An Infrared Thermography Approach to Evaluate the Strength of a Rock Cliff
Abstract
:1. Introduction
2. Site Characterisation
3. Materials and Methods
4. Results and Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Priest, S.D. Discontinuity Analysis for Rock Engineering; Springer: Dordrecht, The Netherlands, 1995; ISBN 978-94-011-1498-1. [Google Scholar]
- Bieniawski, Z.T. Engineering Rock Mass Classifications: A Complete Manual for Engineers and Geologists in Mining, Civil and Petroleum Engineering; Wiley: New York, NY, USA, 1989; ISBN 978-0-471-60172-2. [Google Scholar]
- Elmo, D.; Stead, D. An Integrated Numerical Modelling–Discrete Fracture Network Approach Applied to the Characterisation of Rock Mass Strength of Naturally Fractured Pillars. Rock Mech. Rock Eng. 2010, 43, 3–19. [Google Scholar] [CrossRef]
- Bieniawski, Z.T. Engineering Classification of Jointed Rock Masses. Trans. Afr. Inst. Civ. Eng. 1973, 12, 335–344. [Google Scholar]
- Bieniawski, Z.T. Classification of Rock Masses for Engineering: The RMR System and Future Trends. In Rock Testing and Site Characterization; Elsevier: Amsterdam, The Netherlands, 1993; pp. 553–573. ISBN 978-0-08-042066-0. [Google Scholar]
- Schweigl, J.; Ferretti, C.; Nössing, L. Geotechnical Characterization and Rockfall Simulation of a Slope: A Practical Case Study from South Tyrol (Italy). Eng. Geol. 2003, 67, 281–296. [Google Scholar] [CrossRef]
- Volkwein, A.; Schellenberg, K.; Labiouse, V.; Agliardi, F.; Berger, F.; Bourrier, F.; Dorren, L.K.A.; Gerber, W.; Jaboyedoff, M. Rockfall Characterisation and Structural Protection—A Review. Nat. Hazards Earth Syst. Sci. 2011, 11, 2617–2651. [Google Scholar] [CrossRef] [Green Version]
- Aggistalis, G.; Alivizatos, A.; Stamoulis, D.; Stournaras, G. Correlating Uniaxial Compressive Strength with Schmidt Hardness, Point Load Index, Young’s Modulus, and Mineralogy of Gabbros and Basalts (Northern Greece). Bull. Int. Assoc. Eng. Geol. 1996, 54, 3–11. [Google Scholar] [CrossRef]
- Aydin, A. ISRM Suggested Method for Determination of the Schmidt Hammer Rebound Hardness: Revised Version. Int. J. Rock Mech. Min. Sci. 2009, 46, 627–634. [Google Scholar] [CrossRef]
- British Standards Institution. Natural Stone Test Methods. Determination of Compressive Strength; British Standards Institution: London, UK, 1999. [Google Scholar]
- Katz, O.; Reches, Z.; Roegiers, J.-C. Evaluation of Mechanical Rock Properties Using a Schmidt Hammer. Int. J. Rock Mech. Min. Sci. 2000, 37, 723–728. [Google Scholar] [CrossRef]
- Karakus, M.; Tutmez, B. Fuzzy and Multiple Regression Modelling for Evaluation of Intact Rock Strength Based on Point Load, Schmidt Hammer and Sonic Velocity. Rock Mech. Rock Eng. 2006, 39, 45–57. [Google Scholar] [CrossRef]
- Goudie, A.S. The Schmidt Hammer in Geomorphological Research. Prog. Phys. Geogr. Earth Environ. 2006, 30, 703–718. [Google Scholar] [CrossRef]
- Çobanoğlu, İ.; Çelik, S.B. Estimation of Uniaxial Compressive Strength from Point Load Strength, Schmidt Hardness and P-Wave Velocity. Bull. Eng. Geol. Environ. 2008, 67, 491–498. [Google Scholar] [CrossRef]
- Fan, X.; Xu, Q.; Scaringi, G. Brief Communication: Post-Seismic Landslides, the Tough Lesson of a Catastrophe. Nat. Hazards Earth Syst. Sci. 2018, 18, 397–403. [Google Scholar] [CrossRef] [Green Version]
