Applications of Satellite Radar Imagery for Hazard Monitoring: Insights from Australia
Abstract
:1. Introduction
2. SAR Sensing of Hazards
3. Hydrological Hazards
3.1. Flooding
3.1.1. Example Case Study: Wildman Coastal Floodplains (Northern Territory)
3.2. Drought and Unsustainable Groundwater Extraction
3.2.1. Example Case-Study: Groundwater Extraction and Recharge (Perth, Western Australia)
4. Fire Monitoring
Example Case-Study: 2019 Torrington Fire (New South Wales)
5. Natural Resource Extraction
5.1. Below Ground Mining Operations
Example Case-Study: Tahmoor Longwall Coal Mine (New South Wales)
5.2. Above-Ground Mining Operations
5.2.1. Example Case-Study: Latrobe Valley Open-Cut Coal Mines (Victoria)
5.2.2. Example Case-Study: Cadia Tailing Dam Failure (New South Wales)
5.3. Coal Seam Gas Extraction
6. Seismic Hazard Monitoring
Example Case-Study: 2016 Mw 6.0 Petermann Ranges Earthquake (Northern Territory)
7. Geomorphological Changes
7.1. Example Case-Study: Geomorphological Monitoring in Remote Areas (Northern Territory)
8. Discussion: Future Opportunities for Developing the Role of SAR for Hazard Monitoring in Australia
8.1. Synergies between SAR and other EO Data Types for Hazard Monitoring
8.2. Opportunities for Near-Real-Time Applications with New SAR Satellites
9. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations Office for Disaster Risk Reduction. Available online: https://www.unisdr.org/we/inform/terminology#letter-h (accessed on 15 July 2020).
- Held, A.; Clayfield, K.; Ward, S.; Dyke, G.; Harrison, B. Continuity of Earth Observation Data for Australia: Research and Development Dependencies to 2020; CSIRO Astronomy and Space Science: Canberra, Australia, 2012. [CrossRef]
- Australian Earth Observation Community Plan 2016: Delivering Essential Information and Services for Australia’s Future. Available online: https://www.eoa.org.au/aeocp-the-plan/ (accessed on 15 July 2020).
- Dhu, T.; Dunn, B.; Lewis, B.; Lymburner, L.; Mueller, N.; Telfer, E.; Lewis, A.; McIntyre, A.; Minchin, S.; Phillips, C. Digital earth Australia–unlocking new value from earth observation data. Big Earth Data 2017, 1, 64–74. [Google Scholar] [CrossRef] [Green Version]
- Adam, N.; Kampes, B.; Eineder, M. Development of a scientific permanent scatterer system: Modifications for mixed ERS/ENVISAT time series. In Proceedings of the Envisat & ERS Symposium 2005, Salzburg, Austria, 6–10 September 2004; Volume 572. [Google Scholar]
- Mueller, N.; Lewis, A.; Roberts, D.; Ring, S.; Melrose, R.; Sixsmith, J.; Lymburner, L.; McIntyre, A.; Tan, P.; Curnow, S.; et al. Water observations from space: Mapping surface water from 25 years of Landsat imagery across Australia. Remote Sens. Environ. 2016, 174, 341–352. [Google Scholar] [CrossRef] [Green Version]
- Milne, A.K.; Williams, M.; Mitchell, A.; Watt, M. SAR Application Case Studies, Robust Imaging from Space, Adjunct Reference Document #2, CRCSI Report. Available online: https://www.crcsi.com.au/assets/Uploads/Files/Adjunct-Reference-2-SAR-Application-Case-Studies-FINAL.pdf (accessed on 15 July 2020).
