Ocean-Surface Heterogeneity Mapping (OHMA) to Identify Regions of Change
Abstract
:1. Introduction
1.1. Heterogeneity, and the Ocean-Surface
1.2. Hypertemporal Opportunities
- Being univariate in nature (e.g., a dataset of only SST, or only Chl-a measurements);
- Containing a set of time slice images which are precisely co-registered (i.e., a pixel in one time-slice image, has an equivalent co-located pixel in every other time-slice);
- Exhibiting radiometric consistency between images (i.e., they are measured using the same sensors or inter-validated sensor systems, and exhibit a degree of normalisation between time-slices), and;
- Being comprised of “frequent, equal spaced observations” [27] which are discrete over time (for example daily image data acquired at weekly intervals, or composite image data composed of daily image data).
2. Materials and Methods
2.1. Study Area
2.2. OHMA Processing
2.2.1. Sea Surface Temperature (SST) Dataset
2.2.2. Pre-Processing
2.2.3. OHMA Implementation
- i and j = two temporal signatures (classes) being compared,
- Ci = the covariance matrix of signature i,
- Cj = the covariance matrix of signature j,
- µi = the mean vector of signature i,
- µj = the mean vector of signature j,
- ln denotes the natural logarithm function, and
- T denotes the transpose of a matrix.
- The number of clusters selected was the lowest number which satisfied the separability criteria;
- The cluster number selected featured a positive peak in both the minimum and average Divergence separability measure;
- The cluster number selected features a Jeffries-Matusita value of 1.414 or above (denoting the highest level of separability between all clusters [38]).
- b = 1, pixel (p) contains a cluster boundary,
- b = 0, pixel (p) does not contain a cluster boundary,
- STHp = surface spatio-temporal heterogeneity in a pixel (p),
- ku = optimal number of clusters to represent data variability, and
- kl = lowest number of clusters to represent data variability.
2.3. Validating the OHMA Output, with In Situ Heterogeneity Estimates
2.3.1. Research Vessel Underway Measurements of Surface Temperature
2.3.2. Spatial and Temporal Bias Reduction to Derive Comparable Heterogeneity Measures
2.4. Characterising the STH Product Using Physical Phenomena
2.4.1. Datasets on the Physical Phenomena
2.4.2. Characterisation Approach
3. Results
3.1. OHMA Output: A Surface Spatio-Temporal Heterogeneity (STH) Dataset
3.2. Insights from Validating the STH Product
3.3. Preliminary Regional Insights from Characterising the SST STH Product
3.3.1. North Atlantic Area (NAA)
3.3.2. Newfoundland Basin Area (NBA)
3.3.3. Celtic Seas Region (CSR)
3.3.4. Iceland—Faroes Front Region (IFF)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Details of the Case Study Generalised Linear Models
Parameters Available to Each GLM | Case Study Area | Area in km2 (No. of Samples) | Parameters after Correlation Analysis | Model Applied (Dispersion) Selected Model in Bold | R2 of Selected Model | Final Parameters in the GLM (+/− ve Relationship) |
---|---|---|---|---|---|---|
No. of SSTFs (Count) Mean SSTF magnitude Median SSTF strength St. deviation in SSTF strength Maximum SSTF strength Minimum SSTF strength Mean SSSp Median SSSp Standard deviation in SSSp Maximum SSSp Minimum SSSp High-pass edges in Mean SSSp High-pass edges in StDv SSSp Absolute bathymetry Aspect Slope | NAA | ~18,971,423 (6210) | Absolute bathymetry Aspect Slope No. of SSTFs (Count) Max. SSTF strength Mean SSSp | Poisson (~2.6835–~2.6836) Quasi-poisson (~2.6835–~2.6836) Negative binomial (~1.0998) | ~0.2703 | Absolute bathymetry (-ve) Mean SSSp (+ve) No. of SSTFs (+ve) Max. SSTF strength (+ve) |
