A Study about the Temporal Constraints on the Martian Yardangs’ Development in Medusae Fossae Formation
Abstract
:1. Introduction
2. Study Region and Data Sets
3. Method
3.1. Layered Ejecta Mapping
3.2. Crater Counting in Layered Ejecta
3.3. AMAs of the Layered Ejecta and Constraint of Yardangs’ Age
4. Results
5. Discussion
5.1. Yardangs’ Development in the MFF
5.2. Yardangs Overlaid on the Layered Ejecta
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McCauley, J.F. Mariner 9 evidence for wind erosion in the equatorial and mid-latitude regions of Mars. J. Geophys. Res. 1973, 78, 4123–4137. [Google Scholar] [CrossRef]
- Carr, M.H.; Crumpler, L.S.; Cutts, J.A.; Greeley, R.; Guest, J.E.; Masursky, H. Martian impact craters and emplacement of ejecta by surface flow. J. Geophys. Res. 1977, 82, 4055–4065. [Google Scholar] [CrossRef]
- Ward, A.W. Yardangs on Mars: Evidence of recent wind erosion. J. Geophys. Res. 1979, 84, 8147. [Google Scholar] [CrossRef]
- Bridges, N.T.; Calef, F.J.; Hallet, B.; Herkenhoff, K.E.; Lanza, N.L.; Le Mouélic, S.; Newman, C.E.; Blaney, D.L.; De Pablo, M.A.; Kocurek, G.A.; et al. The rock abrasion record at Gale Crater: Mars Science Laboratory results from Bradbury Landing to Rocknest. J. Geophys. Res. Planets 2014, 119, 1374–1389. [Google Scholar] [CrossRef] [Green Version]
- Ding, Z.; Zhao, J.; Wang, J.; Lai, Z. Yardangs on Earth and implications to Mars: A review. Geomorphology 2020, 364, 107230. [Google Scholar] [CrossRef]
- Runyon, K.D.; Viviano, C.E.; Day, M. Abraded pyroclastic linear paleodunes in Syria and Daedalia Plana, Mars. Earth Planet. Sci. Lett. 2021, 557, 116719. [Google Scholar] [CrossRef]
- Liu, J.; Di, K.; Gou, S.; Yue, Z.; Liu, B.; Xiao, J.; Liu, Z. Mapping and spatial statistical analysis of Mars Yardangs. Planet. Space Sci. 2020, 192, 105035. [Google Scholar] [CrossRef]
- Ward, A.W.; Greeley, R. Evolution of the yardangs at Rogers Lake, California. Geol. Soc. Am. Bull. 1984, 95, 829. [Google Scholar] [CrossRef]
- Barlow, N.G. Constraints on early events in Martian history as derived from the cratering record. J. Geophys. Res. 1990, 95, 14191. [Google Scholar] [CrossRef]
- Barlow, N.G. Mars: An Introduction to Its Interior, Surface and Atmosphere; Cambridge University Press: Cambridge, UK, 2008; pp. 146–147. [Google Scholar]
- Tanaka, K.L.; Skinner, J.A.; Dohm, J.M.; Irwin, R.P.; Kolb, E.J.; Fortezzo, C.M.; Platz, T.; Michael, G.G.; Hare, T.M. Geologic map of Mars; United States Geological Survey: Menlo Park, CA, USA, 2014. [Google Scholar]
- Barchyn Thomas, E. Modeling the mechanisms behind yardang evolution. J. Geophys. Res. Earth Surf. Earth Surf. 2018, 123, 618–621. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.; Chow, K.C.; Chan, K. Dynamical processes of dust lifting in the northern mid-latitude region of Mars during the dust storm season. Icarus 2019, 317, 94–103. [Google Scholar] [CrossRef]
- Urso, A.; Chojnacki, M.; Vaz, D.A. Dune-Yardang Interactions in Becquerel Crater, Mars. J. Geophys. Res. Planets 2018, 123, 353–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qu, J.; Niu, Q.; Gao, D. Formation and Development Processes Pattern of Dunhuang Yardang Landforms; Geological Publishing House: Beijing, China, 2014. [Google Scholar]