- Bird, R.; Whittaker, P.; Stern, B.; Angli, N.; Cohen, M.; Guida, R. NovaSAR-S: A low cost approach to SAR applications. In Synthetic Aperture Radar (APSAR) 2013 IEEE Asia-Pacific Conference; IEEE: Piscataway, NJ, USA, 2003; pp. 84–87. [Google Scholar]
- Held, A.; Zhou, Z.S.; Ticehurst, C.; Rosenqvist, A.; Parker, A.; Brindle, L. Advancing Australia’s Imaging Radar Capability Under the Novasar-1 Partnership. In IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium; IEEE: Piscataway, NJ, USA, 2019; pp. 8370–8373. [Google Scholar]
- Ticehurst, C.; Zhou, Z.S.; Lehmann, E.; Yuan, F.; Thankappan, M.; Rosenqvist, A.; Lewis, B.; Paget, M. Building a SAR-Enabled Data Cube Capability in Australia Using SAR Analysis Ready Data. Data 2019, 4, 100. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.; Zhang, J.; Zhang, Y.; Dzurisin, D. Monitoring and characterizing natural hazards with satellite InSAR imagery. Ann. GIS 2010, 16, 55–66. [Google Scholar] [CrossRef]
- Flores-Anderson, A.I.; Herndon, K.E.; Thapa, R.B.; Cherrington, E. The SAR Handbook: Comprehensive Methodologies for Forest Monitoring and Biomass Estimation; SERVIR Global Science Coordination Office: Huntsville, AL, USA, 2019. [Google Scholar] [CrossRef]
- Freeman, A.; Durden, S.L. A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 1998, 36, 963–973. [Google Scholar] [CrossRef] [Green Version]
- Bürgmann, R.; Rosen, P.A.; Fielding, E.J. Synthetic aperture radar interferometry to measure Earth’s surface topography and its deformation. Annu. Rev. Earth Planet. Sci. 2000, 28, 169–209. [Google Scholar] [CrossRef]
- Parker, A.L.; Featherstone, W.E.; Penna, N.T.; Filmer, M.S.; Garthwaite, M.C. Practical Considerations before Installing Ground-Based Geodetic Infrastructure for Integrated InSAR and cGNSS Monitoring of Vertical Land Motion. Sensors 2017, 17, 1753. [Google Scholar] [CrossRef] [Green Version]
- Wright, T.J.; Parsons, B.E.; Lu, Z. Toward mapping surface deformation in three dimensions using InSAR. Geophys. Res. Lett. 2004, 31, L01607. [Google Scholar] [CrossRef] [Green Version]
- Intrieri, E.; Raspini, F.; Fumagalli, A.; Lu, P.; Del Conte, S.; Farina, P.; Allievi, J.; Ferretti, A.; Casagli, N. The Maoxian landslide as seen from space: Detecting precursors of failure with Sentinel-1 data. Landslides 2008, 15, 123–133. [Google Scholar] [CrossRef] [Green Version]
- Galloway, D.L.; Burbey, T.J. Regional land subsidence accompanying groundwater extraction. Hydrogeol. J. 2011, 19, 1459–1486. [Google Scholar] [CrossRef]
- Elliott, J.R.; Walters, R.J.; Wright, T.J. The role of space-based observation in understanding and responding to active tectonics and earthquakes. Nat. Commun. 2016, 7, 13844. [Google Scholar] [CrossRef] [Green Version]
- Strozzi, T.; Luckman, A.; Murray, T.; Wegmuller, U.; Werner, C.L. Glacier motion estimation using SAR offset-tracking procedures. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2384–2391. [Google Scholar] [CrossRef] [Green Version]
- Callaghan, J.; Power, S.B. Major coastal flooding in southeastern Australia 1860–2012, associated deaths and weather systems. Aust. Meteorol. Oceanogr. J. 2014, 64, 183–213. [Google Scholar] [CrossRef]
- Ezzy, G.L.; Allen, A.; Buchanan, A.; Craig, R.; Maier, S.; Stewart, B.; Ferri, M. Application of remote sensing and GIS technologies in flood monitoring and warning systems for Northern Australia: A review. In Proceedings of the 13th Australasian Remote Sensing and Photogrammetry Conference, Canberra, Australia, 21 August 2006; p. 303. [Google Scholar]
- Jaramillo, F.; Brown, I.; Castellazzi, P.; Espinosa, L.; Guittard, A.; Hong, S.-H.; Rivera-Monroy, V.H.; Wdowinski, S. Assessment of hydrologic connectivity in an ungauged wetland with InSAR observations. Environ. Res. Lett. 2018, 13, 024003. [Google Scholar] [CrossRef]
- Ward, D.P.; Petty, A.; Setterfield, S.A.; Douglas, M.M.; Ferdinands, K.; Hamilton, S.K.; Phinn, S. Floodplain inundation and vegetation dynamics in the Alligator Rivers region (Kakadu) of northern Australia assessed using optical and radar remote sensing. Remote Sens. Environ. 2014, 147, 43–55. [Google Scholar] [CrossRef]
- Twele, A.; Cao, W.; Plank, S.; Martinis, S. Sentinel-1-based flood mapping: A fully automated processing chain. Int. J. Remote Sens. 2016, 37, 2990–3004. [Google Scholar] [CrossRef]
- Mueller, N.; (Geoscience Australia, Canberra, Australia Capital Territory, Australia). Personal communication, 2018.