- Melis, M.T.; Da Pelo, S.; Erbì, I.; Loche, M.; Deiana, G.; Demurtas, V.; Meloni, M.A.; Dessì, F.; Funedda, A.; Scaioni, M.; et al. Thermal Remote Sensing from UAVs: A Review on Methods in Coastal Cliffs Prone to Landslides. Remote Sens. 2020, 12, 1971. [Google Scholar] [CrossRef]
- Froude, M.J.; Petley, D.N. Global Fatal Landslide Occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci. 2018, 18, 2161–2181. [Google Scholar] [CrossRef] [Green Version]
- Fell, R.; Corominas, J.; Bonnard, C.; Cascini, L.; Leroi, E.; Savage, W.Z. Guidelines for Landslide Susceptibility, Hazard and Risk Zoning for Land Use Planning. Eng. Geol. 2008, 102, 85–98. [Google Scholar] [CrossRef] [Green Version]
- Deiana, G.; Melis, M.T.; Funedda, A.; da Pelo, S.; Meloni, M.; Naitza, L.; Orrù, P.; Salvini, R.; Sulis, A. Integrating remote sensing data for the assessments of coastal cliffs hazard: MAREGOT project. In Earth Observation Advancements in a Changing World; Associazione Italiana di Telerilevamento (AIT): Florence, Italy, 2019; Volume 1, pp. 176–181. [Google Scholar]
- Mazzanti, P.; Brunetti, A.; Bretschneider, A. A New Approach Based on Terrestrial Remote-sensing Techniques for Rock Fall Hazard Assessment. In Modern Technologies for Landslide Monitoring and Prediction; Scaioni, M., Ed.; Springer Natural Hazards; Springer: Berlin/Heidelberg, Germany, 2015; pp. 69–87. ISBN 978-3-662-45931-7. [Google Scholar]
- Sunamura, T. Rocky Coast Processes: With Special Reference to the Recession of Soft Rock Cliffs. Proc. Jpn. Acad. Ser. B 2015, 91, 481–500. [Google Scholar] [CrossRef] [Green Version]
- De Vita, P.; Cevasco, A.; Cavallo, C. Detailed Rock Failure Susceptibility Mapping in Steep Rocky Coasts by Means of Non-Contact Geostructural Surveys: The Case Study of the Tigullio Gulf (Eastern Liguria, Northern Italy). Nat. Hazards Earth Syst. Sci. 2012, 12, 867–880. [Google Scholar] [CrossRef] [Green Version]
- Martino, S.; Mazzanti, P. Integrating Geomechanical Surveys and Remote Sensing for Sea Cliff Slope Stability Analysis: The Mt. Pucci Case Study (Italy). Nat. Hazards Earth Syst. Sci. 2014, 14, 831–848. [Google Scholar] [CrossRef] [Green Version]
- Scaringi, G.; Fan, X.; Xu, Q.; Liu, C.; Ouyang, C.; Domènech, G.; Yang, F.; Dai, L. Some Considerations on the Use of Numerical Methods to Simulate Past Landslides and Possible New Failures: The Case of the Recent Xinmo Landslide (Sichuan, China). Landslides 2018, 15, 1359–1375. [Google Scholar] [CrossRef]
- De Pippo, T.; Donadio, C.; Pennetta, M.; Petrosino, C.; Terlizzi, F.; Valente, A. Coastal Hazard Assessment and Mapping in Northern Campania, Italy. Geomorphology 2008, 97, 451–466. [Google Scholar] [CrossRef]
- Pena, S.B.; Abreu, M.M.; Magalhães, M.R. Rethinking Coastal Cliff Protection Zones for Landscape Planning. What Limits are Enough? Appl. Geogr. 2021, 127, 102387. [Google Scholar] [CrossRef]
- White, A.F.; Blum, A.E. Effects of Climate on Chemical_ Weathering in Watersheds. Geochim. Cosmochim. Acta 1995, 59, 1729–1747. [Google Scholar] [CrossRef]
- Ferrier, K.L.; Huppert, K.L.; Perron, J.T. Climatic Control of Bedrock River Incision. Nature 2013, 496, 206–209. [Google Scholar] [CrossRef]