NBA | ~3,869,000 (1526) | Aspect Slope No. of SSTFs (Count) Max. SSTF strength High-pass edges in Mean SSSp High-pass edges in StDv SSSp | Poisson (~2.9414–~2.9429) Quasi-poisson (~2.9414–~2.9429) Negative binomial (~1.1196) | ~0.3265 | Slope (+ve) High-pass edges in Mean SSSp (+ve) No. of SSTFs (+ve) Max. SSTF strength (+ve) | |
CSR | ~1,055,000 (302) | Absolute bathymetry Aspect Slope No. of SSTFs (Count) Max. SSTF strength Mean SSSp | Poisson (~2.4416–~2.4440) Quasi-poisson (~2.4416–~2.4440) Negative binomial (~1.0789) | ~0.1719 | Mean SSSp (-ve) No. of SSTFs (+ve) | |
IFF | ~502,000 (261) | Absolute bathymetry Aspect Slope No. of SSTFs (Count) Mean SSSp | Poisson (~2.9672–~2.9846) Quasi-poisson (~2.9672–~2.9846) Negative binomial (~1.088298) | ~0.4325 | Absolute bathymetry (-ve) Slope (+ve) No. of SSTFs (+ve) |
Appendix B. Relationship between Locally Extreme Values, and Distribution Shape
References
- Chesson, P.L.; Case, T.J. Overview: Non-equilibrium community theories; chance variability, history and coexistence. In Community Ecology; Diamond, J., Case, T.J., Eds.; Harper and Row: New York, NY, USA, 1986; pp. 229–239. [Google Scholar]
- Li, H.; Reynolds, J.F. On definition and quantification of heterogeneity. Oikos 1995, 73, 280–284. [Google Scholar] [CrossRef]
- Pianka, E.R. Evolutionary Ecology, 5th ed.; Harper Collins College Publishers: New York, NY, USA, 1994; ISBN 0065012259. [Google Scholar]
- Longhurst, A. Ecological Geography of the Sea, 2nd ed.; Associated Press: Amsterdam, The Netherlands, 2007; ISBN 978-0-1245-5521-1. [Google Scholar]
- Miller, P.I.; Christodoulou, S. Frequent locations of oceanic fronts as an indicator of pelagic diversity: Application to marine protected areas and renewables. Mar. Policy 2014, 45, 318–329. [Google Scholar] [CrossRef] [Green Version]
- Brandini, F.P.; Tura, P.M.; Santos, P.P.G.M. Ecosystem responses to biogeochemical fronts in the South Brazil Bight. Prog. Oceanogr. 2018, 164, 52–62. [Google Scholar] [CrossRef]
- Smith, R.S.; Johnston, E.L.; Clark, G.F. The role of habitat complexity in community development is mediated by resource availability. PLoS ONE 2014, 9, e102920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godbold, J.A.; Bulling, M.T.; Solan, M. Habitat structure mediates biodiversity effects on ecosystem properties. Proc. R. Soc. B 2011, 278, 2510–2518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isbell, F.; Craven, D.; Connolly, J.; Loreau, M.; Schmid, B.; Beierkuhnlein, C.; Bezemer, T.M.; Bonin, C.; Bruelheide, H.; De Luca, E.; et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 2015, 526, 574–577. [Google Scholar] [CrossRef]
- Oliver, T.H.; Heard, M.S.; Isaac, N.J.B.; Roy, D.B.; Procter, D.; Eigenbrod, F.; Freckleton, R.; Hector, A.; Orme, C.D.L.; Petchey, O.L.; et al. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 2015, 30, 673–684. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; de Bie, C.A.J.M.; Skidmore, A.K.; Scarrott, R.G.; Lymberakis, P. Mapping the heterogeneity of natural and semi-natural landscapes. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 176–183. [Google Scholar] [CrossRef]