- Mohammadimanesh, F.; Salehi, B.; Mahdianpari, M.; Brisco, B.; Motagh, M. Multi-temporal, multi-frequency, and multi-polarization coherence and SAR backscatter analysis of wetlands. ISPRS J. Photogramm. Remote Sens. 2018, 142, 78–93. [Google Scholar] [CrossRef]
- Brisco, B. Mapping and monitoring surface water and wetlands with synthetic aperture radar. Remote Sens. Wetl. Appl. Adv. 2015, 119–136. [Google Scholar]
- Australian Bureau of Statistics. Geographic Distribution of the Population. In Year Book Australia; Australian Bureau of Statistics: Belconnen, Australia, 2012. Available online: https://www.abs.gov.au/ausstats/[email protected]/Lookup/by%20Subject/1301.0~2012~Main%20Features~Geographic%20distribution%20of%20the%20population~49 (accessed on 15 July 2020).
- Richardson, S.; Ervine, E.; Froend, R.; Boon, P.; Barber, S.; Bonneville, B. Australian Groundwater-Dependent Ecosystem Toolbox Part 1: Assessment Framework, Waterlines Report; National Water Commission: Canberra, Australia, 2011; ISBN 978-1-921853-52-4. [Google Scholar]
- Doody, T.M.; Barron, O.V.; Dowsley, K.; Emelyanova, I.; Fawcett, J.; Overton, I.C.; Pritchard, J.L.; Van Dijk, A.I.J.M.; Warren, G. Continental mapping of groundwater dependent ecosystems: A methodological framework to integrate diverse data and expert opinion. J. Hydrol. Reg. Stud. 2017, 10, 61–81. [Google Scholar] [CrossRef]
- Castellazzi, P.; Doody, T.; Peeters, L. Toward monitoring groundwater-dependent ecosystems using SAR imagery. Hydrol. Process. 2019, 33, 3239–3250. [Google Scholar] [CrossRef] [Green Version]
- Chaussard, E.; Milillo, P.; Bürgmann, R.; Perissin, D.; Fielding, E.J.; Baker, B. Remote sensing of ground deformation for monitoring groundwater management practices: Application to the Santa Clara Valley during the 2012–2015 California drought. J. Geophys. Res. Solid Earth 2017, 122, 8566–8582. [Google Scholar] [CrossRef]
- Castellazzi, P.; Longuevergne, L.; Martel, R.; Rivera, A.; Brouard, C.; Chaussard, E. Quantitative mapping of groundwater depletion at the water management scale using a combined GRACE/InSAR approach. Remote Sens. Environ. 2018, 205, 408–418. [Google Scholar] [CrossRef]
- Castellazzi, P.; Schmid, W. Interpreting C-band InSAR ground deformation data for large-scale groundwater management in Australia. J. Hydrol. Reg. Stud. 2021, 34, 100774. [Google Scholar] [CrossRef]
- Wang, H.; Wright, T.J.; Yu, Y.; Lin, H.; Jiang, L.; Li, C.; Qiu, G. InSAR reveals coastal subsidence in the Pearl River Delta, China. Geophys. J. Int. 2012, 191, 1119–1128. [Google Scholar] [CrossRef] [Green Version]
- Featherstone, W.E.; Penna, N.T.; Filmer, M.S.; Williams, S.D.P. Nonlinear subsidence at Fremantle, a long-recording tide gauge in the Southern Hemisphere. J. Geophys. Res. Solid Earth 2015, 120, 7004–7014. [Google Scholar] [CrossRef] [Green Version]
- Featherstone, W.E.; Filmer, M.S.; Penna, N.T.; Morgan, L.M.; Schenk, A. Anthropogenic land subsidence in the Perth Basin: Challenges for its retrospective geodetic detection. J. R. Soc. West. Aust. 2012, 95, 53–62. [Google Scholar]
- Parker, A.L.; Filmer, M.S.; Featherstone, W.E.; Pigois, J.P.; Lyon, T. Integrated geodetic monitoring of subsidence due to groundwater abstraction in the Perth Basin, Western Australia. In Proceedings of the AGU Fall Meeting Abstracts, American Geophysical Union, Fall General Assembly, San Francisco, CA, USA, 12–16 December 2016. [Google Scholar]
- Parker, A.L.; Filmer, M.S.; Featherstone, W.E. First results from Sentinel-1A InSAR over Australia: Application to the Perth Basin. Remote Sens. 2017, 9, 299. [Google Scholar] [CrossRef] [Green Version]
- Lyon, T.J.; Filmer, M.S.; Featherstone, W.E. On the use of repeat leveling for the determination of vertical land motion: Artifacts, aliasing and extrapolation errors. J. Geophys. Res. Solid Earth 2018, 123, 7021–7039. [Google Scholar] [CrossRef]
- Freij-Ayoub, R.; Underschultz, J.; Li, F.; Trefry, C.; Hennig, A.; Otto, C.; McInnes, K. Simulation of Coastal Subsidence and Storm Wave Inundation Risk in the Gippsland Basin; CSIRO Petroleum Report 07-003; CSIRO: Bentley, Australia, 2007.