- Oliva, P.; Viers, J.; Dupré, B. Chemical Weathering in Granitic Environments. Chem. Geol. 2003, 202, 225–256. [Google Scholar] [CrossRef]
- Colomina, I.; Molina, P. Unmanned Aerial Systems for Photogrammetry and Remote Sensing: A Review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef] [Green Version]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. ‘Structure-from-Motion’ Photogrammetry: A Low-Cost, Effective Tool for Geoscience Applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef] [Green Version]
- Hamshaw, S.D.; Engel, T.; Rizzo, D.M.; O’Neil-Dunne, J.; Dewoolkar, M.M. Application of Unmanned Aircraft System (UAS) for Monitoring Bank Erosion along River Corridors. Geomat. Nat. Hazards Risk 2019, 10, 1285–1305. [Google Scholar] [CrossRef] [Green Version]
- Deffontaines, B.; Chang, K.-J.; Champenois, J.; Fruneau, B.; Pathier, E.; Hu, J.-C.; Lu, S.-T.; Liu, Y.-C. Active Interseismic Shallow Deformation of the Pingting Terraces (Longitudinal Valley—Eastern Taiwan) from UAV High-Resolution Topographic Data Combined with InSAR Time Series. Geomat. Nat. Hazards Risk 2017, 8, 120–136. [Google Scholar] [CrossRef] [Green Version]
- Turner, D.; Lucieer, A.; de Jong, S. Time Series Analysis of Landslide Dynamics Using an Unmanned Aerial Vehicle (UAV). Remote Sens. 2015, 7, 1736–1757. [Google Scholar] [CrossRef] [Green Version]
- Shannon, H.R.; Sigda, J.M.; van Dam, R.L.; Hendrickx, J.M.H.; McLemore, V.T. Thermal Camera Imaging of Rock Piles at the Questa Molybdenum Mine, Questa, New Mexico. J. Am. Soc. Min. Reclam. 2005, 2005, 1015–1028. [Google Scholar] [CrossRef]
- Prendes-Gero, M.B.; Suárez-Domínguez, F.J.; González-Nicieza, C.; Álvarez-Fernández, M.I. Infrared Thermography Methodology Applied to Detect Localized Rockfalls in Self-Supporting Underground Mines. In Proceedings of the ISRM-EUROCK-2013-129, Wroclaw, Poland, 23–26 September 2013; Taylor & Francis Group: London, UK, 2013; p. 5. [Google Scholar]
- Teza, G.; Marcato, G.; Castelli, E.; Galgaro, A. IRTROCK: A MATLAB Toolbox for Contactless Recognition of Surface and Shallow Weakness of a Rock Cliff by Infrared Thermography. Comput. Geosci. 2012, 45, 109–118. [Google Scholar] [CrossRef]
- Kuenzer, C.; Dech, S. (Eds.) Thermal Infrared Remote Sensing: Sensors, Methods, Applications; Remote Sensing and Digital Image Processing; Springer: Dordrecht, The Netherlands, 2013; ISBN 978-94-007-6639-6. [Google Scholar]
- Mineo, S.; Pappalardo, G.; Rapisarda, F.; Cubito, A.; Di Maria, G. Integrated Geostructural, Seismic and Infrared Thermography Surveys for the Study of an Unstable Rock Slope in the Peloritani Chain (NE Sicily). Eng. Geol. 2015, 195, 225–235. [Google Scholar] [CrossRef]
- Hillel, D. Introduction to Environmental Soil Physics; Elsevier Academic Press: Amsterdam, The Netherlands; Boston, MA, USA, 2004; ISBN 978-0-08-049577-4. [Google Scholar]
- Pappalardo, G.; Mineo, S.; Zampelli, S.P.; Cubito, A.; Calcaterra, D. InfraRed Thermography Proposed for the Estimation of the Cooling Rate Index in the Remote Survey of Rock Masses. Int. J. Rock Mech. Min. Sci. 2016, 83, 182–196. [Google Scholar] [CrossRef]
- Hudson, R.D. Infrared System Engineering; Wiley-Interscience: New York, NY, USA; Sydney, NSW, Australia, 1969; ISBN 978-0-471-41850-4. [Google Scholar]
