0.54 | 0.85 | 0.83 | 0.15 | 0.17 | 1.29 | 1.23 | ||||||
TET-1 | 2018/11/14, 13:19:13 | 91 | 91 | 0.43 | 1.4 | M6/Aqua | 209 | 9 | 0.16 | 10.11 | 10.11 | 3.78 | 10.27 | 0.43 | 1.42 | 0.56 | 0.56 | 0.44 | 0.44 | 10.56 | 10.56 |
V1/Suomi-NPP | 203 | 2 | 0.85 | 45.5 | 45.5 | 0.59 | 3.5 | −0.35 | 2.12 | 0.5 | 0.5 | 0.5 | 0.5 | 46.0 | 46.0 | ||||||
BIROS | 2018/11/21, 05:17:39 | 23 | 23 | 0.14 | 0.4 | M6/Terra | 640 | 1 | 0.06 | 23.0 | 23.0 | None | None | None | None | 0.0 | 0.0 | 1.0 | 1.0 | 24.0 | 24.0 |
V1/Suomi-NPP | −246 | 4 | 0.1 | 5.75 | 5.75 | 3.23 | 9.09 | 0.19 | 0.71 | 0.75 | 0.75 | 0.25 | 0.25 | 6.0 | 6.0 | ||||||
New South Wales/AU 2019/11 | |||||||||||||||||||||
BIROS | 2019/11/09, 23:14:29 | 783 | 744 | 0.35 | 0.49 | M6/Terra | −285 | 290 | 0.49 | 2.7 | 2.57 | 0.98 | 1.23 | −0.01 | 0.13 | 0.65 | 0.64 | 0.35 | 0.36 | 3.05 | 2.93 |
V1/SUOMI-NPP | -219 | 437 | 0.52 | 1.79 | 1.7 | 0.89 | 1.11 | −0.07 | 0.07 | 0.5 | 0.49 | 0.5 | 0.51 | 2.29 | 2.22 | ||||||
BIROS | 2019/11/14, 23:11:33 | 222 | 203 | 0.41 | 0.56 | M6/Terra | 516 | 27 | 0.2 | 8.22 | 7.52 | 3.81 | 4.55 | 1.05 | 1.33 | 0.26 | 0.26 | 0.74 | 0.74 | 8.96 | 8.26 |
V1/SUOMI−NPP | −228 | 370 | 0.69 | 0.6 | 0.55 | 0.38 | 0.54 | −0.54 | −0.4 | 0.12 | 0.11 | 0.88 | 0.89 | 1.48 | 1.44 | ||||||
Subset t < 45 min | 0.84 | 1.56 | 6.43 | 2.26 | 2.16 | 1.11 | 1.97 | 0.0 | 0.97 | 0.83 | 0.81 | 0.17 | 0.19 | 2.24 | 2.17 | ||||||
9.29 | 7.13 | 6.82 | 1.31 | 1.75 | −0.03 | 0.23 | 0.84 | 0.84 | 0.16 | 0.16 | 1.78 | 1.73 | |||||||||
Complete dataset | 0.65 | 1.11 | 172.93 | 2.67 | 2.55 | 1.24 | 1.95 | 0.07 | 0.76 | 0.75 | 0.73 | 0.25 | 0.27 | 2.92 | 2.82 | ||||||
155.0 | 1.71 | 1.63 | 1.15 | 1.56 | 0.0 | 0.31 | 0.54 | 0.52 | 0.46 | 0.48 | 2.17 | 2.11 |
References
- Bowman, D.; Balch, J.; Artaxo, P.; Bond, W.; Carlson, J.; Cochrane, M.; D’Antonio, C.; DeFries, R.; Doyle, J.; Harrison, S. Fire in the Earth system. Science 2009, 324, 481–484. [Google Scholar] [CrossRef] [PubMed]
- van Wees, D.; van der Werf, G. The contribution of fire to a global increase in forest loss. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 4–8 May 2020; European Geosciences Union: Vienna, Austria, 2020. [Google Scholar]
- Withey, K.; Berenguer, E.; Palmeira, A.; Espírito-Santo, F.; Lennox, G.; Silva, C.; Aragão, L.; Ferreira, J.; França, F.; Malhi, Y. Quantifying immediate carbon emissions from El Niño-mediated wildfires in humid tropical forests. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20170312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surawski, N.; Sullivan, A.; Roxburgh, S.; Polglase, P. Estimates of greenhouse gas and black carbon emissions from a major Australian wildfire with high spatiotemporal resolution. J. Geophys. Res. Atmos. 2016, 121, 9892–9907. [Google Scholar] [CrossRef]
- Wooster, M.J.; Zhukov, B.; Oertel, D. Fire radiative energy for quantitative study of biomass burning: Derivation from the BIRD experimental satellite and comparison to MODIS fire products. Remote Sens. Environ. 2003, 86, 83–107. [Google Scholar] [CrossRef]
