Observations of Wintertime Low-Level Jets in the Coastal Region of the Laptev Sea in the Siberian Arctic Using SODAR/RASS
Abstract
:1. Introduction
2. Data
2.1. Study Area and General Meteorological Conditions
2.2. Measurements
2.3. Numerical Model Data
3. Low-Level Jets and Detection Criteria
- Inertial oscillation: stable stratification leads to a strong decrease of turbulence inducing a decoupling of the upper layer of the SBL as friction becomes negligible. The resulting imbalance of Coriolis and pressure gradient forces causes a super-geostrophic wind by an inertial oscillation [2,31,32,33,34].
4. Results
4.1. Case 17 December 2014
4.2. Case 1 January 2015
4.3. Statistics of LLJs for Winter 2014/2015
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Drüe, C.; Heinemann, G. Characteristics of intermittent turbulence in the upper stable boundary layer over Greenland. Bound. Layer Meteorol. 2007, 124, 361–381. [Google Scholar] [CrossRef] [Green Version]
- Andreas, E.L.; Claffy, K.J.; Makshtas, A.P. Low-Level Atmospheric Jets And Inversions Over The Western Weddell Sea. Bound. Layer Meteorol. 2000, 97, 459–486. [Google Scholar] [CrossRef]
- Heinemann, G. Aircraft-Based Measurements of Turbulence Structures In The Katabatic Flow Over Greenland. Bound. Layer Meteorol. 2002, 103, 49–81. [Google Scholar] [CrossRef]
- Duarte, H.F.; Leclerc, M.Y.; Zhang, G.; Durden, D.; Kurzeja, R.; Parker, M.; Werth, D. Impact of Nocturnal Low-Level Jets on Near-Surface Turbulence Kinetic Energy. Bound. Layer Meteorol 2015, 156, 349–370. [Google Scholar] [CrossRef]
- Heinemann, G. The polar regions: A natural laboratory for boundary layer meteorology a review. Meteorol. Z. 2008, 17, 589–601. [Google Scholar] [CrossRef]
- Heinemann, G. An Aircraft-Based Study of Strong Gap Flows in Nares Strait, Greenland. Mon. Weather Rev. 2018, 146, 3589–3604. [Google Scholar] [CrossRef]
- Cheung, T.K. Sodar observations of the stable lower atmospheric boundary layer at Barrow, Alaska. Bound. Layer Meteorol. 1991, 57, 251–274. [Google Scholar] [CrossRef]
- Argentini, S.; Viola, A.P.; Mastrantonio, G.; Maurizi, A.; Georgiadis, T.; Nardino, M. Characteristics of the boundary layerat Ny-Ålesund in the Arctic during the ARTIST field experiment. Ann. Geophys. 2003, 46, 185–196. [Google Scholar] [CrossRef]
- Renfrew, I.A.; Anderson, P.S. Profiles of katabatic flow in summer and winter over Coats Land, Antarctica. Q. J. R. Meteorol. Soc. 2006, 132, 779–802. [Google Scholar] [CrossRef] [Green Version]
- Kallistratova, M.A.; Kouznetsov, R.D. Low-Level Jets in the Moscow Region in Summer and Winter Observed with a Sodar Network. Bound. Layer Meteorol. 2012, 143, 159–175. [Google Scholar] [CrossRef] [Green Version]
- Jakobson, L.; Vihma, T.; Jakobson, E.; Palo, T.; Männik, A.; Jaagus, J. Low-level jet characteristics over the Arctic Ocean in spring and summer. Atmos. Chem. Phys. 2013, 13, 11089–11099. [Google Scholar] [CrossRef] [Green Version]
- Tuononen, M.; Sinclair, V.A.; Vihma, T. A climatology of low-level jets in the mid-latitudes and polar regions of the Northern Hemisphere. Atmos. Sci. Lett. 2015, 16, 492–499. [Google Scholar] [CrossRef] [Green Version]
- Heinemann, G.; Klein, T. Modelling and observations of the katabatic flow dynamics over Greenland. Tellus A 2002, 54, 542–554. [Google Scholar] [CrossRef]
- Gorter, W.; van Angelen, J.H.; Lenaerts, J.T.M.; van den Broeke, M.R. Present and future near-surface wind climate of Greenland from high resolution regional climate modelling. Clim. Dyn. 2014, 42, 1595–1611. [Google Scholar] [CrossRef]
- Samelson, R.M.; Barbour, P.L. Low-Level Jets, Orographic Effects, and Extreme Events in Nares Strait: A Model-Based Mesoscale Climatology. Mon. Weather Rev. 2008, 136, 4746–4759. [Google Scholar] [CrossRef] [Green Version]