- Gratwicke, B.; Speight, M.R. The relationship between fish species richness, abundance and habitat complexity in a range of shallow tropical marine habitats. J. Fish Biol. 2005, 66, 650–667. [Google Scholar] [CrossRef]
- Margalef, R. Our Biosphere; Inter-Research: Oldendorf, Germany, 1997; ISBN 0-932-2205. [Google Scholar]
- Longhurst, A. Fronts and pycnoclines: Ecological discontinuities. In Ecological Geography of the Sea; Longhurst, A., Ed.; Associated Press: Amsterdam, The Netherlands, 2007; pp. 35–50. ISBN 978-0-1245-5521-1. [Google Scholar]
- Scales, K.L.; Miller, P.I.; Hawkes, L.A.; Ingram, S.N.; Sims, D.W.; Votier, S.C. On the front line: Frontal zones as priority at-sea conservation areas for mobile marine vertebrates. J. R. Soc. Interface 2014, 11, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Bakun, A. Fronts and eddies as key structures in the habitat of marine fish larvae: Opportunity, adaptive response and competitive advantage. Sci. Mar. 2006, 70, 105–122. [Google Scholar] [CrossRef]
- Schmid, M.S.; Cowen, R.K.; Robinson, K.; Luo, J.Y.; Briseño-Avena, C.; Sponaugle, S. Prey and predator overlap at the edge of a mesoscale eddy: Fine-scale, in-situ distributions to inform our understanding of oceanographic processes. Sci. Rep. 2020, 10, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Nieto, K.; Teo, S.L.H.; McClatchie, S.; Holmes, J. Influence of fronts on the spatial distribution of albacore tuna (Thunnus alalunga) in the Northeast Pacific over the past 30 years (1982–2011). Prog. Oceanogr. 2017, 150, 72–78. [Google Scholar] [CrossRef]
- Santos, A.M.P.; Kazmin, A.S.; Peliz, Á. Decadal changes in the Canary upwelling system as revealed by satellite observations: Their impact on productivity. J. Mar. Res. 2005, 63, 359–379. [Google Scholar] [CrossRef]
- Kimura, S.; Nakata, H.; Okazaki, Y. Biological production in meso-scale eddies caused by frontal disturbances of the Kuroshio Extension. ICES J. Mar. Sci. 2000, 57, 133–142. [Google Scholar] [CrossRef]
- Lee, T.N.; Yoder, J.A.; Atkinson, L.P. Gulf Stream frontal eddy influence on productivity of the southeast US Continental Shelf. J. Geophys. Res. 1991, 96, 191–205. [Google Scholar]
- Nygård, H.; Oinonen, S.; Hällfors, H.A.; Lehtiniemi, M.; Rantajärvi, E.; Uusitalo, L. Price vs. value of marine monitoring. Front. Mar. Sci. 2016, 3, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Klemas, V. Fisheries applications of remote sensing: An overview. Fish. Res. 2013, 148, 124–136. [Google Scholar] [CrossRef]
- Stuart, V.; Platt, T.; Sathyendranath, S.; Pravin, P. Remote sensing and fisheries: An introduction. ICES J. Mar. Sci. 2011, 68, 639–641. [Google Scholar] [CrossRef]
- Piwowar, J.M.; Wessel, G.R.I.; LeDrew, E.F. Image time series analysis of Arctic sea ice. In Proceedings of the Geoscience and Remote Sensing Symposium; IGARSS ’96. “Remote Sensing for a Sustainable Future. IEEE: Lincoln, NE, USA, 1996; pp. 645–647. [Google Scholar]
- Scarrott, R.G.; Cawkwell, F.; Jessopp, M.; O’Rourke, E.; Cusack, C.; de Bie, K. From land to sea, a review of hypertemporal remote sensing advances to support ocean surface science. Water 2019, 11, 2286. [Google Scholar] [CrossRef] [Green Version]
- Kleynhans, W. Detecting Land-Cover Change Using MODIS Time-Series Data; University of Pretoria: Pretoria, South Africa, 2011. [Google Scholar]
- de Bie, C.A.J.M.; Nguyen, T.T.H.; Ali, A.; Scarrott, R.; Skidmore, A.K. LaHMa: A landscape heterogeneity mapping method using hyper-temporal datasets. Int. J. Geogr. Inf. Sci. 2012, 26, 1–16. [Google Scholar] [CrossRef]