- Klein, D.; Richter, R.; Strobl, C.; Schläpfer, D. Solar Influence on Fire Radiative Power retrieved with the Bispectral Method. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4521–4528. [Google Scholar] [CrossRef]
- Halle, W.; Asam, S.; Borg, E.; Fischer, C.; Frauenberger, O.; Lorenz, E.; Klein, D.; Nolde, M.; Paproth, C.; Plank, S. FireBIRD—Small satellite or wild fire assessment. In Proceedings of the International Geoscience and Remote Sensing Symposium IGARSS, Valencia, Spain, 22–27 July 2018. [Google Scholar]
- Xu, W.; Wooster, M.J.; He, J.; Zhang, T. First study of Sentinel-3 SLSTR active fire detection and FRP retrieval: Night-time algorithm enhancements and global intercomparison to MODIS and VIIRS AF products. Remote Sens. Environ. 2020, 248, 111947. [Google Scholar] [CrossRef]
- European Space Agency (ESA). ESA Sentinel-3 World Fires Atlas Prototype. Available online: https://s3worldfireatlas.esa.int (accessed on 25 May 2020).
- Li, F.; Zhang, X.; Kondragunta, S.; Csiszar, I. Comparison of fire radiative power estimates from VIIRS and MODIS observations. J. Geophys. Res. Atmos. 2018, 123, 4545–4563. [Google Scholar] [CrossRef]
- Li, F.; Zhang, X.; Kondragunta, S. Biomass burning in Africa: An investigation of fire radiative power missed by MODIS using the 375 m VIIRS active fire product. Remote Sens. 2020, 12, 1561. [Google Scholar] [CrossRef]
- Giglio, L.; Justice, C. MOD14A1 MODIS/Terra Thermal Anomalies/Fire Daily L3 Global 1km SIN Grid V006 [Data Set]; NASA EOSDIS Land Processes DAAC: Sioux Falls, SD, USA, 2015. [CrossRef]
- Di Traglia, F.; Calvari, S.; D’Auria, L.; Nolesini, T.; Bonaccorso, A.; Fornaciai, A.; Esposito, A.; Cristaldi, A.; Favalli, M.; Casagli, N. The 2014 effusive eruption at Stromboli: New insights from in situ and remote-sensing measurements. Remote Sens. 2018, 10, 2035. [Google Scholar] [CrossRef] [Green Version]
- Plank, S.; Nolde, M.; Richter, R.; Fischer, C.; Martinis, S.; Riedlinger, T.; Schoepfer, E.; Klein, D. Monitoring of the 2015 Villarrica volcano eruption by means of DLR’s experimental TET-1 satellite. Remote Sens. 2018, 10, 1379. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, W.; Giglio, L. VIIRS/NPP Thermal Anomalies/Fire Daily L3 Global 1km SIN Grid V001 [Data Set]; NASA EOSDIS Land Processes DAAC: Sioux Falls, SD, USA, 2018. [CrossRef]
- Wooster, M.J.; Xu, W.; Nightingale, T. Sentinel-3 SLSTR active fire detection and FRP product: Pre-launch algorithm development and performance evaluation using MODIS and ASTER datasets. Remote Sens. Environ. 2012, 120, 236–254. [Google Scholar] [CrossRef]
- Dozier, J. A method for satellite identification of surface temperature fields of subpixel resolution. Remote Sens. Environ. 1981, 11, 221–229. [Google Scholar] [CrossRef]
- National Aeronautics and Space Administration (NASA). Fire Information for Resource Management System (FIRMS). Available online: https://firms.modaps.eosdis.nasa.gov (accessed on 1 February 2021).
