Development of Tools for Coastal Management in Google Earth Engine: Uncertainty Bathtub Model and Bruun Rule
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Uncertainty Bathtub Model
2.3. uBTM Validation
2.4. Bruun Rule implementation on Google Earth Engine
3. Results
3.1. uBTM Validation
3.1.1. Spatial Similarity Analysis: Rio Grande do Sul Coastal Plain (RSCP)
3.1.2. Spatial Similarity Analysis: Coast Section
3.2. BRGM Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Barbier, E.B.; Koch, E.W.; Silliman, B.R.; Hacker, S.D.; Wolanski, E.; Primavera, J.; Granek, E.F.; Polasky, S.; Aswani, S.; Cramer, L.A.; et al. Coastal ecosystem-based management with nonlinear ecological functions and values. Science 2008, 319, 321–323. [Google Scholar] [CrossRef]
- Rao, N.S.; Ghermandi, A.; Portela, R.; Wang, X. Global values of coastal ecosystem services: A spatial economic analysis of shoreline protection values. Ecosyst. Serv. 2015, 11, 95–105. [Google Scholar] [CrossRef]
- Van Rijn, L.C. Coastal erosion and control. Ocean Coast. Manag. 2011, 54, 867–887. [Google Scholar] [CrossRef]
- IPCC (Intergovernmental Panel on Climate). Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- IPCC (Intergovernmental Panel on Climate Change). Summary for Policymakers. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., et al., Eds.; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Feagin, R.A.; Sherman, D.J.; Grant, W.E. Coastal Erosion, Global Sea-Level Rise, and the Loss of Sand Dune Plant Habitats. Front. Ecol. Environ. 2005, 3, 359–364. [Google Scholar] [CrossRef]
- Slater, T.; Hogg, A.E.; Mottram, R. Ice-sheet losses track high-end sea-level rise projections. Nat. Clim. Chang. 2020, 10, 879–881. [Google Scholar] [CrossRef]
- ESRI (Environmental Systems Resource Institute). ArcGIS Desktop: Release 10.8; ESRI: Redlands, CA, USA, 2021. [Google Scholar]
- GvSIG Association gvSIG Desktop. Available online: gvsig.com (accessed on 24 August 2020).
- INPE TerraLib and TerraView Wiki Page. Available online: http://www.dpi.inpe.br/terralib5/wiki/doku.php (accessed on 24 August 2020).
- QGIS Development Team QGIS Geographic Information System. Available online: http://www.qgis.org/es/site/ (accessed on 4 February 2021).
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Tian, H.; Meng, M.; Wu, M.; Niu, Z. Mapping spring canola and spring wheat using Radarsat-2 and Landsat-8 images with Google Earth Engine. Curr. Sci. 2019, 116, 291–298. [Google Scholar] [CrossRef]
- MapBiomas Project MapBiomas—Collection 5.0 of Brazilian Land Cover & Use Map Series. Available online: https://mapbiomas.org/en (accessed on 2 January 2021).
- Vos, K.; Splinter, K.D.; Harley, M.D.; Simmons, J.A.; Turner, I.L. CoastSat: A Google Earth Engine-enabled Python toolkit to extract shorelines from publicly available satellite imagery. Environ. Model. Softw. 2019, 122, 104528. [Google Scholar] [CrossRef]
- Traganos, D.; Poursanidis, D.; Aggarwal, B.; Chrysoulakis, N.; Reinartz, P. Estimating satellite-derived bathymetry (SDB) with the Google Earth Engine and sentinel-2. Remote Sens. 2018, 10, 859. [Google Scholar] [CrossRef] [Green Version]
- NOAA (National Oceanic and Atmospheric Administration). Mapping Coastal Inundation Primer; NOAA: Charleston, SC, USA, 2012. [Google Scholar]
- de Lima, L.T.; Bernardes, C. Uncertainty Bathtub Model (uBTM). Available online: https://zenodo.org/record/3378019 (accessed on 12 September 2020).
- Eastman, J.R. TerrSet: Geospatial Monitoring and Modeling Software. Available online: https://clarklabs.org/terrset/ (accessed on 1 February 2021).
- de Lima, L.T.; Bernardes, C. Brunn Rule for GEE Model (BRGM). Available online: https://zenodo.org/record/3378026 (accessed on 12 September 2020).
