Enhancement of Cloud-to-Ground Lightning Activity Caused by the Urban Effect: A Case Study in the Beijing Metropolitan Area
Abstract
1. Introduction
2. Data and Methods
3. Analysis and Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huff, F.A.; Changnon, S.A. precipitation modification by major urban areas. Bull. Am. Meteorol. Soc. 1973, 54, 1220–1233. [Google Scholar] [CrossRef]
- Westcott, N.E. Summertime Cloud-to-Ground Lightning Activity around Major Midwestern Urban Areas. J. Appl. Meteorol. 1995, 34, 1633–1642. [Google Scholar] [CrossRef]
- Steiger, S.M.; Huffines, G.; Orville, R.E. Cloud-to-ground lightning characteristics over Houston, Texas: 1989–2000. J. Geophys. Res. Space Phys. 2002, 107. [Google Scholar] [CrossRef]
- Soriano, L.R.; de Pablo, F. Effect of small urban areas in central Spain on the enhancement of cloud-to-ground lightning activity. Atmos. Environ. 2002, 36, 2809–2816. [Google Scholar] [CrossRef]
- Orville, R.E.; Huffines, G.; Nielsen-Gammon, J.; Zhang, R.; Ely, B.; Steiger, S.; Phillips, S.; Allen, S.; Read, W. Enhancement of cloud-to-ground lightning over Houston, Texas. Geophys. Res. Lett. 2001, 28, 2597–2600. [Google Scholar] [CrossRef]
- Naccarato, K.P.; Pinto, O., Jr.; Pinto, I.R.C.A. Evidence of thermal and aerosol effects on the cloud-to-ground lightning density and polarity over large urban areas of Southeastern Brazil. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Lal, D.; Pawar, S. Effect of urbanization on lightning over four metropolitan cities of India. Atmos. Environ. 2011, 45, 191–196. [Google Scholar] [CrossRef]
- Kar, S.; Liou, Y.-A.; Ha, K.-J. Aerosol effects on the enhancement of cloud-to-ground lightning over major urban areas of South Korea. Atmos. Res. 2009, 92, 80–87. [Google Scholar] [CrossRef]
- Kar, S.; Liou, Y. Enhancement of cloud-to-ground lightning activity over Taipei, Taiwan in relation to urbanization. Atmos. Res. 2014, 147–148, 111–120. [Google Scholar] [CrossRef]
- Farias, W.; Pinto, O.; Pinto, I.; Naccarato, K. The influence of urban effect on lightning activity: Evidence of weekly cycle. Atmos. Res. 2014, 135–136, 370–373. [Google Scholar] [CrossRef]
- Farias, W.; Pinto, O.; Naccarato, K.; Pinto, I. Anomalous lightning activity over the Metropolitan Region of São Paulo due to urban effects. Atmos. Res. 2009, 91, 485–490. [Google Scholar] [CrossRef]
- Bourscheidt, V.; Pinto, O., Jr.; Naccarato, K.P. The effects of Sao Paulo urban heat island on lightning activity: Decadal analysis (1999–2009). J. Geophys. Res. 2016, 121, 4429–4442. [Google Scholar] [CrossRef]
- Rozoff, C.M.; Cotton, W.R.; Adegoke, J.O. Simulation of St. Louis, Missouri, Land Use Impacts on Thunderstorms. J. Appl. Meteorol. 2003, 42, 716–738. [Google Scholar] [CrossRef]
- Han, J.-Y.; Baik, J.-J. A Theoretical and Numerical Study of Urban Heat Island–Induced Circulation and Convection. J. Atmos. Sci. 2008, 65, 1859–1877. [Google Scholar] [CrossRef]
- van den Heever, S.C.; William, R.C. Urban Aerosol Impacts on Downwind Convective Storms. J. Appl. Meteorol. Clim. 2007, 46, 828–850. [Google Scholar] [CrossRef]