- de Bie, C.A.J.M.; Khan, R.; Toxopeus, A.G.; Venus, V.; Skidmore, A.K. Hypertemporal image analysis for crop mapping and change detection. In Proceedings of the The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences; Volume XXXVII. Part B7. Beijing 2008. International Society of Photogrammetry and Remote Sensing: Beijing, China, 2008; Volume 2, pp. 803–814. [Google Scholar]
- Nguyen, T.T.H.; de Bie, C.A.J.M.; Ali, A.; Smaling, E.M.A.; Chu, T.H. Mapping the irrigated rice cropping patterns of the Mekong delta, Vietnam, through hyper-temporal spot NDVI image analysis. Int. J. Remote Sens. 2012, 33, 415–434. [Google Scholar] [CrossRef]
- Vincent, C.; Bryère, P.; Rufino, M.; Gaspar, M.; Santos, M.; Garrido, S.; Moreno, O.; Morales, J.; Duque, R.; Martinez, I.; et al. SAFI D10.2: Report on Indicators for Fishery and Aquaculture; EC: Brussels, Belgium, 2016. [Google Scholar]
- Mann, C.R. The termination of the Gulf Stream and the beginning of the North Atlantic Current. Deep. Res. 1967, 14, 337–359. [Google Scholar] [CrossRef]
- Talley, L.; Pickard, G.; Emery, W.; Swift, J. Atlantic Ocean. In Descriptive Physical Oceanography; Talley, L., Pickard, G., Emery, W., Swift, J., Eds.; Academic Press: Amsterdam, The Netherlands, 2011; pp. 245–301. ISBN 978-0-7506-4552-2. [Google Scholar]
- PODAAC. GHRSST Level 4 MUR Global Foundation Sea Surface Temperature Analysis product. Version 2.0. Available online: https://podaac.jpl.nasa.gov/dataset/JPL-L4UHfnd-GLOB-MUR (accessed on 20 September 2018).
- Pouncy, R.; Swanson, K.; Hart, K. ERDAS Field Guide, 5th ed.; ERDAS Incorporated: Atlanta, GA, USA, 1999. [Google Scholar]
- Swain, P.H.; Davis, S.M. Remote sensing: The quantitative approach; McGraw-Hill International Book Company: New York, NY, USA, 1978; ISBN 9780070625761. [Google Scholar]
- Richards, J.A.; Jia, X. Remote Sensing Digital Image Analysis: An Introduction, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 3540251286. [Google Scholar]
- Ai, J.; Chen, W.; Chen, L. Spectral discrimination of an invasive species (Spartina alterniflora) in Min River wetland using field spectrometry. In Proceedings of the International Symposium on Photoelectronic Detection and Imaging 2013: Laser Communication Technologies and Systems, Beijing, China, 25–27 June 2013; Volume 8910, p. 89100. [Google Scholar]
- Scarrott, R.G. Annex 2: The revised hyper-temporal processing algorithm. In H2020-CoReSyF 3rd Periodic Technical Report: Part B; Panda, K., Ed.; European Commission: Brussels, Belgium, 2019; pp. 48–63. [Google Scholar]
- Marine Institute. Marine Data Centre. Available online: https://www.marine.ie/Home/site-area/data-services/marine-data-centre (accessed on 23 December 2019).
- Marine Institute. Celtic Explorer Underway. Available online: https://data.gov.ie/dataset/celtic-explorer-underway (accessed on 8 December 2020).
- Marine Institute. National Research Vessel: Celtic Explorer. Available online: https://www.marine.ie/Home/sites/default/files/MIFiles/Docs/ResearchVessels/MI-210sq-Tech Spec CE-Update 2015 FINAL.pdf (accessed on 8 December 2020).
- Marine Institute. Celtic Voyager Underway. Available online: https://data.gov.ie/dataset/celtic-voyager-underway (accessed on 8 December 2020).
- Marine Institute. National Research Vessel: Celtic Voyager. Available online: https://www.marine.ie/Home/sites/default/files/MIFiles/Docs/ResearchVessels/MI-210sq-CV Tech Spec 2015 FINAL.pdf (accessed on 8 December 2020).