- Bruun, P. Sea-Level Rise as a Cause of Shore Erosion. J. Waterw. Harb. Div. 1962, 88, 117–130. [Google Scholar] [CrossRef]
- Dubois, R.N. A re-evaluation of Bruun’s rule and supporting evidence. J. Coast. Res. 1992, 618–628. [Google Scholar]
- Zhang, K.; Douglas, B.C.; Leatherman, S.P. Global warming and coastal erosion. Clim. Chang. 2004, 64, 41–58. [Google Scholar] [CrossRef]
- Atkinson, A.L.; Baldock, T.E.; Birrien, F.; Callaghan, D.P.; Nielsen, P.; Beuzen, T.; Turner, I.L.; Blenkinsopp, C.E.; Ranasinghe, R. Laboratory investigation of the Bruun Rule and beach response to sea level rise. Coast. Eng. 2018, 136, 183–202. [Google Scholar] [CrossRef]
- IBGE. IBGE 2010 Demographic Census; IBGE: Brasilia, Brazil, 2010. [Google Scholar]
- Dillenburg, S.R.; Roy, P.S.; Cowell, P.J.; Tomazelli, L.J. Influence of antecedent topography on coastal evolution as tested by the shoreface translation-barrier model (STM). J. Coast. Res. 2000, 16, 71–81. [Google Scholar]
- de Figueiredo, S.A.; Calliari, L.J.; Machado, A.A. Modelling the effects of sea-level rise and sediment budget in coastal retreat at Hermenegildo Beach, Southern Brazil. Braz. J. Oceanogr. 2018, 66, 210–219. [Google Scholar] [CrossRef]
- Villwock, J.A.; Tomazelli, L.J. Geologia Costeira do Rio Grande do Sul. CECO-IG-UFRGS Tech. Rep. 1995, 8, 1–45. [Google Scholar]
- Esteves, L.S. Variabilidade Espaço-Temporal dos Deslocamentos da Linha de Costa no Rio Grande Do Sul. Ph.D. Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil, 2004. [Google Scholar]
- Conceição, T.F.; Albuquerque, M.G.; Espinoza, J.M.A. Uso do método do polígono de mudança para caracterização do comportamento da linha de costa do município do Rio Grande, entre os anos de 2004 a 2018. Rev. GeoUECE 2020, 9, 123–134. [Google Scholar]
- Guimarães, P.V.; Farina, L.; Toldo, E.E., Jr. Analysis of extreme wave events on the southern coast of Brazil. Nat. Hazards Earth Syst. Sci. 2014, 14, 3195–3205. [Google Scholar] [CrossRef] [Green Version]
- Dillenburg, S.R.; Barboza, E.G.; Tomazelli, L.J.; Rosa, M.L.C.C.; Maciel, G.S. Aeolian deposition and barrier stratigraphy of the transition region between a regressive and a transgressive barrier: An example from Southern Brazil. J. Coast. Res. 2013, 65, 464–469. [Google Scholar] [CrossRef]
- Ponte Lira, C.; Silva, A.N.; Taborda, R.; De Andrade, C.F. Coastline evolution of Portuguese low-lying sandy coast in the last 50 years: An integrated approach. Earth Syst. Sci. Data 2016, 8, 265–278. [Google Scholar] [CrossRef] [Green Version]
- Rey, S.; Bernardes, C. Short-term morphodynamics of intertidal bars the case of Areão Beach (Aveiro, northwest Portugal). J. Coast. Res. 2006, 588–593. [Google Scholar]
- Santos, F.; Lopes, A.M.; Moniz, G.; Ramos, L.; Taborda, R. Grupo de Trabalho do Litoral: Gestão da Zona Costeira: O desafio da Mudança; Santos, F., Penha-Lopes, G., Lopes, A.M., Eds.; CE3C: Lisbon, Portugal, 2017. [Google Scholar]
- Baptista, P.; Coelho, C.; Pereira, C.; Bernardes, C.; Veloso-Gomes, F. Beach morphology and shoreline evolution: Monitoring and modelling medium-term responses (Portuguese NW coast study site). Coast. Eng. 2014, 84, 23–37. [Google Scholar] [CrossRef]
- Vitorino, J.; Oliveira, A.; Jouanneau, J.M.; Drago, T. Winter dynamics on the northern portuguese shelf. Part 1: Physical processes. Prog. Oceanogr. 2002, 52, 129–153. [Google Scholar] [CrossRef]
- Williams, L.L.; Lück-Vogel, M. Comparative assessment of the GIS based bathtub model and an enhanced bathtub model for coastal inundation. J. Coast. Conserv. 2020, 24, 1–15. [Google Scholar] [CrossRef]
- De Lima, L.G.; Dillemburg, S.R. Estratigrafia e Evolução da Barreira Holocênica Na Praia do Hermenegildo (RS). Master’s Thesis, Univerrsidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil, 2008. [Google Scholar]