- Ntelekos, A.A.; Smith, J.A.; Donner, L.; Fast, J.D.; Gustafson, W.I., Jr.; Chapman, E.G.; Krajewski, W.F. The effects of aerosols on intense convective precipitation in the northeastern United States. Q. J. R. Meteorol. Soc. 2009, 135, 1367–1391. [Google Scholar] [CrossRef]
- Bréon, F.-M.; Tanré, D.; Generoso, S. Aerosol Effect on Cloud Droplet Size Monitored from Satellite. Science 2002, 295, 834–838. [Google Scholar] [CrossRef]
- Altaratz, O.; Koren, I.; Yair, Y.; Price, C. Lightning response to smoke from Amazonian fires. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Z.; Guo, J.; Zhao, C.; Cribb, M. The climate impact of aerosols on the lightning flash rate: Is it detectable from long-term measurements? Atmos. Chem. Phys. 2018, 18, 12797–12816. [Google Scholar] [CrossRef]
- Tan, Y.B.; Peng, L.; Shi, Z.; Chen, H.R. Lightning flash density in relation to aerosol over Nanjing (China). Atmos. Res. 2016, 174–175, 1–8. [Google Scholar]
- Chen, L.; Zhang, Y.; Lu, W.; Zheng, D.; Zhang, Y.; Chen, S.; Huang, Z. Performance Evaluation for a Lightning Loca-tion System Based on Observations of Artificially Triggered Lightning and Natural Lightning Flashes. J. Atmos. Ocean. Technol. 2012, 29, 1835–1844. [Google Scholar] [CrossRef]
- Cummins, K.L.; Murphy, M.J.; Bardo, E.A.; Hiscox, W.L.; Pyle, R.B.; Pifer, A.E. A Combined TOA/MDF Technology Upgrade of the U.S. National Lightning Detection Network. J. Geophys. Res. Space Phys. 1998, 103, 9035–9044. [Google Scholar] [CrossRef]
- Orville, R.E.; Huffines, G.R.; Burrows, W.R.; Holle, R.L.; Cummins, K.L. The North American Lightning Detection Network (NALDN)—First Results: 1998–2000. Mon. Weather Rev. 2002, 130, 2098–2109. [Google Scholar] [CrossRef]
- Schulz, W.; Cummins, K.; Diendorfer, G.; Dorninger, M. Cloud-to-ground lightning in Austria: A 10-year study using data from a lightning location system. J. Geophys. Res. Space Phys. 2005, 110. [Google Scholar] [CrossRef]
- Cummer, S.A.; Lyons, W.A. Implications of lightning charge moment changes for sprite initiation. J. Geophys. Res. Space Phys. 2005, 110. [Google Scholar] [CrossRef]
- Cummer, S.A.; Lyons, W.A.; Stanley, M.A. Three years of lightning impulse charge moment change measurements in the United States. J. Geophys. Res. Atmos. 2013, 118, 5176–5189. [Google Scholar] [CrossRef]
- Dai, J.; Wang, Y.; Chen, L.; Tao, L.; Gu, J.; Wang, J.; Xu, X.; Lin, H.; Gu, Y. A comparison of lightning activity and convective indices over some monsoon-prone areas of China. Atmos. Res. 2009, 91, 438–452. [Google Scholar] [CrossRef]
- Siingh, D.S.; Kumar, P.R.; Kulkarni, M.; Singh, R.; Singh, A. Lightning, convective rain and solar activity—Over the South/Southeast Asia. Atmos. Res. 2013, 120–121, 99–111. [Google Scholar] [CrossRef]
- Siingh, D.; Buchunde, P.; Singh, R.; Nath, A.; Kumar, S.; Ghodpage, R. Lightning and convective rain study in different parts of India. Atmos. Res. 2014, 137, 35–48. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, G.; Guo, S.; Zamora, M.L.; Ying, Q.; Lin, Y.; Wang, W.; Hu, M.; Wang, Y. Formation of Urban Fine Particulate Matter. Chem. Rev. 2015, 115, 3803–3855. [Google Scholar] [CrossRef]