- Miller, P. Composite front maps for improved visibility of dynamic sea-surface features on cloudy SeaWiFS and AVHRR data. J. Mar. Syst. 2009, 78, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Rio, M.-H.; Johannessen, J.; Donlon, C. GlobCurrent Product Data Handbook: L4 Geostrophic Currents, Version 2. 0 2015, 1–30. [Google Scholar]
- GEBCO Compilation Group. GEBCO 2019 Grid. 2019. Available online: https://www.gebco.net/data_and_products/gridded_bathymetry_data/gebco_2019/gebco_2019_info.html (accessed on 24 March 2021). [CrossRef]
- GEBCO. General Balthymetric Chart of the Oceans. Available online: www.gebco.net (accessed on 1 May 2020).
- Miller, P.I. Detection and Visualisation of Oceanic Fronts. In Handbook of Satellite Remote Sensing Image Interpretation: Applications for Marine Living Resources Conservation and Management; Morales, J., Stuart, V., Platt, T., Sathyendranath, S., Eds.; EU-PRESPO and IOCCG: Dartmouth, NS, Canada, 2011; pp. 229–239. [Google Scholar]
- Miller, P.; Plymouth Marine Laboratory, Plymouth, UK; Scarrott, R.G.; University College Cork, Cork, Ireland. Personal communication, UCC-PML P.O. 10286898. 2018.
- CMEMS Copernicus Marine Environment Monitoring Service. Available online: http://marine.copernicus.eu/ (accessed on 23 December 2019).
- Olsen, C.J.; Becker, J.J.; Sandwell, D.T. A new global bathymetry map at 15 arcsecond resolution for resolving seafloor fabric: SRTM15_PLUS. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 15–19 December 2014; p. OS34A-03. [Google Scholar]
- Olsen, C.J.; Becker, J.J.; Sandwell, D.T. SRTM15_PLUS: Data Fusion of Shuttle Radar Topography Mission (SRTM) Land Topography with Measured and Estimated Seafloor Topography (NCEI Accession 0150537); Version 1.1; NOAA National Centers for Environmental Information: Asheville, NC, USA, 2016. [Google Scholar]
- McCulloch, C.E. Generalized Linear Models. J. Am. Stat. Assoc. 2000, 95, 1320–1324. [Google Scholar] [CrossRef]
- Neuhaus, J.; McCulloch, C. Generalized linear models. WIREs Comput. Stat. 2011, 3, 407–413. [Google Scholar] [CrossRef] [Green Version]
- Zuur, A.F.; Ieno, E.N.; Walker, N.; Saveliev, A.A.; Smith, G.M. GLM and GAM for Count Data. In Mixed Effects Models and Extensions in Ecology with R; Statistics for Biology and Health; Zuur, A.F., Ieno, E.N., Walker, N., Saveliev, A.A., Smith, G.M., Eds.; Springer: New York, NY, USA, 2009; pp. 209–238. ISBN 978-0-387-87457-9. [Google Scholar]
- Miller, P.I.; Read, J.F.; Dale, A.C. Thermal front variability along the North Atlantic Current observed using microwave and infrared satellite data. Deep. Res. Part II 2013, 98, 244–256. [Google Scholar] [CrossRef] [Green Version]
- Beaugrand, G.; Edwards, M.; Hélaouët, P. An ecological partition of the Atlantic Ocean and its adjacent seas. Prog. Oceanogr. 2019, 173, 86–102. [Google Scholar] [CrossRef]
- Repschläger, J.; Garbe-Schönberg, D.; Weinelt, M.; Schneider, R. Holocene evolution of the North Atlantic subsurface transport. Clim. Past 2017, 13, 333–344. [Google Scholar] [CrossRef] [Green Version]