- Ng, A.H.-M.; Ge, L.; Li, X. Assessments of land subsidence in the Gippsland Basin of Australia using ALOS PALSAR data. Remote Sens. Environ. 2015, 159, 86–101. [Google Scholar] [CrossRef]
- Menges, C.H.; Bartolo, R.E.; Bell, D.; Hill, G.E. The effect of savanna fires on SAR backscatter in northern Australia. Int. J. Remote Sens. 2004, 25, 4857–4871. [Google Scholar] [CrossRef]
- Justice, C.O.; Smith, R.; Gill, A.M.; Csiszar, I. A review of current space-based fire monitoring in Australia and the GOFC/GOLD program for international coordination. Int. J. Wildland Fire 2003, 12, 247–258. [Google Scholar] [CrossRef]
- Tanase, M.A.; Kennedy, R.; Aponte, C. Fire severity estimation from space: A comparison of active and passive sensors and their synergy for different forest types. Int. J. Wildland Fire 2015, 24, 1062–1075. [Google Scholar] [CrossRef]
- Fernandez-Carrillo, A.; McCaw, L.; Tanase, M.A. Estimating prescribed fire impacts and post-fire tree survival in eucalyptus forests of Western Australia with L-band SAR data. Remote Sens. Environ. 2019, 224, 133–144. [Google Scholar] [CrossRef]
- Copernicus EMS. Torrington: Delineation Product, Monitoring 1, version 1, release 1, RTP Map #01. Available online: https://emergency.copernicus.eu/mapping/ems-product-component/EMSR408_AOI04_DEL_MONIT01_r1_RTP01/1 (accessed on 15 January 2020).
- Khokhar, I. Fire scar mapping using Sentinel-1 Synthetic Aperture Radar (SAR) imagery. In Western Australian Satellite Technology and Applications Consortium Annual Report; Western Australian Satellite Technology and Applications Consortium: Perth, Australia, 2014. [Google Scholar]
- De Athayde Pinto, C.; Paradella, W.R.; Mura, J.C.; Gama, F.F.; dos Santos, A.R.; Silva, G.G.; Hartwig, M.E. Applying persistent scatterer interferometry for surface displacement mapping in the Azul open pit manganese mine (Amazon region) with TerraSAR-X StripMap data. J. Appl. Remote Sens. 2015, 9, 095978. [Google Scholar] [CrossRef] [Green Version]
- Taylor, K.; Ghuman, P.; McCardle, A. Operational mine monitoring with InSAR. In Proceedings of the First Asia Pacific Slope Stability in Mining Conference; Dight, P.M., Ed.; Australian Centre for Geomechanics: Perth, Australia, 2016; pp. 695–706. [Google Scholar]
- Carlà, T.; Farina, P.; Intrieri, E.; Ketizmen, H.; Casagli, N. Integration of ground-based radar and satellite InSAR data for the analysis of an unexpected slope failure in an open-pit mine. Eng. Geol. 2018, 235, 39–52. [Google Scholar] [CrossRef]
- Ng, A.H.-M.; Ge, L.; Yan, Y.; Li, X.; Chang, H.-C.; Zhang, K.; Rizos, C. Mapping accumulated mine subsidence using small stack of SAR differential interferograms in the Southern coalfield of NSW, Australia. Eng. Geol. 2010, 115, 1–15. [Google Scholar] [CrossRef]
- Iannacone, J.P.; Corsini, A.; Berti, M.; Morgan, J.; Falorni, G. Characterization of Longwall Mining Induced Subsidence by Means of Automated Analysis of InSAR Time-Series. In Engineering Geology for Society and Territory; Springer: Berlin/Heidelberg, Germany, 2015; Volume 5. [Google Scholar]
- Mine Subsidence Engineering Consultants. Tahmoor Colliery—Longwall 30, End of Panel Subsidence Monitoring Report for Tahmoor Longwall 30. Technical Report Number: MSEC902. Available online: http://www.simec.com/media/6336/longwall-30-end-of-panel-report.pdf (accessed on 15 July 2020).