- Blackett, M. An Overview of Infrared Remote Sensing of Volcanic Activity. J. Imaging 2017, 3, 13. [Google Scholar] [CrossRef]
- Oppenheimer, C.; Yirgu, G. Thermal Imaging of an Active Lava Lake: Erta ‘Ale Volcano, Ethiopia. Int. J. Remote Sens. 2002, 23, 4777–4782. [Google Scholar] [CrossRef]
- Lagios, E.; Vassilopoulou, S.; Sakkas, V.; Dietrich, V.; Damiata, B.N.; Ganas, A. Testing Satellite and Ground Thermal Imaging of Low-Temperature Fumarolic Fields: The Dormant Nisyros Volcano (Greece). ISPRS J. Photogramm. Remote Sens. 2007, 62, 447–460. [Google Scholar] [CrossRef]
- Spampinato, L.; Calvari, S.; Oppenheimer, C.; Boschi, E. Volcano Surveillance Using Infrared Cameras. Earth Sci. Rev. 2011, 106, 63–91. [Google Scholar] [CrossRef]
- Baroň, I.; Bečkovský, D.; Míča, L. Application of Infrared Thermography for Mapping Open Fractures in Deep-Seated Rockslides and Unstable Cliffs. Landslides 2014, 11, 15–27. [Google Scholar] [CrossRef]
- Harvey, M.C.; Rowland, J.V.; Luketina, K.M. Drone with Thermal Infrared Camera Provides High Resolution Georeferenced Imagery of the Waikite Geothermal Area, New Zealand. J. Volcanol. Geotherm. Res. 2016, 325, 61–69. [Google Scholar] [CrossRef]
- Pech, K.; Stelling, N.; Karrasch, P.; Maas, H.-G. Generation of Multitemporal Thermal Orthophotos from UAV Data; ISPRS—International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences; Copernicus GmbH: Göttingen, Germany, 2013; Volume XL-1-W2, pp. 305–310. [Google Scholar]
- Gigli, G.; Frodella, W.; Garfagnoli, F.; Morelli, S.; Mugnai, F.; Menna, F.; Casagli, N. 3-D Geomechanical Rock Mass Characterization for the Evaluation of Rockslide Susceptibility Scenarios. Landslides 2014, 11, 131–140. [Google Scholar] [CrossRef]
- Frodella, W.; Gigli, G.; Morelli, S.; Lombardi, L.; Casagli, N. Landslide Mapping and Characterization through Infrared Thermography (IRT): Suggestions for a Methodological Approach from Some Case Studies. Remote Sens. 2017, 9, 1281. [Google Scholar] [CrossRef] [Green Version]
- Rossi, G.; Tanteri, L.; Tofani, V.; Vannocci, P.; Moretti, S.; Casagli, N. Multitemporal UAV Surveys for Landslide Mapping and Characterization. Landslides 2018, 15, 1045–1052. [Google Scholar] [CrossRef] [Green Version]
- Frodella, W.; Elashvili, M.; Spizzichino, D.; Gigli, G.; Adikashvili, L.; Vacheishvili, N.; Kirkitadze, G.; Nadaraia, A.; Margottini, C.; Casagli, N. Combining InfraRed Thermography and UAV Digital Photogrammetry for the Protection and Conservation of Rupestrian Cultural Heritage Sites in Georgia: A Methodological Application. Remote Sens. 2020, 12. [Google Scholar] [CrossRef] [Green Version]
- Pappalardo, G.; Mineo, S.; Imposa, S.; Grassi, S.; Leotta, A.; La Rosa, F.; Salerno, D. A Quick Combined Approach for the Characterization of a Cliff during a Post-Rockfall Emergency. Landslides 2020, 17, 1063–1081. [Google Scholar] [CrossRef]
- Mineo, S.; Calcaterra, D.; Perriello Zampelli, S.; Pappalardo, G. Application of Infrared Thermography for the Survey of Intensely Jointed Rock Slopes. Rend. Online Soc. Geol. Ital. 2015, 35, 212–215. [Google Scholar] [CrossRef]
