Special Issue “Remote-Sensing-Based Urban Planning Indicators”
1. The Challenges of Urban Planning
2. Data Gaps and Evidence-Based Urban Planning
3. The Role of EO to Develop Urban Planning Indicators
4. The Contribution of Papers of the Special Issue
Urban Sectors | Indicators/Planning Instruments | Type of EO Data | References |
---|---|---|---|
Housing |
|
| [34,37,44] |
Infrastructure/Services |
|
| [36,45,46] |
Environment/Hazard |
|
| [19,47,48,49] |
Socio-economic conditions |
|
| [36,37,44,49] |
Urban governance/Participation |
|
| [40] |
Land use—territorial planning |
|
| [19,34,35,50] |
5. Conclusions and Directions for Further Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- UN. World Urbanization Prospects. The 2018 Revision; United Nations: New York, NY, USA, 2019. [Google Scholar]
- United Nations Statistics Division. The Sustainable Development Goals Report 2018. Available online: https://unstats.un.org/sdgs/report/2018/overview/ (accessed on 12 September 2019).
- Florczyk, A.J.; Melchiorri, M.; Corbane, C.; Schiavina, M.; Maffenini, M.; Pesaresi, M.; Politis, P.; Sabo, S.; Freire, S.; Ehrlich, D.; et al. Description of the GHS Urban Centre Database 2015. Public Release 2019; Version 1.0; Office of the European Union: Luxembourg, 2019. [Google Scholar]
- UNICEF; UN-Habitat. Analysis of Multiple Deprivations in Secondary Cities in Sub-Saharan Africa; Cardno: London, UK, 2020. [Google Scholar]
- Van Hoof, J.; Kazak, J.K.; Perek-Białas, J.M.; Peek, S.T.M. The challenges of urban ageing: Making cities age-friendly in Europe. Int. J. Environ. Res. Public Health 2018, 15, 2473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angelidou, M. The role of smart city characteristics in the plans of fifteen cities. J. Urban Technol. 2017, 24, 3–28. [Google Scholar] [CrossRef]
- Giles-Corti, B.; Vernez-Moudon, A.; Reis, R.; Turrell, G.; Dannenberg, A.L.; Badland, H.; Foster, S.; Lowe, M.; Sallis, J.F.; Stevenson, M.; et al. City planning and population health: A global challenge. Lancet 2016, 388, 2912–2924. [Google Scholar] [CrossRef]
- Saaty, T.L.; De Paola, P. Rethinking design and urban planning for the cities of the future. Buildings 2017, 7, 76. [Google Scholar] [CrossRef]
- Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.-W.; da Silva Santos, L.B.; Bourne, P.E.; et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 2016, 3, 160018. [Google Scholar] [CrossRef] [Green Version]
- Kandt, J.; Batty, M. Smart cities, big data and urban policy: Towards urban analytics for the long run. Cities 2021, 109, 102992. [Google Scholar] [CrossRef]
- Faludi, A.; Waterhout, B. Introducing Evidence-Based Planning. disP Plan. Rev. 2006, 42, 4–13. [Google Scholar] [CrossRef]
- Chrysoulakis, N.; Feigenwinter, C.; Triantakonstantis, D.; Penyevskiy, I.; Tal, A.; Parlow, E.; Fleishman, G.; Düzgün, Ş.; Esch, T.; Marconcini, M. A Conceptual list of indicators for urban planning and management based on earth observation. ISPRS Int. J. Geoinf. 2014, 3, 980–1002. [Google Scholar] [CrossRef] [Green Version]
- United Nations. New Urban Agenda. In Proceedings of the Habitat III Secretariat, Quito, Ecuador, 20 October 2016. [Google Scholar]
- UN-Habitat. The Earth Observations Toolkit for Sustainable Cities and Human Settlements. Available online: https://eo-toolkit-guo-un-habitat.opendata.arcgis.com (accessed on 15 March 2021).