- Carlà, T.; Intrieri, E.; Raspini, F.; Bardi, F.; Farina, P.; Ferretti, A.; Colombo, D.; Novali, F.; Casagli, N. Perspectives on the prediction of catastrophic slope failures from satellite InSAR. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monitoring and Management of Subsidence Induced by Coal Seam Gas Extraction, Knowledge Report. Prepared by Coffey Ge-otechnics for the Department of the Environment, Commonwealth of Australia, Canberra. Available online: https://www.environment.gov.au/system/files/resources/632cefef-0e25-4020-b337-80a9932d1c67/files/knowledge-report-csg-extraction_0.pdf (accessed on 15 July 2020).
- Duro, J.; Albiol, D.; Sabater, J. Baseline report on InSAR monitoring on the Surat-Bowen Basin. AL-051212_Basline_re- port_01.pdf. 2012, Altamira Infor-mation. Available online: http://eisdocs.dsdip.qld.gov.au/Santos%20GLNG%20Gas%20Field%20Development/EIS/Appendices/appendix-ae-e-ground-deformation-monitoring-and-management-plan.pdf (accessed on 7 April 2021).
- Moghaddam, N.F.; Samsonov, S.V.; Rüdiger, C.; Walker, J.P.; Hall, W.D.M. Multi-temporal SAR observations of the Surat Basin in Australia for deformation scenario evaluation associated with man-made interactions. Environ. Earth Sci. 2016, 75, 1–16. [Google Scholar] [CrossRef]
- Garthwaite, M.C.; Hazelwood, M.; Nancarrow, S.; Hislop, A.; Dawson, J. A regional geodetic network to monitor ground surface response to resource extraction in the northern Surat Basin. Qld. Aust. J. Earth Sci. 2015, 62, 469–477. [Google Scholar] [CrossRef]
- Johnston, A.C. Seismotectonic interpretations conclusions from the stable continental region seismicity database. In The Earthquakes of Stable Continental Regions, Volume 1-Assessment of Large Earthquake Potential; Johnston, A.C., Coppersmith, K.J., Kanter, L.R., Cornell, C.A., Eds.; Electric Power Research Institute: Palo Alto, CA, USA, 1994; TR-102261-V1. [Google Scholar]
- Schulte, S.M.; Mooney, W.D. An updated global earthquake catalogue for stable continental regions: Reassessing the correlation with ancient rifts. Geophys. J. Int. 2005, 161, 707–721. [Google Scholar] [CrossRef] [Green Version]
- Leonard, M. One hundred years of earthquake recording in Australia. Bull. Seismol. Soc. Am. 2008, 98, 1458–1470. [Google Scholar] [CrossRef]
- King, T.R.; Quigley, M.; Clark, D. Surface-rupturing historical earthquakes in Australia and their environmental effects: New insights from re-analyses of observational data. Geosciences 2019, 9, 408. [Google Scholar] [CrossRef] [Green Version]
- Clark, D.; McPherson, A.; Allen, T. Intraplate earthquakes in Australia. In Intraplate Earthquakes; Talwani, P., Ed.; Cambridge University Press: New York, NY, USA, 2014; pp. 8–49. [Google Scholar]
- Dawson, J.; Tregoning, P. Uncertainty analysis of earthquake source parameters determined from InSAR: A simulation study. J. Geophys. Res. Solid Earth 2007, 112, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Clark, D.J.; Brennand, S.; Brenn, G.; Garthwaite, M.C.; Dimech, J.; Allen, T.I.; Standen, S. Surface defomation relating to the 2018 Lake Muir earthquake sequence, southwest Western Australia: New insights into stable continental region earthquakes. Solid Earth 2020, 11, 691–717. [Google Scholar] [CrossRef]