- Pappalardo, G.; Mineo, S.; Marchese, G. Effects of Cubical Specimen Sizing on the Uniaxial Compressive Strength of Etna Volcanic Rocks (Italy). Ital. J. Eng. Geol. Environ. 2013, 2, 45–54. [Google Scholar]
- Mineo, S.; Pappalardo, G. The Use of Infrared Thermography for Porosity Assessment of Intact Rock. Rock Mech. Rock Eng. 2016, 49, 3027–3039. [Google Scholar] [CrossRef]
- Wu, J.-H.; Lin, H.-M.; Lee, D.-H.; Fang, S.-C. Integrity Assessment of Rock Mass behind the Shotcreted Slope Using Thermography. Eng. Geol. 2005, 80, 164–173. [Google Scholar] [CrossRef]
- Pappalardo, G.; Mineo, S. Investigation on the Mechanical Attitude of Basaltic Rocks from Mount Etna through InfraRed Thermography and Laboratory Tests. Constr. Build. Mater. 2017, 134, 228–235. [Google Scholar] [CrossRef]
- Fiorucci, M.; Marmoni, G.M.; Martino, S.; Mazzanti, P. Thermal Response of Jointed Rock Masses Inferred from Infrared Thermographic Surveying (Acuto Test-Site, Italy). Sensors 2018, 18, 2221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grechi, G.; Martino, S. Preliminary Results from Multitemporal Infrared Thermography Surveys at the Wied-Il-Mielah Rock Arch (Island of Gozo). Ital. J. Eng. Geol. Env. 2019, 41–46. [Google Scholar] [CrossRef]
- Barca, S.; Melis, E.; Annino, E.; Cincotti, F.; Ulzega, A.; Orru, P.; Pintus, C. Note Illustrative Della Carta Geologica d’Italia; Foglio 557 Cagliari, Scala 1:50.000; Servizio Geologico d’Italia: Rome, Italy, 2005. [Google Scholar]
- Conte, A.M.; Cuccuru, S.; D’Antonio, M.; Naitza, S.; Oggiano, G.; Secchi, F.; Casini, L.; Cifelli, F. The Post-Collisional Late Variscan Ferroan Granites of Southern Sardinia (Italy): Inferences for Inhomogeneity of Lower Crust. Lithos 2017, 294–295, 263–282. [Google Scholar] [CrossRef]
- Funedda, A.; Naitza, S.; Buttau, C.; Cocco, F.; Dini, A. Structural Controls of Ore Mineralization in a Polydeformed Basement: Field Examples from the Variscan Baccu Locci Shear Zone (SE Sardinia, Italy). Minerals 2018, 8, 456. [Google Scholar] [CrossRef] [Green Version]
- Carmignani, L.; Oggiano, G.; Funedda, A.; Conti, P.; Pasci, S. The Geological Map of Sardinia (Italy) at 1:250,000 Scale. J. Maps 2016, 12, 826–835. [Google Scholar] [CrossRef]
- Cocco, F.; Funedda, A.; Patacca, E.; Scandone, P. Plio-Pleistocene Extensional Tectonics in the Campidano Graben (SW Sardinia, Italy): Preliminary Note. Rend. Online Soc. Geol. Ital. 2013, 29, 31–34. [Google Scholar]
- Palmström, A. The Volumetric Joint Count―A Useful and Simple Measure of the Degree of Rock Mass Jointing. Int. Assoc. Eng. Geol. Int. Congr. 1982, 4, 221–228. [Google Scholar]
- Aydin, A.; Basu, A. The Schmidt Hammer in Rock Material Characterization. Eng. Geol. 2005, 81, 1–14. [Google Scholar] [CrossRef]
- Öhman, C. Emittansmätningar Med AGEMA E-Box; TFeknisk Rapport; AGEMA: Kalmar, Sweden, 1999. [Google Scholar]
- Deere, D.U.; Miller, R.P. Engineering Classification and Index Properties for Intact Rock; Defense Technical Information Center: Fort Belvoir, VA, USA, 1966. [Google Scholar]
Ref. | Platform (Distance Object-Sensor) | Features |
---|---|---|
[58] | Terrestrial | Eroded caves in a shotcreted slope |
[37] | Terrestrial (120–150 m) | Shallow inhomogeneities, weathered rock cliff areas |
[23] | Terrestrial | Main joints, recently collapsed areas/detachments in a coastal cliff |