- Martinho, C.T. Morfodinâmica e Evolução de Campos de Dunas Transgressivos Quaternários do Litoral do Rio Grande do Sul. Ph.D. Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil, 2008. [Google Scholar]
- Lima, L.G.; Dillenburg, S.R.; Medeanic, S.; Barboza, E.G.; Rosa, M.L.C.C.; Tomazelli, L.J.; Dehnhardt, B.A.; Caron, F. Sea-level rise and sediment budget controlling the evolution of a transgressive barrier in southern Brazil. J. S. Am. Earth Sci. 2013, 42, 27–38. [Google Scholar] [CrossRef]
- Caron, F. Estratigrafia e Evolução da Barreira Holocênica na Região Costeira de Santa Vitória do Palmar, Planície Costeira do Rio Grande do Sul, Brasil; Universidade Federal do Rio Grande do Sul: Porto Alegre, RS, Brazil, 2014. [Google Scholar]
- dos Santos, N.B.; Lavina, E.L.C.; Paim, P.S.G. High-resolution stratigraphy of Holocene lagoon terraces of Southern Brazil. Quat. Res. 2015, 83, 52–65. [Google Scholar] [CrossRef]
- FEMA (Federal Emergency Management Agency). Guidelines and Specifications for Flood Hazard Mapping Partners; FEMA: Washington, DC, USA, 2007. [Google Scholar]
- Li, D.; Xu, L.; Goodman, E. A fast foreground object detection algorithm using Kernel Density Estimation. In Proceedings of the 2012 IEEE 11th International Conference on Signal Processing, Beijing, China, 21–25 October 2012; Volume 1, pp. 21–25. [Google Scholar]
- Zeng, L.; Xu, X.; Cai, B.; Qiu, S.; Zhang, T. Multi-scale convolutional neural networks for crowd counting. In Proceedings of the International Conference on Image Processing, ICIP, Beijing, China, 17–18 September 2018; pp. 17–18. [Google Scholar]
- Ilyas, N.; Shahzad, A.; Kim, K. Convolutional-neural network-based image crowd counting: Review, categorization, analysis, and performance evaluation. Sensors 2020, 20, 43. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.L. SDMtoolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 2014, 5, 694–700. [Google Scholar] [CrossRef]
- DeepAI DeepAI—Image Similarity API. Available online: https://deepai.org/machine-learning-model/image-similarity (accessed on 2 January 2021).
- Zorrilla, M.; Martin, A.; Tamayo, I.; Aginako, N.; Olaizola, I.G. Web Browser-Based Social Distributed Computing Platform Applied to Image Analysis. In Proceedings of the 2013 International Conference on Cloud and Green Computing, Karlsruhe, Germany, 30 September–2 October 2013; pp. 389–396. [Google Scholar]
- Bisong, E.; Bisong, E. Google Colaboratory. In Building Machine Learning and Deep Learning Models on Google Cloud Platform; Apress: Berkeley, CA, USA, 2019. [Google Scholar]
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Kulp, S.A.; Strauss, B.H. CoastalDEM: A global coastal digital elevation model improved from SRTM using a neural network. Remote Sens. Environ. 2018, 206, 231–239. [Google Scholar] [CrossRef]
- CIRIA (Construction Industry Research and Information Association). Beach Management Manual; CIRIA: London, UK, 2010; p. 860. [Google Scholar]
- Rosati, J.D.; Dean, R.G.; Walton, T.L. The modified Bruun Rule extended for landward transport. Mar. Geol. 2013, 340, 71–81. [Google Scholar] [CrossRef] [Green Version]
- Le Cozannet, G.; Oliveros, C.; Castelle, B.; Garcin, M. Uncertainties in Sandy Shorelines Evolution under the Bruun Rule Uncertainties in Sandy Shorelines Evolution under the Bruun Rule Assumption. Front. Mar. Sci. 2016, 3, 49. [Google Scholar] [CrossRef] [Green Version]
- Coelho, C.D.B. Riscos de Exposição de Frentes Urbanas para Diferentes Intervenções de Defesa Costeira. Ph.D. Thesis, University of Aveiro, Aveiro, Portugal, 2005. [Google Scholar]
- APA. Núcleo de Monitorização Costeira e Risco Programa de Monitorização da Faixa Costeira de Portugal Continental—COSMO. Available online: https://cosmo.apambiente.pt/ (accessed on 9 February 2020).