- Dong, Z.; Lv, P.; Lu, J.; Qian, G.; Zhang, Z.; Luo, W. Geomorphology and origin of yardangs in the kumtagh desert, northwest China. Geomorphology 2012, 139–140, 145–154. [Google Scholar] [CrossRef]
- Niu, Q.; Qu, J.; Liu, B.; Qian, G.; Zhang, Z.; Luo, W. Dating methods for chronological study of yardang landforms: A review and perspective in application. Mar. Geol. Quat. Geol. 2013, 33, 201. [Google Scholar] [CrossRef]
- Neukum, G. Meteorite Bombardment and Dating of Planetary Surfaces; NASA: Washington, DC, USA, 1984. [Google Scholar]
- Barlow, N.G.; Bradley, T.L. Martian impact craters: Correlations of ejecta and interior morphologies with diameter, latitude, and terrain. Icarus 1990, 87, 156–179. [Google Scholar] [CrossRef]
- Hiesinger, H.; Jaumann RNeukum, G.; Head, J.W. Ages of mare basalts on the lunar nearside. J. Geophys. Res. Planets 2000, 105, 29239–29275. [Google Scholar] [CrossRef]
- Hiesinger, H. Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum. J. Geophys. Res. 2003, 108, 1. [Google Scholar] [CrossRef] [Green Version]
- Michael, G.G.; Neukum, G. Planetary surface dating from crater size–frequency distribution measurements: Partial resurfacing events and statistical age uncertainty. Earth Planet. Sci. Lett. 2010, 294, 223–229. [Google Scholar] [CrossRef]
- Michael, G.G.; Platz, T.; Kneissl, T.; Schmedemann, N. Planetary surface dating from crater size–frequency distribution measurements: Spatial randomness and clustering. Icarus 2012, 218, 169–177. [Google Scholar] [CrossRef]
- Michael, G.G.; Kneissl, T.; Neesemann, A. Planetary surface dating from crater size-frequency distribution measurements: Poisson timing analysis. Icarus 2016, 277, 279–285. [Google Scholar] [CrossRef]
- Hiesinger, H.; Bernhardt, H.; Reiss, D.; Tirsch, D.; Ralf, J.; Ernst, H.; Head, J.W.; Michael, G.; Williams, D.A.; Bishop, J.L.; et al. Absolute Model Ages and Stratigraphy of Neukum Crater Geologic Units. In Proceedings of the Lunar & Planetary Science Conference, The Woodlands, TX, USA, 19–23 March 2018. [Google Scholar]
- Jia, M.; Yue, Z.; Di, K.; Liu, B.; Liu, J.; Michael, G. A catalogue of impact craters larger than 200 m and surface age analysis in the Chang’e-5 landing area. Earth Planet. Sci. Lett. 2020, 541, 116272. [Google Scholar] [CrossRef]
- Stöffler, D.; Ryder, G. Stratigraphy and isotope ages of lunar geologic units: Chronological standard for the inner solar system. Space Sci. Rev 2001, 96, 9–54. [Google Scholar] [CrossRef]
- Ivanov, B.A. Mars/Moon Cratering Rate Ratio Estimates. Space Sci. Rev. 2001, 96, 87–104. [Google Scholar] [CrossRef]
- Hartmann, W.K.; Neukum, G. Cratering chronology and the evolution of mars. Space Sci. Rev. 2001, 96, 165–194. [Google Scholar] [CrossRef]
- Neukum, G.; Ivanov, B.A.; Hartmann, W.K. Cratering Records in the Inner Solar System in Relation to the Lunar Reference System. Space Sci. Rev. 2001, 96, 55–86. [Google Scholar] [CrossRef]
- Hartmann, W.K. Martian Cratering 8: Isochron Refinement and the Chronology of Mars. Icarus 2005, 174, 294–320. [Google Scholar] [CrossRef]
- Tanaka, K.L. The stratigraphy of Mars. J. Geophys. Res. Solid Earth 1986, 91, E139–E158. [Google Scholar] [CrossRef]
- Page, D.P.; Balme, M.R.; Grady, M.M. Dating Martian climate change. Icarus 2009, 203, 376–389. [Google Scholar] [CrossRef] [Green Version]