- Pinto, O.; Pinto, I.R.C.; Diniz, J.H.; Filho, A.C.; Cherchiglia, L.C.; Carvalho, A.M. A seven-year study about the negative cloud-to-ground lightning flash characteristics in Southeastern Brazil. J. Atmos. Solar Terr. Phys. 2003, 65, 739–748. [Google Scholar] [CrossRef]
- Holle, R.L. Diurnal Variations of NLDN-Reported Cloud-to-Ground Lightning in the United States. Mon. Weather Rev. 2014, 142, 1037–1052. [Google Scholar] [CrossRef]
- Chronis, T.G.; Cummins, K.L.; Said, R.K.; Koshak, W.J.; McCaul, E.W.; Williams, E.R.; Stano, G.T.; Grant, M.R. Climatological diurnal variation of negative CG lightning peak current over the continental United States. J. Geophys. Res. Atmos. 2015, 120, 582–589. [Google Scholar] [CrossRef]
- Guo, J.; Deng, M.; Lee, S.S.; Wang, F.; Li, Z.; Zhai, P.; Liu, H.; Lv, W.; Yao, W.; Li, X. Delaying precipitation and lightning by air pollution over the Pearl River Delta. Part I: Observational analyses. J. Geophys. Res. Atmos. 2016, 121, 6472–6488. [Google Scholar] [CrossRef]
- Holle, R.L.; Cummins, K.L.; Brooks, W.A. Seasonal, Monthly, and Weekly Distributions of NLDN and GLD360 Cloud-to-Ground Lightning. Mon. Weather Rev. 2016, 144, 2855–2870. [Google Scholar] [CrossRef]
- Pinto, I.R.C.A.; Pinto, O.; Rocha, R.M.L.; Diniz, J.H.; Carvalho, A.M.; Filho, A.C. Cloud-to-ground lightning in southeastern Brazil in 1993: 2. Time variations and flash characteristics. J. Geophys. Res. Space Phys. 1999, 104, 31381–31387. [Google Scholar] [CrossRef]
- Orville, R.E.; Silver, A.C. Lighting Ground Flash Density in the Contiguous United States: 1992–95. Mon. Weather Rev. 1997, 125, 631–638. [Google Scholar] [CrossRef]
- Orville, R.E.; Huffines, G.R. Lightning Ground Flash Measurements over the Contiguous United States: 1995–97. Mon. Weather Rev. 1999, 127, 2693–2703. [Google Scholar] [CrossRef]
- Cummer, S.A.; Inan, U.S. Modeling ELF radio atmospheric propagation and extracting lightning currents from ELF obser-vations. Radio Sci. 2000, 35, 385–394. [Google Scholar] [CrossRef]
- Avila, E.E.; Pereyra, R.G.; Varela, G.G.A.; Caranti, G.M. The effect of the cloud-droplet spectrum on electrical-charge transfer during individual ice-ice collisions. Q. J. R. Meteorol. Soc. 1999, 125, 1669–1679. [Google Scholar] [CrossRef]
- Zhao, P.; Yin, Y.; Xiao, H. The effects of aerosol on development of thunderstorm electrification: A numerical study. Atmos. Res. 2015, 153, 376–391. [Google Scholar] [CrossRef]
- Lyons, W.A.; Uliasz, M.; Nelson, T.E. Large Peak Current Cloud-to-Ground Lightning Flashes during the Summer Months in the Contiguous United States. Mon. Weather Rev. 1998, 126, 2217–2233. [Google Scholar] [CrossRef]
- Rakov, V.A.; Uman, M.A. Lightning: Physics and Effects; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Dwyer, J.R. The initiation of lightning by runaway air breakdown. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Gurevich, A.V.; Zybin, K.P. Runaway breakdown and the mysteries of lightning. Phys. Today 2005, 58, 37–43. [Google Scholar] [CrossRef]