- UN-Habitat. The Challenge of Local Government Financing in Developing Countries; UN-Habitat: Nairobi, Kenya, 2015. [Google Scholar]
- Elsey, H.; Thomson, D.R.; Lin, R.Y.; Maharjan, U.; Agarwal, S.; Newell, J. addressing inequities in urban health: Do decision-makers have the data they need? Report from the urban health data special session at international conference on urban health Dhaka 2015. J. Urban Health 2016, 93, 526–537. [Google Scholar] [CrossRef] [Green Version]
- Van Maarseveen, M.; Martinez, J.; Flacke, J. GIS in Sustainable Urban Planning and Management: A Global Perspective; CRC Press: Leiden, The Netherlands, 2019. [Google Scholar]
- Kuffer, M.; Thomson, D.R.; Boo, G.; Mahabir, R.; Grippa, T.; Vanhuysse, S.; Engstrom, R.; Ndugwa, R.; Makau, J.; Darin, E.; et al. The role of earth observation in an integrated deprived area mapping “system” for low-to-middle income countries. Remote Sens. 2020, 12, 982. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, R.; Kuffer, M. Cloud computation using high-resolution images for improving the SDG indicator on open spaces. Remote Sens. 2020, 12, 1144. [Google Scholar] [CrossRef] [Green Version]
- Sliuzas, R.; Kuffer, M.; Masser, I. The spatial and temporal nature of urban objects. In Remote Sensing of Urban and Suburban Areas; Rashed, T., Jürgens, C., Eds.; Springer: Dordrecht, The Netherlands, 2010; Volume 10, pp. 67–84. [Google Scholar]
- Zhu, Z.; Zhou, Y.; Seto, K.C.; Stokes, E.C.; Deng, C.; Pickett, S.T.A.; Taubenböck, H. Understanding an urbanizing planet: Strategic directions for remote sensing. Remote Sens. Environ. 2019, 228, 164–182. [Google Scholar] [CrossRef]
- Taubenböck, H.; Wurm, M.; Geiß, C.; Dech, S.; Siedentop, S. Urbanization between compactness and dispersion: Designing a spatial model for measuring 2D binary settlement landscape configurations. Int. J. Digit. Earth 2018, 12, 679–698. [Google Scholar] [CrossRef]
- Andries, A.; Morse, S.; Murphy, R.; Lynch, J.; Woolliams, E.; Fonweban, J. Translation of Earth observation data into sustainable development indicators: An analytical framework. Sustain. Dev. 2019, 27, 366–376. [Google Scholar] [CrossRef] [Green Version]
- Kuffer, M.; Wang, J.; Nagenborg, M.; Pfeffer, K.; Kohli, D.; Sliuzas, R.; Persello, C. The scope of earth-observation to improve the consistency of the SDG slum indicator. ISPRS Int. J. Geoinf. 2018, 7, 428. [Google Scholar] [CrossRef] [Green Version]
- Prakash, M.; Ramage, S.; Kavvada, A.; Goodman, S. Open earth observations for sustainable urban development. Remote Sens. 2020, 12, 1646. [Google Scholar] [CrossRef]
- Kavvada, A.; Metternicht, G.; Kerblat, F.; Mudau, N.; Haldorson, M.; Laldaparsad, S.; Friedl, L.; Held, A.; Chuvieco, E. Towards delivering on the sustainable development goals using earth observations. Remote Sens. Environ. 2020, 247, 111930. [Google Scholar] [CrossRef]
- Gevaert, C.; Persello, C.; Sliuzas, R.; Vosselman, G. Informal settlement classification using point-cloud and image-based features from UAV data. ISPRS J. Photogramm. Remote Sens. 2017, 125, 225–236. [Google Scholar] [CrossRef]
- Gevaert, C.M.; Sliuzas, R.; Persello, C.; Vosselman, G. Opportunities for UAV mapping to support unplanned settlement upgrading. Rwanda J. 2015. [Google Scholar] [CrossRef] [Green Version]
- Wurm, M.; Stark, T.; Zhu, X.X.; Weigand, M.; Taubenböck, H. Semantic segmentation of slums in satellite images using transfer learning on fully convolutional neural networks. ISPRS J. Photogramm. Remote Sens. 2019, 150, 59–69. [Google Scholar] [CrossRef]
- Arribas-Bel, D.; Patino, J.E.; Duque, J.C. Remote sensing-based measurement of Living Environment Deprivation: Improving classical approaches with machine learning. PLoS ONE 2017, 12, e0176684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergado, J.R.; Persello, C.; Gevaert, C. A deep learning approach to the classification of sub-decimetre resolution aerial images. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 1516–1519. [Google Scholar]
- Persello, C.; Stein, A. Deep fully convolutional networks for the detection of informal settlements in VHR images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2325–2329. [Google Scholar] [CrossRef]
- Persello, C.; Kuffer, M. Towards uncovering socio-economic inequalities using VHR satellite images and deep learning. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Online, 26 September–2 October 2020; pp. 3747–3750. [Google Scholar]
- Lynch, P.; Blesius, L.; Hines, E. Classification of urban area using multispectral indices for urban planning. Remote Sens. 2020, 12, 2503. [Google Scholar] [CrossRef]
- Anees, M.M.; Mann, D.; Sharma, M.; Banzhaf, E.; Joshi, P.K. Assessment of urban dynamics to understand spatiotemporal differentiation at various scales using remote sensing and geospatial tools. Remote Sens. 2020, 12, 1306. [Google Scholar] [CrossRef] [Green Version]
- Warth, G.; Braun, A.; Assmann, O.; Fleckenstein, k.; Hochschild, V. Prediction of socio-economic indicators for urban planning using VHR satellite imagery and spatial Analysis. Remote Sens. 2020, 12, 1730. [Google Scholar] [CrossRef]
- Ajami, A.; Kuffer, M.; Persello, C.; Pfeffer, K. Identifying a slums’ degree of deprivation from VHR images using convolutional neural networks. Remote Sens. 2019, 11, 1282. [Google Scholar] [CrossRef] [Green Version]
- GEOSS (Global Earth Observation System of Systems). NextGEOSS Data Hub. GEO, Ed. 2021. Available online: https://catalogue.nextgeoss.eu (accessed on 24 March 2021).