- German Aerospace Center (DLR). FireBIRD—A DLR Satellite System for Forest Fires and Early Fire Detection. German Aerospace Center (DLR) e.V., Oberpfaffenhofen-Wessling. Available online: https://www.dlr.de/firebird/PortalData/79/Resources/dokumente/FireBIRD_Broschuere_HighRes_v3_english.pdf (accessed on 2 February 2021).
- Atwood, E.C.; Englhart, S.; Lorenz, E.; Halle, W.; Wiedemann, W.; Siegert, F. Detection and characterization of low temperature peat fires during the 2015 fire catastrophe in Indonesia using a new high-sensitivity fire monitoring satellite sensor (FireBird). PLoS ONE 2016, 11, e0159410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, C.; Klein, D.; Kerr, G.; Stein, E.; Lorenz, E.; Frauenberger, O.; Borg, E. Data Validation and Case Studies using the TET-1 Thermal Infrared Satellite System. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-7/W3, 1177–1182. [Google Scholar] [CrossRef] [Green Version]
- Hulley, G.C.; Hook, S.J.; Abbott, E.; Malakar, N.; Islam, T.; Abrams, M. The ASTER Global Emissivity Dataset (ASTER GED): Mapping Earth’s emissivity at 100 meter spatial scale. Geophys. Res. Lett. 2015, 42, 7966–07976. [Google Scholar] [CrossRef]
- Salisbury, J.W.; D’Aria, D.M. Emissivity of terrestrial materials in the 3 μm to 5 μm atmospheric window. Remote Sens. Environ. 1994, 47, 345–361. [Google Scholar] [CrossRef]
- Giglio, L.; Kendall, J.D.; Justice, C.O. Evaluation of global fire detection algorithms using simulated AVHRR infrared data. Int. J. Remote Sens. 1999, 20, 1947–1985. [Google Scholar] [CrossRef]
- Gao, B.-C.; Kaufman, Y.J. Algorithm Technical Background Document. The MODIS Near-IR Water Vapor Algorithm Product ID: MOD05-Total Precipitable Water; Remote Sensing Division, Code 7212; Naval Research Laboratory: Washington, DC, USA, 1998. [Google Scholar]
- National Aeronautics and Space Administration (NASA). ASTER Global Digital Elevation Map Announcement. Available online: https://asterweb.jpl.nasa.gov/gdem.asp (accessed on 3 February 2021).
- Berk, A.; Hawes, F.; van den Bosch, J.; Anderson, G.P. MODTRAN5.4.0 User’s Manual; Spectral Sciences Inc.: Burlington, MA, USA, 2016. [Google Scholar]
- Zhukov, B.; Lorenz, E.; Oertel, D.; Wooster, M.; Roberts, G. Space-borne detection and characterization of fires during the bi-spectral infrared detection (BIRD) experimental small satellite mission (2001–2004). Remote Sens. Environ. 2006, 100, 29–51. [Google Scholar] [CrossRef]
- Uber Engineering. H3: Uber’s Hexagonal Hierarchical Spatial Index. Brodsky, I./Uber Engineering. Available online: https://eng.uber.com/h3/ (accessed on 4 February 2021).
- Plank, S.; Martinis, S. A fully automatic burnt area mapping processor based on AVHRR imagery—A timeline thematic processor. Remote Sens. 2018, 10, 341. [Google Scholar] [CrossRef] [Green Version]
- Thomson Reuters. Fires Kill 4 People in Portugal, 1000 Evacuated on Madeira; Khalip, A., Ed.; Thomson Reuters: New York City, NY, USA, 2016; Available online: https://www.reuters.com/article/us-portugal-wildfires-idUSKCN10L0W7 (accessed on 3 February 2021).
- Center for Satellite-Based Crisis Information (ZKI). DLR FireBIRD Mission Provides Data of Recent Fires in Portugal; ZKI/DLR: Oberpfaffenhofen, Germany, 2016; Available online: https://activations.zki.dlr.de/de/activations/items/ACT129.html (accessed on 4 February 2021).
- Thomson Reuters. Wildfires Tear Across Israel, Netanyahu Calls Arsonists ‘Terrorists’; Amichai, A., Ed.; Thomson Reuters: New York City, NY, USA, 2016; Available online: https://www.reuters.com/article/us-israel-fires-idUSKBN13J0YJ (accessed on 4 February 2021).