- Dawson, J.; Cummins, P.; Tregoning, P.; Leonard, M. Shallow intraplate earthquakes in Western Australia observed by Interferometric Synthetic Aperture Radar. J. Geophys. Res. Solid Earth 2008, 113, B11408. [Google Scholar] [CrossRef] [Green Version]
- Bekaert, D.P.; Karim, M.; Linick, J.P.; Hua, H.; Sangha, S.; Lucas, M.; Malarout, N.; Agram, P.S.; Pan, L.; Owen, S.E. Development of open-access Standardized InSAR Displacement Products by the Advanced Rapid Imaging and Analysis (ARIA) Project for Natural Hazards. In Proceedings of the AGU Fall Meeting 2019, San Francisco, CA, USA, 9–13 December 2019. [Google Scholar]
- Lazecký, M.; Spaans, K.; González, P.J.; Maghsoudi, Y.; Morishita, Y.; Albino, F.; Elliott, J.; Greenall, N.; Hatton, E.; Hooper, A.; et al. LiCSAR: An automatic InSAR tool for measuring and monitoring tectonic and volcanic activity. Remote Sens. 2020, 12, 2430. [Google Scholar] [CrossRef]
- Leventhal, A.R.; Kotze, G.P. Landslide susceptibility and hazard mapping in Australia for land-use planning—With reference to challenges in metropolitan suburbia. Eng. Geol. 2008, 102, 238–250. [Google Scholar] [CrossRef]
- Nyman, P.; Sheridan, G.J.; Smith, H.G.; Lane, P.N. Evidence of debris flow occurrence after wildfire in upland catchments of south-east Australia. Geomorphology 2011, 125, 383–401. [Google Scholar] [CrossRef]
- Mitidieri, F.; Papa, M.N.; Amitrano, D.; Ruello, G. River morphology monitoring using multitemporal SAR data: Preliminary results. Eur. J. Remote Sens. 2016, 49, 889–898. [Google Scholar] [CrossRef]
- Alshammari, L.; Boyd, D.S.; Sowter, A.; Marshall, C.; Andersen, R.; Gilbert, P.; Marsh, S.; Large, D.J. Use of Surface Motion Characteristics Determined by InSAR to Assess Peatland Condition. J. Geophys. Res. Biogeosciences 2020, 125, e2018JG004953. [Google Scholar] [CrossRef]
- Zwieback, S.; Hensley, S.; Hajnsek, I. Soil moisture estimation using differential radar interferometry: Toward separating soil moisture and displacements. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5069–5083. [Google Scholar] [CrossRef]
- Bui, L.K.; Featherstone, W.E.; Filmer, M.S. Disruptive influences of residual noise, network configuration and data gaps on InSAR-derived land motion rates using the SBAS technique. Remote Sens. Environ. 2020, 247, 111941. [Google Scholar] [CrossRef]
- Cigna, F.; Sowter, A. The relationship between intermittent coherence and precision of ISBAS InSAR ground motion velocities: ERS-1/2 case studies in the UK. Remote Sens. Environ. 2017, 202, 177–198. [Google Scholar] [CrossRef]
- Lewis, A.; Lacey, J.; Mecklenburg, S.; Ross, J.; Siqueira, A.; Killough, B.; Szantoi, Z.; Tadono, T.; Rosenqvist, A.; Goryl, P.; et al. CEOS Analysis Ready Data for Land (CARD4L) Overview. In IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium; IEEE: Piscataway, NJ, USA, 2018; pp. 7407–7410. [Google Scholar]
- Clark, D.; McPherson, A.; Pillans, B.; White, D.; Macfarlane, D. Potential geologic sources of seismic hazard in Australia’s south-eastern highlands: What do we know? In Proceedings of the Australian Earthquake Engineering Society 2017 Conference, Canberra, ACT, Australia, 24–26 November 2017. [Google Scholar]
- Department of Environment and Primary Industries. Trial of Satellite Radar Interferometry (InSAR) to Monitor Subsidence along the Gippsland Coast, State Government of Victoria. Available online: https://trove.nla.gov.au/work/222000935 (accessed on 15 July 2020).