- Ying, Y.; Koeva, M.; Kuffer, M.; Asiama, K.O.; Li, X.; Zevenbergen, J. Making the third dimension (3D) explicit in hedonic price modelling: A case study of Xi’an, China. Land 2020, 10, 24. [Google Scholar] [CrossRef]
- Neuville, R.; Pouliot, J.; Poux, F.; Billen, R. 3D Viewpoint management and navigation in urban planning: Application to the exploratory phase. Remote Sens. 2019, 11, 236. [Google Scholar] [CrossRef] [Green Version]
- Taubenböck, H.; Kraff, N.; Wurm, M. The morphology of the Arrival City—A global categorization based on literature surveys and remotely sensed data. Appl. Geogr. 2018, 92, 150–167. [Google Scholar] [CrossRef]
- Bechtel, B.; Alexander, P.J.; Beck, C.; Böhner, J.; Brousse, O.; Ching, J.; Demuzere, M.; Fonte, C.; Gál, T.; Hidalgo, J.; et al. Generating WUDAPT Level 0 data—Current status of production and evaluation. Urban Clim. 2019, 27, 24–45. [Google Scholar] [CrossRef] [Green Version]
- Kuffer, M. Digitalization and urban development in the Global South: Towards reliable population data in deprived urban areas. In Österreichische Entwicklungspolitik 2020: Digitalization for Development? Challenges for Developing Countries; Österreichische Forschungsstiftung für Internationale Entwicklung: Wien, Austria, 2020; pp. 73–81. [Google Scholar]
- Liu, R.; Kuffer, M.; Persello, C. The temporal dynamics of slums employing a CNN-based change detection approach. Remote Sens. 2019, 11, 2844. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Sun, C.; Fu, H. Road information extraction from high-resolution remote sensing images based on road reconstruction. Remote Sens. 2019, 11, 79. [Google Scholar] [CrossRef] [Green Version]
- Kang, M.; Jung, M.C. Night on South Korea: Unraveling the relationship between urban development patterns and DMSP-OLS night-time lights. Remote Sens. 2019, 11, 2140. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Yan, F.; Lei, X.; Ding, X.; Zheng, Y.; Liu, L.; Zhang, S. Investigating seasonal effects of dominant driving factors on urban land surface temperature in a snow-climate city in China. Remote Sens. 2020, 12, 3006. [Google Scholar] [CrossRef]
- Müller, I.; Taubenböck, H.; Kuffer, M.; Wurm, M. Misperceptions of predominant slum locations? Spatial analysis of slum locations in terms of topography based on earth observation data. Remote Sens. 2020, 12, 2474. [Google Scholar] [CrossRef]
- Wang, J.; Pauleit, S.; Banzhaf, E. An integrated indicator framework for the assessment of multifunctional green infrastructure—exemplified in a European city. Remote Sens. 2019, 11, 1869. [Google Scholar] [CrossRef] [Green Version]
- Chaturvedi, V.; Kuffer, M.; Kohli, D. Analysing urban development patterns in a conflict zone: A case study of Kabul. Remote Sens. 2020, 12, 3662. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuffer, M.; Pfeffer, K.; Persello, C. Special Issue “Remote-Sensing-Based Urban Planning Indicators”. Remote Sens. 2021, 13, 1264. https://doi.org/10.3390/rs13071264
Kuffer M, Pfeffer K, Persello C. Special Issue “Remote-Sensing-Based Urban Planning Indicators”. Remote Sensing. 2021; 13(7):1264. https://doi.org/10.3390/rs13071264
Chicago/Turabian StyleKuffer, Monika, Karin Pfeffer, and Claudio Persello. 2021. "Special Issue “Remote-Sensing-Based Urban Planning Indicators”" Remote Sensing 13, no. 7: 1264. https://doi.org/10.3390/rs13071264
APA StyleKuffer, M., Pfeffer, K., & Persello, C. (2021). Special Issue “Remote-Sensing-Based Urban Planning Indicators”. Remote Sensing, 13(7), 1264. https://doi.org/10.3390/rs13071264