- Werner, S.C.; Tanaka, K.L. Redefinition of the crater-density and absolute-age boundaries for the chronostratigraphic system of Mars. Icarus 2011, 215, 603–607. [Google Scholar] [CrossRef]
- Christensen, P.R.; Jakosky, B.M.; Kieffer, H.H.; Malin, M.C.; McSween, J.H.Y.; Nealson, K.; Mehall, G.L.; Silverman, S.H.; Ferry, S.; Caplinger, M.; et al. The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission. Space Sci. Rev. 2004, 110, 85–130. [Google Scholar] [CrossRef]
- Malin, M.C.; Bell, J.F.; Cantor, B.A.; Caplinger, M.A.; Calvin, W.M.; Clancy, R.T.; Edgett, K.S.; Edwards, L.; Haberle, R.M.; James, P.B.; et al. Context Camera Investigation on board the Mars Reconnaissance Orbiter. J. Geophys. Res. 2007, 112, E5. [Google Scholar] [CrossRef] [Green Version]
- McEwen, A.S.; Eliason, E.M.; Bergstrom, J.W.; Bridges, N.T.; Hansen, C.J.; Delamere, W.A.; Grant, J.A.; Gulick, V.C.; Herkenhoff, K.E.; Keszthelyi, L.; et al. Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (HiRISE). J. Geophys. Res. 2007, 112, E5. [Google Scholar] [CrossRef] [Green Version]
- Barnouin, O.S.; Zuber, M.T.; Smith, D.E.; Neumann, G.A.; Herrick, R.R.; Chappelow, J.E.; Murchie, S.L.; Prockter, L.M. The morphology of craters on Mercury: Results from MESSENGER flybys. Icarus 2012, 219, 414–427. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Yue, Z.; Di, K.; Peng, M. Observations of Martian layered ejecta craters and constraints on their formation mechanisms. Meteorit. Planet. Sci. 2015, 50, 508–522. [Google Scholar] [CrossRef]
- Mouginis-Mark, P. Martian fluidized crater morphology: Variations with crater size, latitude, altitude, and target material. J. Geophys. Res. 1979, 84, 8011–8022. [Google Scholar] [CrossRef] [Green Version]
- Wohletz, K.H.; Sheridan, M.F. Martian rampart crater ejecta: Experiments and analysis of melt-water interaction. Icarus 1983, 56, 15–37. [Google Scholar] [CrossRef]
- Barlow, N.G.; Boyce, J.M.; Costard, F.M.; Craddock, R.A.; Sakimoto, S.E.H.; Kuzmin, R.O.; Roddy, D.J.; Soderblom, L.A.; Garvin, J.B. Standardizing the nomenclature of Martian impact crater ejecta morphologies. J. Geophys. Res. Planets 2000, 105, 26733–26738. [Google Scholar] [CrossRef] [Green Version]
- Reiss, D.; van Gasselt, S.; Hauber, S.E.; Michael, G.; Jaumann, R.; Neukum, G. Ages of rampart craters in equatorial regions on Mars: Implications for the past and present distribution of ground ice. Meteorit. Planet. Sci. 2006, 41, 1437–1452. [Google Scholar] [CrossRef]
- Robbins, S.J.; Hynek, B.M. A new global database of Mars impact craters >1 km: 2. Global crater properties and regional variations of the simple-to-complex transition diameter. J. Geophys. Res. Planets 2012, 117, E6. [Google Scholar] [CrossRef]
- Daubar, I.J.; Atwood-Stone, C.; Byrne, S.; McEwen, A.S.; Russell, P.S.; Atwood-Stone, C. The morphology of small fresh craters on Mars and the Moon. J. Geophys. Res. Planets 2014, 119, 2620–2639. [Google Scholar] [CrossRef]
- Mandt, K.E.; Silva SL, D.; Zimbelman, J.R.; Crown, D.A. Origin of the Medusae Fossae Formation, Mars: Insights from a synoptic approach. J. Geophys. Res. Planets 2008, 113, E12. [Google Scholar] [CrossRef] [Green Version]