- Center for Satellite-Based Crisis Information (ZKI). DLR FireBIRD Mission Provides Data of Recent Fires in Israel and the West Bank; ZKI/DLR: Oberpfaffenhofen, Germany, 2016; Available online: https://activations.zki.dlr.de/de/activations/items/ACT131.html (accessed on 4 February 2021).
- Thomson Reuters. Chile Declares State of Emergency Due to Massive Wildfires; Esposito, A., Ed.; Thomson Reuters: New York City, NY, USA, 2017; Available online: https://www.reuters.com/article/us-chile-wildfire-idUSKBN1542XI (accessed on 4 February 2021).
- Center for Satellite-Based Crisis Information (ZKI). Fire Disaster in Chile—ZKI Uses FireBIRD to Deliver Situational Information; ZKI/DLR: Oberpfaffenhofen, Germany, 2017; Available online: https://activations.zki.dlr.de/de/activations/items/ACT133.html (accessed on 4 February 2021).
- Cable News Network (CNN). Southern California Fires Growing Quickly, Forcing Thousands to Evacuate; Vercammen, P., Ed.; CNN: Atlanta, GA, USA, 2017; Available online: https://edition.cnn.com/2017/12/05/us/ventura-county-fire-california/index.html (accessed on 4 February 2021).
- Center for Satellite-Based Crisis Information (ZKI). FireBIRD Monitors Forest Fires in California; ZKI/DLR: Oberpfaffenhofen, Germany, 2017; Available online: https://activations.zki.dlr.de/de/activations/items/act137.html (accessed on 4 February 2021).
- British Broadcasting Corporation (BBC). California Wildfire Declared ‘Largest in State’s History’; BBC: London, UK, 2018; Available online: https://www.bbc.com/news/world-us-canada-45093636 (accessed on 4 February 2021).
- Center for Satellite-Based Crisis Information (ZKI). Fire Disaster in California—DLR Supports with FireBIRD Data; ZKI/DLR: Oberpfaffenhofen, Germany, 2018; Available online: https://activations.zki.dlr.de/de/activations/items/ACT139.html (accessed on 4 February 2021).
- Thomson Reuters. Australia’s Massive Fires Could Become Routine, Climate Scientists Warn; Green, M., Ed.; Thomson Reuters: New York City, NY, USA, 2020; Available online: https://www.reuters.com/article/us-climate-change-australia-report/australias-massive-fires-could-become-routine-climate-scientists-warn-idUSKBN1ZD06W (accessed on 4 February 2021).
- Center for Satellite-Based Crisis Information (ZKI). FireBIRD Monitors Fires in Australia; ZKI/DLR: Oberpfaffenhofen, Germany, 2019; Available online: https://www.dlr.de/eoc/de/desktopdefault.aspx/tabid-13297/23615_read-59537 (accessed on 4 February 2021).
Mission | Satellite | Sensor | |||
---|---|---|---|---|---|
Orbit | 560 km sun-synchronous | Dimensions | 83 cm × 54 cm × 62 cm | Infrared Sensor | mid-infrared: 3.400–4.200 μm (Nadir), |
Inclination | 97.6 | Total Mass | ca. 130 kg | thermal infrared: 8.500–9.300 μm (Nadir) | |
Mission Operations | German Remote Sensing Data Center, German Space Operations Center | Payload Mass Infrared Sensor | ca. 14 kg | Optical Sensor | vis green: 0.460–0.560 μm (6 forward), vis red: 0.565–0.725 μm (Nadir), |
Mission Planning | <1.5 years | Power | 200 W DC | near infrared: | |
Mission Duration | >2.5 years | Communications | S-Band, UHF | 0.790–0.930 μm (6 backward) |
Incident | Brief Description of the Wildfires Analyzed, as Reported by the Center for Satellite-Based Crisis Information (ZKI) |
---|---|
Portugal August 2016 | In August 2016, wildfires were raging in northern Portugal as well as on Madeira. An emergency has been declared for the region of Porto. Four persons were killed, and more than 1000 inhabitants had to be evacuated [31]. |