- Takahashi, T. Riming Electrification as a Charge Generation Mechanism in Thunderstorms. J. Atmos. Sci. 1978, 35, 1536–1548. [Google Scholar] [CrossRef]
- Williams, E.R.; Zhang, R.; Rydock, J. Mixed-Phase Microphysics and Cloud Electrification. J. Atmos. Sci. 1991, 48, 2195–2203. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Lensky, I.M. Satellite–Based Insights into Precipitation Formation Processes in Continental and Maritime Convective Clouds. Bull. Am. Meteorol. Soc. 1998, 79, 2457–2476. [Google Scholar] [CrossRef]
- Koren, I.; Martins, J.V.; Remer, L.A.; Afargan, H. Smoke Invigoration Versus Inhibition of Clouds over the Amazon. Science 2008, 321, 946–949. [Google Scholar] [CrossRef]
- Rosenfeld, D. Suppression of Rain and Snow by Urban and Industrial Air Pollution. Science 2000, 287, 1793–1796. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Lohmann, U.; Raga, G.B.; O’Dowd, C.D.; Kulmala, M.; Fuzzi, S.; Reissell, A.; Andreae, M.O. Flood or Drought: How Do Aerosols Affect Precipitation? Science 2008, 321, 1309–1313. [Google Scholar] [CrossRef]
- Torres, O.; Bhartia, P.K.; Herman, J.R.; Ahmad, Z.; Gleason, J. Derivation of aerosol properties from satellite meas-urements of backscattered ultraviolet radiation: Theoretical basis. J. Geophys. Res. 1998, 103, 17099–17110. [Google Scholar] [CrossRef]
- Torres, O.; Bhartia, P.K.; Herman, J.R.; Sinyuk, A.; Ginoux, P.; Holben, B. A Long-Term Record of Aerosol Optical Depth from TOMS Observations and Comparison to AERONET Measurements. J. Atmos. Sci. 2002, 59, 398–413. [Google Scholar] [CrossRef]
Number | Average Flash Number (fl) | Average Thunderstorm Lifetime (h) | Average Flash Rate (fl h−1) | |
---|---|---|---|---|
Local convection (small scale) | 63 | 110 | 4.02 | 82.31 |
Frontal systems (synoptic scale) | 569 | 1917 | 12.02 | 139.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Lu, G.; Shi, T.; Ma, M.; Zhu, B.; Liu, D.; Peng, C.; Wang, Y. Enhancement of Cloud-to-Ground Lightning Activity Caused by the Urban Effect: A Case Study in the Beijing Metropolitan Area. Remote Sens. 2021, 13, 1228. https://doi.org/10.3390/rs13071228
Wang Y, Lu G, Shi T, Ma M, Zhu B, Liu D, Peng C, Wang Y. Enhancement of Cloud-to-Ground Lightning Activity Caused by the Urban Effect: A Case Study in the Beijing Metropolitan Area. Remote Sensing. 2021; 13(7):1228. https://doi.org/10.3390/rs13071228
Chicago/Turabian StyleWang, Yongping, Gaopeng Lu, Tao Shi, Ming Ma, Baoyou Zhu, Dongxia Liu, Changzhi Peng, and Yu Wang. 2021. "Enhancement of Cloud-to-Ground Lightning Activity Caused by the Urban Effect: A Case Study in the Beijing Metropolitan Area" Remote Sensing 13, no. 7: 1228. https://doi.org/10.3390/rs13071228
APA StyleWang, Y., Lu, G., Shi, T., Ma, M., Zhu, B., Liu, D., Peng, C., & Wang, Y. (2021). Enhancement of Cloud-to-Ground Lightning Activity Caused by the Urban Effect: A Case Study in the Beijing Metropolitan Area. Remote Sensing, 13(7), 1228. https://doi.org/10.3390/rs13071228