- Neukum, G.; Basilevsky, A.T.; Kneissl, T.; Chapman, M.G.; Van Gasselt, S.; Michael, G.; Jaumann, R.; Hoffmann, H.; Lanz, J.K. The geologic evolution of Mars: Episodicity of resurfacing events and ages from cratering analysis of image data and correlation with radiometric ages of Martian meteorites—ScienceDirect. Earth Planet. Sci. Lett. 2010, 294, 204–222. [Google Scholar] [CrossRef] [Green Version]
- Zurek, R.W.; Smrekar, S.E. An overview of the Mars Reconnaissance Orbiter (MRO) science mission. J. Geophys. Res. 2007, 112, E5. [Google Scholar] [CrossRef] [Green Version]
- Dickson, J.; Kerber, L.; Fassett, C.; Ehlmann, B.L. A Global, Blended CTX Mosaic of Mars with Vectorized Seam Mapping: A New Mosaicking Pipeline Using Principles of Non-Destructive Image Editing. In Proceedings of the 49th Lunar and Planetary Science Conference, LPI Contribution No. 2083, id.2480, The Woodlands, TX, USA, 19–23 March 2018. [Google Scholar]
- Kneissl, T.; van Gasselt, G.N.S. Map-projection-independent crater size-frequency determination in GIS environments—New software tool for ArcGIS. Planet. Space Sci. 2011, 59, 1243–1254. [Google Scholar] [CrossRef]
- Michael, G.G. Planetary surface dating from crater size–frequency distribution measurements: Multiple resurfacing episodes and differential isochron fitting. Icarus 2013, 226, 885–890. [Google Scholar] [CrossRef]
- McEwen, A.S.; Bierhaus, E.B. The importance of secondary cratering to age constraints on planetary surfaces. Annu. Rev. Earth Planet. Sci. 2006, 34, 540–567. [Google Scholar] [CrossRef] [Green Version]
- Platz, T.; Michael, G.; Tanaka, K.L.; Skinner, J.A., Jr.; Fortezzo, C.M. Crater-Based Dating of Geological Units on Mars: Methods and Application for The New Global Geological Map. Icarus 2013, 225, 806–827. [Google Scholar] [CrossRef]
- Melosh, H.J. Planetary Surface Processes; Cambridge University Press: Cambridge, UK, 2011; pp. 376–377. [Google Scholar]
- Mitchell, D.M.; Montabone, L.; Thomson, S.; Read, P.L. Polar vortices on Earth and Mars: A comparative study of the climatology and variability from reanalyzes. Q. J. R. Meteorol. Soc. 2015, 141, 550–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
No. | Area (km2) | Fitting Diameter Range (m) | Sampled Craters | Dating Result |
---|---|---|---|---|
1 | 284 | 380–1100 | 289 | Ga |
2 | 198 | 380–570 | 109 | Ga |
3 | 85.1 | 260–510 | 38 | Ga |
4 | 63.4 | 280–420 | 48 | Ga |
5 | 80.2 | 300–510 | 108 | Ga |
6 | 121 | 240–460 | 424 | Ma |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Yue, Z.; Di, K.; Gou, S.; Niu, S. A Study about the Temporal Constraints on the Martian Yardangs’ Development in Medusae Fossae Formation. Remote Sens. 2021, 13, 1316. https://doi.org/10.3390/rs13071316
Liu J, Yue Z, Di K, Gou S, Niu S. A Study about the Temporal Constraints on the Martian Yardangs’ Development in Medusae Fossae Formation. Remote Sensing. 2021; 13(7):1316. https://doi.org/10.3390/rs13071316
Chicago/Turabian StyleLiu, Jia, Zongyu Yue, Kaichang Di, Sheng Gou, and Shengli Niu. 2021. "A Study about the Temporal Constraints on the Martian Yardangs’ Development in Medusae Fossae Formation" Remote Sensing 13, no. 7: 1316. https://doi.org/10.3390/rs13071316
APA StyleLiu, J., Yue, Z., Di, K., Gou, S., & Niu, S. (2021). A Study about the Temporal Constraints on the Martian Yardangs’ Development in Medusae Fossae Formation. Remote Sensing, 13(7), 1316. https://doi.org/10.3390/rs13071316