- Taboada, F.G.; Anadón, R. Patterns of change in sea surface temperature in the North Atlantic during the last three decades: Beyond mean trends. Clim. Chang. 2012, 115, 419–431. [Google Scholar] [CrossRef]
- Holliday, N.P.; Bersch, M.; Berx, B.; Cha, L.; Cunningham, S.; Florindo-lópez, C.; Hátún, H.; Johns, W.; Josey, S.A.; Larsen, K.M.H.; et al. Ocean circulation causes the largest freshening event for 120 years in eastern subpolar North Atlantic. Nat. Commun. 2020, 11, 1–15. [Google Scholar] [CrossRef]
- Koman, G.; Johns, W.E.; Houk, A. Transport and Evolution of the East Reykjanes Ridge Current. J. Geophys. Res. Ocean. 2020, 125. [Google Scholar] [CrossRef]
- Yashayaev, I.M. 12-Year Hydrographic Survey of the Newfoundland Basin: Seasonal Cycle and Interannual Variability of Water Masses. ICES 2000, 2000, 1–17. [Google Scholar]
- Meinen, C.S. Structure of the North Atlantic Current in stream-coordinates and the circulation in the Newfoundland basin. Deep. Res. Part I Oceanogr. Res. Pap. 2001, 48, 1553–1580. [Google Scholar] [CrossRef]
- Huang, W.G.; Cracknell, A.P.; Vaughan, R.A.; Davies, P.A. A satellite and field view of the Irish Shelf front. Cont. Shelf Res. 1991, 11, 543–562. [Google Scholar] [CrossRef]
- Simpson, J.H. A boundary front in the summer regime of the Celtic Sea. Estuar. Coast. Mar. Sci. 1976, 4, 71–81. [Google Scholar] [CrossRef]
- Wang, D.P.; Chen, D.; Sherwin, T.J. Coupling between mixing and advection in a shallow sea front. Cont. Shelf Res. 1990, 10, 123–136. [Google Scholar] [CrossRef]
- Pingree, R.D. Physical Oceanography of the Celtic Sea and English Channel. In The North-West European Shelf Seas: The Sea Bed and the Sea in Motion II. Physical and Chemical Oceanography and Physical Resources; Banner, F.T., Collins, M.B., Massie, K.S., Eds.; Elsevier: Amsterdam, The Netherlands, 1980; Volume 24, pp. 415–465. [Google Scholar]
- Barnard, R.; Batten, S.D.; Beaugrand, G.; Buckland, C.; Conway, D.V.P.; Edwards, M.; Finlayson, J.; Gregory, L.W.; Halliday, N.C.; John, A.W.G.; et al. Continuous plankton records: Plankton Atlas of the north Atlantic Ocean 1958–1999: Preface. Mar. Ecol. Prog. Ser. 2004, 11–75. [Google Scholar]
- Hansen, B.; Osterhus, S.; Turrell, W.R.; Jónsson, S.; Valdimarsson, H.; Hátún, H.; Olsen, S.M. The inflow of Atlantic water, heat, and salt to the Nordic Seas across the Greenland-Scotland Ridge. In Arctic-Subarctic Ocean Fluxes: Defining the Role of the Northern Seas in Climate; Dickson, R.R., Meincke, J., Rhines, P., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 15–43. ISBN 9781402067730. [Google Scholar]
- Smart, J.H. Spatial variability of major frontal systems in the North Atlantic-Norwegian Sea area: 1980-81. J. Phys. Oceanogr. 1984, 14, 185–192. [Google Scholar] [CrossRef] [Green Version]
- Pistek, P.; Johnson, D.R. A study of the Iceland-Faeroe Front using GEOSAT altimetry and current-following drifters. Deep. Res. 1992, 39, 2029–2051. [Google Scholar] [CrossRef] [Green Version]
- Tokmakian, R. The Iceland-Faroe Front: A synergistic study of hydrogaphy and altimetry. J. Phys. Oceanogr. 1994, 24, 2245–2262. [Google Scholar] [CrossRef]