- IH. Instituto Hidrográfico Português. Available online: https://www.hidrografico.pt/ (accessed on 2 January 2021).
- Frederikse, T.; Buchanan, M.K.; Lambert, E.; Kopp, R.E.; Oppenheimer, M.; Rasmussen, D.J.; van de Wal, R.S.W. Antarctic Ice Sheet and emission scenario controls on 21st-century extreme sea-level changes. Nat. Commun. 2020, 11, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Marangoni, J.C.; Costa, C.S.B. Natural and anthropogenic effects on salt marsh over five decades in the patos lagoon (Southern Brazil). Braz. J. Oceanogr. 2009, 57, 345–350. [Google Scholar] [CrossRef]
- Marques, W.C.; Fernandes, E.H.L.; Moraes, B.C.; Möller, O.O.; Malcherek, A. Dynamics of the Patos Lagoon coastal plume and its contribution to the deposition pattern of the southern Brazilian inner shelf. J. Geophys. Res. Ocean. 2010, 115, 1–22. [Google Scholar] [CrossRef]
- Tagliani, P.R.A.; Landazuri, H.; Reis, E.G.; Tagliani, C.R.; Asmus, M.L.; Sánchez-Arcilla, A. Integrated coastal zone management in the Patos Lagoon estuary: Perspectives in context of developing country. Ocean Coast. Manag. 2003, 46, 807–822. [Google Scholar] [CrossRef]
- Silva, T.S.; Tagliani, P.R.A. Environmental planning in the medium littoral of the Rio Grande do Sul coastal plain—Southern Brazil: Elements for coastal management. Ocean Coast. Manag. 2012, 59, 20–30. [Google Scholar] [CrossRef]
- Leal-Alves, D.C.; Weschenfelder, J.; da Guia Albuquerqu, M.; de Almeida Espinoza, J.M.; Ferreira-Cravo, M.; de Almeida, L.P.M. Digital elevation model generation using UAV-SfM photogrammetry techniques to map sea-level rise scenarios at Cassino Beach, Brazil. SN Appl. Sci. 2020, 2, 2181. [Google Scholar] [CrossRef]
- JAXA. ALOS Global Digital Surface Model “ALOS World 3D-30m” (AW3D30); Jaxa: Tokyo, Japan, 2016. [Google Scholar]
- NASA. SRTM30 Documentation; NASA: Washington, DC, USA, 2000. [Google Scholar]
- Vousdoukas, M.I.; Ranasinghe, R.; Mentaschi, L.; Plomaritis, T.A.; Athanasiou, P.; Luijendijk, A.; Feyen, L. Sandy coastlines under threat of erosion. Nat. Clim. Chang. 2020, 10, 260–263. [Google Scholar] [CrossRef]
- Cooper, J.A.G.; Masselink, G.; Coco, G.; Short, A.D.; Castelle, B.; Rogers, K.; Anthony, E.; Green, A.N.; Kelley, J.T.; Pilkey, O.H.; et al. Sandy beaches can survive sea-level rise. Nat. Clim. Chang. 2020, 10, 993–995. [Google Scholar] [CrossRef]
- Gomes, P.; Gutierres, F.; Rocha, J.; Teodoro, A.C. Assessment of potential impacts in tourism of the increase in the average sea level. In Coastal Research Library; Springer, Ed.; Springer: Cham, Switzerland, 2018; Volume 24, pp. 349–371. [Google Scholar]