- Fuhrmann, T.; Gathwaite, M.C.; Lawrie, S.; Brown, N. Combination of GNSS and InSAR for future Australian Datums. In Proceedings of the International Global Navigation Satellite Systems Association IGNSS Symposium 2018, Sydney, Australia, 5–7 February 2018; pp. 1–13. [Google Scholar]
- Fuhrmann, T.; Caro Cuenca, M.; Knöpfler, A.; van Leijen, F.J.; Mayer, M.; Westerhaus, M.; Hanssen, R.F.; Heck, B. Estimation of small surface displacements in the Upper Rhine Graben area from a combined analysis of PS-InSAR, levelling and GNSS data. Geophys. J. Int. 2015, 203, 614–631. [Google Scholar] [CrossRef] [Green Version]
- Parker, A.L.; McCallum, L.; Featherstone, W.E.; McCallum, J.N.; Haas, R. The Potential for Unifying Global-Scale Satellite Measurements of Ground Displacements Using Radio Telescopes. Geophys. Res. Lett. 2019, 46, 11841–11849. [Google Scholar] [CrossRef] [Green Version]
- Castellazzi, P.; Burgess, D.; Rivera, A.; Huang, J.; Longuevergne, L.; Demuth, M.N. Glacial melt and potential impacts on water resources in the Canadian Rocky Mountains. Water Resour. Res. 2019, 55, 10191–10217. [Google Scholar] [CrossRef]
- Castellazzi, P.; Chopping, R.; Brouard, C. Mining Exports and Climate Variability Influencing Grace-Derived Water Storage Trend Estimates in Australia. In Proceedings of the IGARSS 2020–2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 5069–5072. [Google Scholar] [CrossRef]
- Claessens, L.; Schoorl, J.M.; Verburg, P.H.; Geraedts, L.; Veldkamp, A. Modelling interactions and feedback mechanisms between land use change and landscape processes. Agric. Ecosyst. Environ. 2009, 129, 157–170. [Google Scholar] [CrossRef]
- Vaglio Laurin, G.; Liesenberg, V.; Chen, Q.; Guerriero, L.; Del Frate, F.; Bartolini, A.; Coomes, D.; Wilebore, B.; Lindsell, J.; Valentini, R. Optical and SAR sensor synergies for forest and land cover mapping in a tropical site in West Africa. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 7–16. [Google Scholar] [CrossRef]
- Manakos, I.; Kordelas, G.A.; Marini, K. Fusion of Sentinel-1 data with Sentinel-2 products to overcome non-favourable atmospheric conditions for the delineation of inundation maps. Eur. J. Remote Sens. 2019, 53, 53–66. [Google Scholar] [CrossRef] [Green Version]
- Hagensieker, R.; Waske, B. Evaluation of Multi-Frequency SAR Images for Tropical Land Cover Mapping. Remote Sens. 2018, 10, 257. [Google Scholar] [CrossRef] [Green Version]
- Allen, A.; (Landgate, Perth, Western Australia, Australia). Personal communication, 2018.
- Parker, A.; Zhou, Z.-S.; Held, A.; Brindle, L.; Rosenqvist, A. New Insights from Australia’s Synthetic Aperture Radar Capability, NovaSAR-1. In Proceedings of the IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 5971–5973. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parker, A.L.; Castellazzi, P.; Fuhrmann, T.; Garthwaite, M.C.; Featherstone, W.E. Applications of Satellite Radar Imagery for Hazard Monitoring: Insights from Australia. Remote Sens. 2021, 13, 1422. https://doi.org/10.3390/rs13081422
Parker AL, Castellazzi P, Fuhrmann T, Garthwaite MC, Featherstone WE. Applications of Satellite Radar Imagery for Hazard Monitoring: Insights from Australia. Remote Sensing. 2021; 13(8):1422. https://doi.org/10.3390/rs13081422
Chicago/Turabian StyleParker, Amy L., Pascal Castellazzi, Thomas Fuhrmann, Matthew C. Garthwaite, and Will E. Featherstone. 2021. "Applications of Satellite Radar Imagery for Hazard Monitoring: Insights from Australia" Remote Sensing 13, no. 8: 1422. https://doi.org/10.3390/rs13081422
APA StyleParker, A. L., Castellazzi, P., Fuhrmann, T., Garthwaite, M. C., & Featherstone, W. E. (2021). Applications of Satellite Radar Imagery for Hazard Monitoring: Insights from Australia. Remote Sensing, 13(8), 1422. https://doi.org/10.3390/rs13081422