ZKI: DLR FireBIRD mission provides data of recent fires in Portugal (19 August 2016, https://activations.zki.dlr.de/de/activations/items/ACT129.html [32]) | |
Palestine & Israel November 2016 | Wildfires occurred in the Israeli forests west of Jerusalem as well as the West Bank in November 2016. The city of Haifa was severely affected, tens of thousands of people had to leave their homes. Fortunately, no deaths or serious injuries have been reported [33]. |
ZKI: DLR FireBIRD mission provides data of recent fires in Israel and the West Bank (1 December 2016, https://activations.zki.dlr.de/de/activations/items/ACT131.html [34]) | |
Chile January 2017 | Due to massive wildfire outbreaks, Chile had to declare a state of emergency after the fires had devastated an area of several thousands of square kilometers northeast of Concepción. The fires comprised 18 separate blazes, which were intensified by strong winds and a heat wave [35]. |
ZKI: Fire disaster in Chile—ZKI uses FireBIRD to deliver situational information (24 January 2017, https://activations.zki.dlr.de/de/activations/items/ACT133.html [36]) | |
California/USA December 2017 | Southern California experienced several rapidly moving brush fires in December 2017. Tens of thousands of residents had to be evacuated [37]. |
ZKI: FireBIRD monitors forest fires in California (19 December 2017, https://activations.zki.dlr.de/de/activations/items/act137.html [38]) | |
California/USA November 2018 | California suffered the largest wildfires in the state’s history in summer 2018. Several civilians were killed in the flames [39]. |
ZKI: Fire disaster in California—DLR supports with FireBIRD data (15 November 2018, https://activations.zki.dlr.de/de/activations/items/ACT139.html [40]) | |
New South Wales/Australia November 2019 | Fires devastated more than 11 mil. hectares in Australia in the fire season of 2019/2020. Over 2000 homes were destroyed, 28 persons have been killed [41]. |
ZKI: FireBIRD monitors fires in Australia (27 November 2019, https://www.dlr.de/eoc/de/desktopdefault.aspx/tabid-13297/23615_read-59537 [42]) |
Overpasses t < 45 min | All Overpasses (t < 12 h) | ||||
---|---|---|---|---|---|
MWIR | MWIR/LWIR | MWIR | MWIR/LWIR | ||
True positive ratio | M6 | 0.83 | 0.81 | 0.75 | 0.73 |
V1 | 0.84 | 0.84 | 0.54 | 0.52 | |
False negative ratio | M6 | 0.17 | 0.19 | 0.25 | 0.27 |
V1 | 0.16 | 0.16 | 0.46 | 0.48 | |
False positive ratio | M6 | 2.24 | 2.17 | 2.92 | 2.82 |
V1 | 1.78 | 1.73 | 2.17 | 2.11 | |
TP FRP ratio | M6 | 1.11 | 1.97 | 1.24 | 1.95 |
V1 | 1.31 | 1.75 | 1.15 | 1.56 | |
TP mean bias (MW) | M6 | 0.0 | 0.97 | 0.07 | 0.76 |
V1 | −0.03 | 0.23 | 0.0 | 0.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nolde, M.; Plank, S.; Richter, R.; Klein, D.; Riedlinger, T. The DLR FireBIRD Small Satellite Mission: Evaluation of Infrared Data for Wildfire Assessment. Remote Sens. 2021, 13, 1459. https://doi.org/10.3390/rs13081459
Nolde M, Plank S, Richter R, Klein D, Riedlinger T. The DLR FireBIRD Small Satellite Mission: Evaluation of Infrared Data for Wildfire Assessment. Remote Sensing. 2021; 13(8):1459. https://doi.org/10.3390/rs13081459
Chicago/Turabian StyleNolde, Michael, Simon Plank, Rudolf Richter, Doris Klein, and Torsten Riedlinger. 2021. "The DLR FireBIRD Small Satellite Mission: Evaluation of Infrared Data for Wildfire Assessment" Remote Sensing 13, no. 8: 1459. https://doi.org/10.3390/rs13081459
APA StyleNolde, M., Plank, S., Richter, R., Klein, D., & Riedlinger, T. (2021). The DLR FireBIRD Small Satellite Mission: Evaluation of Infrared Data for Wildfire Assessment. Remote Sensing, 13(8), 1459. https://doi.org/10.3390/rs13081459