- Pinto, C.A.; Silveira, T.M.; Teixeira, S.B. Beach nourishment practice in mainland Portugal (1950–2017): Overview and retrospective. Ocean Coast. Manag. 2020, 192, 105211. [Google Scholar] [CrossRef]
uBTM | uBTMs | tSLI | eBTM | sBTM | |
---|---|---|---|---|---|
uBTM | 1 | 0.97 | 0.99 | 0.78 | 1 |
uBTMs | 0.97 | 1 | 0.97 | 0.79 | 0.97 |
tSLI | 0.99 | 0.97 | 1 | 0.74 | 0.99 |
eBTM | 0.78 | 0.79 | 0.74 | 1 | 0.78 |
sBTM | 1 | 0.97 | 0.99 | 0.78 | 1 |
uBTM | uBTMs | tSLI | eBTM | sBTM | |
---|---|---|---|---|---|
uBTM | 1 | 0.75 | 0.77 | 0.99 | 1 |
uBTMs | 0.75 | 1 | 0.70 | 0.73 | 0.75 |
tSLI | 0.77 | 0.70 | 1 | 0.75 | 0.77 |
eBTM | 0.99 | 073 | 0.75 | 1 | 0.99 |
sBTM | 1 | 0.75 | 0.77 | 0.99 | 1 |
Profiles | Berm | W | Depth of Closure | CRR | 2100 | ||||
---|---|---|---|---|---|---|---|---|---|
[57] | BRGM | [57] | BRGM | [57] | BRGM | [57] | BRGM | RCP 8.5 | |
1 | 5.6 | 5.9 | 2240 | 2291 | −12.1 | −12.8 | 63.3 | 61.2 | 146.6 |
2 | 4 | 4.5 | 1440 | 1404 | −12.1 | −11.8 | 44.7 | 43.2 | 105.8 |
3 | 1.5 | 0.1 | 1440 | 1412 | −12.1 | −12.3 | 52.9 | 56.8 | 135.5 |
4 | 1.9 | 2.1 | 1483 | 1494 | −12.1 | −12.2 | 53.0 | 52.2 | 124.7 |
5 | 4 | 4.0 | 1450 | 1514 | −12.1 | −12.2 | 45.0 | 46.7 | 112.0 |
6 | 2.4 | 2.6 | 1483 | 1435 | −12.1 | −12.1 | 51.1 | 48.9 | 116.5 |
7 | 3.2 | 3.2 | 1333 | 1251 | −12.1 | −11.8 | 43.6 | 41.6 | 99.5 |
8 | 8.2 | 9.0 | 1434 | 1387 | −12.1 | −12.1 | 35.3 | 32.9 | 78.5 |
9 | 4.8 | 4.2 | 1420 | 1454 | −12.1 | −12.6 | 42.0 | 43.2 | 105.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terres de Lima, L.; Fernández-Fernández, S.; Gonçalves, J.F.; Magalhães Filho, L.; Bernardes, C. Development of Tools for Coastal Management in Google Earth Engine: Uncertainty Bathtub Model and Bruun Rule. Remote Sens. 2021, 13, 1424. https://doi.org/10.3390/rs13081424
Terres de Lima L, Fernández-Fernández S, Gonçalves JF, Magalhães Filho L, Bernardes C. Development of Tools for Coastal Management in Google Earth Engine: Uncertainty Bathtub Model and Bruun Rule. Remote Sensing. 2021; 13(8):1424. https://doi.org/10.3390/rs13081424
Chicago/Turabian StyleTerres de Lima, Lucas, Sandra Fernández-Fernández, João Francisco Gonçalves, Luiz Magalhães Filho, and Cristina Bernardes. 2021. "Development of Tools for Coastal Management in Google Earth Engine: Uncertainty Bathtub Model and Bruun Rule" Remote Sensing 13, no. 8: 1424. https://doi.org/10.3390/rs13081424
APA StyleTerres de Lima, L., Fernández-Fernández, S., Gonçalves, J. F., Magalhães Filho, L., & Bernardes, C. (2021). Development of Tools for Coastal Management in Google Earth Engine: Uncertainty Bathtub Model and Bruun Rule. Remote Sensing, 13(8), 1424. https://doi.org/10.3390/rs13081424