- Guest, P.; Persson, P.O.G.; Wang, S.; Jordan, M.; Jin, Y.; Blomquist, B.; Fairall, C. Low-Level Baroclinic Jets Over the New Arctic Ocean. J. Geophys. Res. Ocean. 2018, 123, 4074–4091. [Google Scholar] [CrossRef]
- Wagner, D.; Steinfeld, G.; Witha, B.; Wurps, H.; Reuder, J. Low Level Jets over the Southern North Sea. Meteorol. Z. 2019, 28, 389–415. [Google Scholar] [CrossRef]
- Ivanova, I.Y.; Nogovitsyn, D.D.; Tuguzova, T.F.; Shakirov, V.A.; Sheina, Z.M.; Sergeeva, L.P. The use of wind potential in the local energy of Yakutia. IOP Conf. Ser. Mater. Sci. Eng. 2020, 905, 12050. [Google Scholar] [CrossRef]
- Uttal, T.; Starkweather, S.; Drummond, J.R.; Vihma, T.; Makshtas, A.P.; Darby, L.S.; Burkhart, J.F.; Cox, C.J.; Schmeisser, L.N.; Haiden, T.; et al. International Arctic Systems for Observing the Atmosphere: An International Polar Year Legacy Consortium. Bull. Am. Meteorol. Soc. 2016, 97, 1033–1056. [Google Scholar] [CrossRef] [Green Version]
- Makshtas, A.P.; Bolshakova, I.I.; Gun, R.M.; Jukova, O.L.; Ivanov, N.E.; Shutilin, S.V. Climate of the Hydrometeorological Observatory Tiksi region. In Meteorological and Geophysical Investigations; Paulsen, M., Ed.; WMO: Geneva, Switzerland, 2011; pp. 49–74. ISBN 978-5-98797-067-6. [Google Scholar]
- Anderson, P.S.; Ladkin, R.S.; Renfrew, I.A. An Autonomous Doppler Sodar Wind Profiling System. J. Atmos. Ocean. Technol. 2005, 22, 1309–1325. [Google Scholar] [CrossRef] [Green Version]
- Kustov, V. Basic and Other Measurements of Radiation at Station Tiksi (2014-12); PANGAEA-Data Publisher for Earth & Environmental Science: Bremerhaven, Germany, 2016. [Google Scholar]
- Kustov, V. Basic and Other Measurements of Radiation at Station Tiksi (2015-01); PANGAEA-Data Publisher for Earth & Environmental Science: Bremerhaven, Germany, 2016. [Google Scholar]
- Rockel, B.; Will, A.; Hense, A. The Regional Climate Model COSMO-CLM (CCLM). Meteorol. Z. 2008, 17, 347–348. [Google Scholar] [CrossRef]
- Spreen, G.; Kaleschke, L.; Heygster, G. Sea ice remote sensing using AMSR-E 89-GHz channels. J. Geophys. Res. 2008, 113, 14485. [Google Scholar] [CrossRef] [Green Version]
- Schröder, D.; Heinemann, G.; Willmes, S. The impact of a thermodynamic sea-ice module in the COSMO numerical weather prediction model on simulations for the Laptev Sea, Siberian Arctic. Polar Res. 2011, 30, 6334. [Google Scholar] [CrossRef]
- Gutjahr, O.; Heinemann, G.; Preußer, A.; Willmes, S.; Drüe, C. Quantification of ice production in Laptev Sea polynyas and its sensitivity to thin-ice parameterizations in a regional climate model. Cryosphere 2016, 10, 2999–3019. [Google Scholar] [CrossRef] [Green Version]
- Heinemann, G.; Willmes, S.; Schefczyk, L.; Makshtas, A.; Kustov, V.; Makhotina, I. Observations and Simulations of Meteorological Conditions over Arctic Thick Sea Ice in Late Winter during the Transarktika 2019 Expedition. Atmosphere 2021, 12, 174. [Google Scholar] [CrossRef]
- Kohnemann, S.H.E.; Heinemann, G.; Bromwich, D.H.; Gutjahr, O. Extreme Warming in the Kara Sea and Barents Sea during the Winter Period 2000–16. J. Clim. 2017, 30, 8913–8927. [Google Scholar] [CrossRef]
- Heinemann, G. Assessment of Regional Climate Model Simulations of the Katabatic Boundary Layer Structure over Greenland. Atmosphere 2020, 11, 571. [Google Scholar] [CrossRef]
- Thorpe, A.J.; Guymer, T.H. The nocturnal jet. Q. J. R. Meteorol. Soc. 1977, 103, 633–653. [Google Scholar] [CrossRef]
- Baas, P.; van de Wiel, B.J.H.; van den Brink, L.; Holtslag, A. Composite hodographs and inertial oscillations in the nocturnal boundary layer. Q. J. R. Meteorol. Soc. 2012, 138, 528–535. [Google Scholar] [CrossRef]