[47] | Terrestrial, UAV | Open cracks, tension and loosened zones, pseudo–karst caverns |
[41,55] | Terrestrial (3 m) | Geostructural features, fracturing degree, daytime temperature exchange of a rock slope |
[39] | Terrestrial | Thermal contrast between vegetated, weathered and bare rock areas of an unstable slope |
[59] | Terrestrial | Discontinuity system of a rock wedge |
[51] | Terrestrial, airborne | Wedge fractures, erosional channels, scarps, earthflow ponds, seepage sectors, debris cones |
[60] | Terrestrial | Surficial temperature, thermal response of jointed blocks, seasonality |
[61] | Terrestrial (20 m) | Spatio-temporal surficial temperature pattern of a rock mass arch |
[53] | Terrestrial (600 m) | Weathering rock areas, moisture content related to the ephemeral drainage network |
Block | ASTM | Mean | Median | Mode | SD | Range |
---|---|---|---|---|---|---|
A | 53 | 53 | 54 | 58 | 9 | 18–69 |
B | 49 | 49 | 50 | 52 | 11 | 18–68 |
C | 60 | 59 | 60 | 62 | 5 | 35–68 |
Input | ||||||||||||||||||||
Block | Rebound | T at t = 12:00 | T at t = 13:00 | T at t = 14:00 | T at t = 17:00 | T at t = 7:00 | ||||||||||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |||||||||
A | 53 | 9 | 42.09 | 0.90 | 41.19 | 0.75 | 39.15 | 0.55 | 32.13 | 0.45 | 23.74 | 0.43 | ||||||||
B | 49 | 11 | 41.02 | 0.74 | 40.50 | 0.70 | 39.03 | 0.45 | 32.20 | 0.54 | 23.78 | 0.43 | ||||||||
C | 60 | 5 | 45.51 | 1.53 | 44.52 | 1.89 | 43.02 | 2.20 | 33.64 | 0.65 | 21.92 | 0.99 | ||||||||
Output | ||||||||||||||||||||
Statistic | R2 of σc vs.: | m of σc vs.: | ||||||||||||||||||
CRI1h | CRI2h | CRI5h | Total CRI | CRI1h | CRI2h | CRI5h | Total CRI | |||||||||||||
0.1 perc. | 0.00 | 0.00 | 0.01 | 0.02 | <0 | <0 | <0 | 113 | ||||||||||||
1st perc. | 0.00 | 0.00 | 0.13 | 0.24 | <0 | <0 | 1908 | 4259 | ||||||||||||
5th perc. | 0.01 | 0.00 | 0.44 | 0.50 | <0 | <0 | 3850 | 7576 | ||||||||||||
mean | 0.59 | 0.45 | 0.86 | 0.86 | 1972 | 2557 | 8969 | 15227 | ||||||||||||
median | 0.67 | 0.40 | 0.93 | 0.92 | 2663 | 2768 | 8628 | 15167 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loche, M.; Scaringi, G.; Blahůt, J.; Melis, M.T.; Funedda, A.; Da Pelo, S.; Erbì, I.; Deiana, G.; Meloni, M.A.; Cocco, F. An Infrared Thermography Approach to Evaluate the Strength of a Rock Cliff. Remote Sens. 2021, 13, 1265. https://doi.org/10.3390/rs13071265
Loche M, Scaringi G, Blahůt J, Melis MT, Funedda A, Da Pelo S, Erbì I, Deiana G, Meloni MA, Cocco F. An Infrared Thermography Approach to Evaluate the Strength of a Rock Cliff. Remote Sensing. 2021; 13(7):1265. https://doi.org/10.3390/rs13071265
Chicago/Turabian StyleLoche, Marco, Gianvito Scaringi, Jan Blahůt, Maria Teresa Melis, Antonio Funedda, Stefania Da Pelo, Ivan Erbì, Giacomo Deiana, Mattia Alessio Meloni, and Fabrizio Cocco. 2021. "An Infrared Thermography Approach to Evaluate the Strength of a Rock Cliff" Remote Sensing 13, no. 7: 1265. https://doi.org/10.3390/rs13071265
APA StyleLoche, M., Scaringi, G., Blahůt, J., Melis, M. T., Funedda, A., Da Pelo, S., Erbì, I., Deiana, G., Meloni, M. A., & Cocco, F. (2021). An Infrared Thermography Approach to Evaluate the Strength of a Rock Cliff. Remote Sensing, 13(7), 1265. https://doi.org/10.3390/rs13071265