- Larsen, K.M.H.; Hansen, B.; Svendsen, H. The Faroe Shelf Front: Properties and exchange. J. Mar. Syst. 2009, 78, 9–17. [Google Scholar] [CrossRef]
- Eliasen, S.K.; Hátún, H.; Larsen, K.M.H.; Jacobsen, S. Faroe shelf bloom phenology—The importance of ocean-to-shelf silicate fluxes. Cont. Shelf Res. 2017, 143, 43–53. [Google Scholar] [CrossRef]
- Krug, L.A.; Platt, T.; Sathyendranath, S.; Barbosa, A.B. Ocean surface partitioning strategies using ocean colour remote sensing: A review. Prog. Oceanogr. 2017, 155, 41–53. [Google Scholar] [CrossRef]
- Krug, L.A.; Platt, T.; Barbosa, A.B. Delineation of ocean surface provinces over a complex marine domain (off SW Iberia): An objective abiotic-based approach. Reg. Stud. Mar. Sci. 2018, 18, 80–96. [Google Scholar] [CrossRef]
- Krug, L.A.; Platt, T.; Sathyendranath, S.; Barbosa, A.B. Unravelling region-specific environmental drivers of phytoplankton across a complex marine domain (off SW Iberia). Remote Sens. Environ. 2017, 203, 162–184. [Google Scholar] [CrossRef]
- Devred, E.; Sathyendranath, S.; Platt, T. Delineation of ecological provinces using ocean colour radiometry. Mar. Ecol. Prog. Ser. 2007, 346, 1–13. [Google Scholar] [CrossRef]
- Reygondeau, G.; Longhurst, A.; Martinez, E.; Beaugrand, G.; Antoine, D.; Maury, O. Dynamic biogeochemical provinces in the global ocean. Global Biogeochem. Cycles 2013, 27, 1046–1058. [Google Scholar] [CrossRef] [Green Version]
- Krug, L.A.; Platt, T.; Sathyendranath, S.; Barbosa, A.B. Patterns and drivers of phytoplankton phenology off SW Iberia: A phenoregion based perspective. Prog. Oceanogr. 2018, 165, 233–256. [Google Scholar] [CrossRef]
- Gosud Global Ocean Surface Underway Data. Available online: https://www.seanoe.org/data/00363/47403/ (accessed on 9 December 2020).
- The International Shipborne Radiometer Network. Shipborne-Radiometer Network. Available online: https://ships4sst.org/ (accessed on 9 December 2020).
- Vinogradova, N.; Lee, T.; Boutin, J.; Drushka, K.; Fournier, S.; Sabia, R.; Stammer, D.; Bayler, E.; Reul, N.; Gordon, A.; et al. Satellite salinity observing system: Recent discoveries and the way forward. Front. Mar. Sci. 2019, 6, 1–23. [Google Scholar] [CrossRef]
- Ablain, M.; Legeais, J.F.; Prandi, P.; Marcos, M.; Fenoglio-Marc, L.; Dieng, H.B.; Benveniste, J.; Cazenave, A. Satellite altimetry-based sea level at global and regional scales. Surv. Geophys. 2017, 38, 7–31. [Google Scholar] [CrossRef]
- Cazenave, A.; Palanisamy, H.; Ablain, M. Contemporary sea level changes from satellite altimetry: What have we learned? What are the new challenges? Adv. Sp. Res. 2018, 62, 1639–1653. [Google Scholar] [CrossRef]
- Zainuddin, M.; Saitoh, K.; Saitoh, S.I. Albacore (Thunnus alalunga) fishing ground in relation to oceanographic conditions in the western North Pacific Ocean using remotely sensed satellite data. Fish. Oceanogr. 2008, 17, 61–73. [Google Scholar] [CrossRef] [Green Version]
- Rabiner, L.R.; Juang, B.H. An introduction to hidden markov models. IEEE ASSP Mag. 1986, 3, 4–16. [Google Scholar] [CrossRef]
- Piwowar, J.M.; Ledrew, E.F. ARMA time series modelling of remote sensing imagery: A new approach for climate change studies. Int. J. Remote Sens. 2002, 23, 5225–5248. [Google Scholar] [CrossRef]