- Vihma, T.; Kilpeläinen, T.; Manninen, M.; Sjöblom, A.; Jakobson, E.; Palo, T.; Jaagus, J.; Maturilli, M. Characteristics of Temperature and Humidity Inversions and Low-Level Jets over Svalbard Fjords in Spring. Adv. Meteorol. 2011, 2011, 1–14. [Google Scholar] [CrossRef]
- Heinemann, G.; Rose, L. Surface energy balance, parameterizations of boundary-layer heights and the application of resistance laws near an Antarctic Ice Shelf front. Bound. Layer Meteorol. 1990, 51, 123–158. [Google Scholar] [CrossRef]
- Heinemann, G. The KABEG’97 field experiment: An aircraft-based study of katabatic wind dynamics over the Greenland ice sheet. Bound. Layer Meteorol. 1999, 93, 75–116. [Google Scholar] [CrossRef]
- Banta, R.M. Stable-boundary-layer regimes from the perspective of the low-level jet. Acta Geophys. 2008, 56, 58–87. [Google Scholar] [CrossRef]
- Orr, A.; Hunt, J.; Capon, R.; Sommeria, J.; Cresswell, D.; Owinoh, A. Coriolis effects on wind jets and cloudiness along coasts. Weather 2005, 60, 291–299. [Google Scholar] [CrossRef] [Green Version]
- Smedman, A.-S.; Tjernström, M.; Högström, U. Analysis of the turbulence structure of a marine low-level jet. Bound. Layer Meteorol. 1993, 66, 105–126. [Google Scholar] [CrossRef]
- Emeis, S. Wind speed and shear associated with low-level jets over Northern Germany. Meteorol. Z. 2014, 23, 295–304. [Google Scholar] [CrossRef]
- Karipot, A.; Leclerc, M.Y.; Zhang, G. Characteristics of Nocturnal Low-Level Jets Observed in the North Florida Area. Mon. Weather Rev. 2009, 137, 2605–2621. [Google Scholar] [CrossRef]
- Baas, P.; Bosveld, F.C.; Klein Baltink, H.; Holtslag, A.A.M. A Climatology of Nocturnal Low-Level Jets at Cabauw. J. Appl. Meteor. Clim. 2009, 48, 1627–1642. [Google Scholar] [CrossRef]
- Bonner, W.D.; Esbensen, S.; Greenberg, R. Kinematics of the Low-Level Jet. J. Appl. Meteorol. 1968, 7, 339–347. [Google Scholar] [CrossRef] [Green Version]
- Tuononen, M.; O’Connor, E.J.; Sinclair, V.A.; Vakkari, V. Low-Level Jets over Utö, Finland, Based on Doppler Lidar Observations. J. Appl. Meteorol. Clim. 2017, 56, 2577–2594. [Google Scholar] [CrossRef]
Instrument | Variable | Height / Range | Sampling | Owner |
---|---|---|---|---|
SODAR MFAS (Scintec) | 3D wind profile, wind variances | 30–550 m | 20 min | University Trier |
windRASS extension (Scintec) | Temperature profile | 40–250 m | 20 min | University Trier |
Large Aperture Scintillometer BLS900 (Scintec) | Cross-path wind, temperature structure parameter | 1570 m | 1 min | University Trier |
Radiosonde | Wind, humidity and temperature profile | 0–25 km | 12–24 h | Roshydromet |
Tower | Wind profile | 4, 9, 15, 21 m | 1 min | NOAA |
temperature profile | 4, 8, 12, 14, 16,20 m | 1 min | ||
humidity profile | 2, 6, 10 m | 1 min |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heinemann, G.; Drüe, C.; Schwarz, P.; Makshtas, A. Observations of Wintertime Low-Level Jets in the Coastal Region of the Laptev Sea in the Siberian Arctic Using SODAR/RASS. Remote Sens. 2021, 13, 1421. https://doi.org/10.3390/rs13081421
Heinemann G, Drüe C, Schwarz P, Makshtas A. Observations of Wintertime Low-Level Jets in the Coastal Region of the Laptev Sea in the Siberian Arctic Using SODAR/RASS. Remote Sensing. 2021; 13(8):1421. https://doi.org/10.3390/rs13081421
Chicago/Turabian StyleHeinemann, Günther, Clemens Drüe, Pascal Schwarz, and Alexander Makshtas. 2021. "Observations of Wintertime Low-Level Jets in the Coastal Region of the Laptev Sea in the Siberian Arctic Using SODAR/RASS" Remote Sensing 13, no. 8: 1421. https://doi.org/10.3390/rs13081421
APA StyleHeinemann, G., Drüe, C., Schwarz, P., & Makshtas, A. (2021). Observations of Wintertime Low-Level Jets in the Coastal Region of the Laptev Sea in the Siberian Arctic Using SODAR/RASS. Remote Sensing, 13(8), 1421. https://doi.org/10.3390/rs13081421