- Piwowar, J.M.; Peddle, D.R.; Ledrew, E.F. Temporal mixture analysis of Arctic sea ice imagery: A new approach for monitoring environmental change. Remote Sens. Environ. 1998, 63, 195–207. [Google Scholar] [CrossRef]
- Kavanaugh, M.T.; Oliver, M.J.; Chavez, F.P.; Letelier, R.M.; Muller-Karger, F.E.; Doney, S.C. Seascapes as a new vernacular for pelagic ocean monitoring, management and conservation. ICES J. Mar. Sci. 2016, 73, 1839–1850. [Google Scholar] [CrossRef] [Green Version]
- Turiel, A.; Solé, J.; Nieves, V.; Ballabrera-Poy, J.; García-Ladona, E. Tracking oceanic currents by singularity analysis of microwave Sea Surface Temperature images. Remote Sens. Environ. 2008, 112, 2246–2260. [Google Scholar] [CrossRef]
Oceanographic Measure | Source | Parameter Generated |
---|---|---|
Surface Spatio-Temporal Heterogeneity (STH) | Generated within study | STH |
Sea Surface Temperature Fronts(SSTFs) | PML-generated SSTF data produced using the process outlined in [45] | (Count) No. of SSTFs |
Mean SSTF magnitude | ||
Median SSTF magnitude | ||
Standard deviation in SSTF magnitude | ||
Maximum SSTF magnitude | ||
Minimum SSTF magnitude | ||
Sea Surface Speed (SSSp) | GlobCurrent Sea Surface Current data [46] | Mean SSSp |
Median SSSp | ||
Standard deviation in SSSp (StDv SSSp) | ||
Maximum SSSp | ||
Minimum SSSp | ||
High-pass edges in Mean SSSp | ||
High-pass edges in StDv SSSp | ||
Bathymetry | GEBCO Bathymetry data [47,48] | Absolute bathymetry |
Aspect | ||
Slope |
Model | Components | Performance | |||||||
---|---|---|---|---|---|---|---|---|---|
Case Study Area | |Bathymetry| | Slope | µSSSp | High Pass Edges in µSSSp | SSTF Count | Max SSTF Magnitude | Intercept | R2 | Model Dispersion |
NAA | (−7.873 × 10–5) *** | (+1.7510) *** | (+0.06118) *** | (+0.6232) *** | −0.6789 | ~0.2703 | ~1.1 | ||
NBA | (+4.832 × 10–7) *** | (+1.162) *** | (+0.04608) *** | (+0.6160) * | −0.2852 | ~0.3265 | ~1.12 | ||
CSR | (-7.676) *** | (+0.06775) *** | 0.2275 | ~0.1719 | ~1.08 | ||||
IFF | (−0.0004) *** | (+1.560 × 10–6) *** | (+0.06852) *** | 0.4275 | ~0.4325 | ~1.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scarrott, R.G.; Cawkwell, F.; Jessopp, M.; Cusack, C.; O’Rourke, E.; de Bie, C.A.J.M. Ocean-Surface Heterogeneity Mapping (OHMA) to Identify Regions of Change. Remote Sens. 2021, 13, 1283. https://doi.org/10.3390/rs13071283
Scarrott RG, Cawkwell F, Jessopp M, Cusack C, O’Rourke E, de Bie CAJM. Ocean-Surface Heterogeneity Mapping (OHMA) to Identify Regions of Change. Remote Sensing. 2021; 13(7):1283. https://doi.org/10.3390/rs13071283
Chicago/Turabian StyleScarrott, Rory Gordon, Fiona Cawkwell, Mark Jessopp, Caroline Cusack, Eleanor O’Rourke, and C.A.J.M. de Bie. 2021. "Ocean-Surface Heterogeneity Mapping (OHMA) to Identify Regions of Change" Remote Sensing 13, no. 7: 1283. https://doi.org/10.3390/rs13071283
APA StyleScarrott, R. G., Cawkwell, F., Jessopp, M., Cusack, C., O’Rourke, E., & de Bie, C. A. J. M. (2021). Ocean-Surface Heterogeneity Mapping (OHMA) to Identify Regions of Change. Remote Sensing, 13(7), 1283. https://doi.org/10.3390/rs13071283