Relative Total Variation Structure Analysis-Based Fusion Method for Hyperspectral and LiDAR Data Classification
Abstract
:1. Introduction
- Feature-based stack structure: The method of stacking features to create a spectral-spatial cube is relatively simple [33,34]. However, the stacked feature vector assigned to each pixel has a high dimensionality, which contributes to the curse of dimensionality and a limited number of available training samples [35].
- Multiple kernels learning : Integrating multi-source data based on multiple kernels is effective [5]. For example, Camps-Valls et al. suggested a general kernel method-based architecture that allows multi-sensor images to be combined with contextual information [36]. However, it is a challenging job to build an acceptable kernel and to pick its parameters [37].
- Sparse representation: Some fusion strategies combine heterogeneous features by dictionary creation and sparse coefficient solutions based on sparse representation [38,39]. These are non-parametric approaches that do not require any data distribution or mathematical estimation assumptions. Dian et al. formulated the fusion problem as the calculation of the spectral basis and coefficients by taking advantage of the non-local spatial self-similarities, prior knowledge of the spectral unmixing, and a sparse prior [40]. Nevertheless, how to solve the problem of optimization in sparse representation is a tough task [35].
- Graph-based method: The discriminant graph-based method merges heterogeneous features by mining the manifold structure of these features [3,41]. Liao et al. proposed a general graph-based fusion approach to combine dimension reduction and the spectral details with morphological profiles (MPs) and apply the method to the HSI and LiDAR fusion [1].
- Deep learning: Deep learning approaches such as convolutional neural networks (CNNs) can derive layer-by-layer joint spectral-spatial features [12,42,43,44]. In extracting non-linear and hidden features, these approaches have great promise. However, deep learning networks have hyper-parameters and are thus vulnerable to the over-fitting problem [35].
- (1)
- First, this paper proposes a novel algorithm for the fusion of HSI and LiDAR data based on RTV and nonparametric weighted feature extraction. The proposed method RTVSA can effectively improve the classification accuracy of the HSI and LiDAR fusion data, extract the structural association from heterogeneous data, and have noise adaptability.
- (2)
- The spatial features used in the HSI and LiDAR fusion are studied in this paper. It is proven that the LBP and EMAP features can achieve high classification accuracy.
2. Related Works
2.1. Random Forest
2.2. Convolutional Neural Network
3. Methods
3.1. Feature Extraction
3.1.1. Local Binary Pattern
3.1.2. Extended Multi-Attribute Profile
3.1.3. Gabor Filter
3.2. Relative Total Variation Structure Analysis
4. Materials
4.1. 2012 Houston Dataset
4.2. 2017 Houston Dataset
5. Results
5.1. Experiment Settings
- EMAP : According to References [21,24,25], three different attributes are considered when constructing the EMAP: the area, standard deviation, and length of the diagonal of the bounding box. The EMAP with the area attribute describes the proportion of the structure in the scene. To create the profile with the area attribute, the sizes of the SE were set to 10, 15, and 20. The standard deviation attribute performs multi-layer decomposition on objects in the scene that are not related to the geometric shape of the area, but models the gray uniformity of the pixels in the area [21]. For the standard deviation, the size of the SE was 150. The length attribute gives the diagonal length of the smallest rectangle surrounding the connected components, and the sizes of the SEs were set to 50, 100, and 500.
- Gabor: Before extracting Gabor features, the HSI was used to extract the first seven principal components using principal component analysis. For each Gabor filter, the frequency length was set to , , , and , and the angle between the frequency and the spectral size was set to 0, , , and .
- LBP: The input data were first normalized. The circle of radius Q was set to one, and the number of data points P on the circular symmetric neighbor set was eight.
5.2. Evaluation Indexes
5.3. Results and Analysis
5.3.1. The 2012 Houston Dataset
5.3.2. The 2017 Houston Dataset
5.4. Parametric Analysis
6. Discussion
- (1)
- In this study, three feature extraction methods, the LBP, EMAP, and Gabor, are used to extract the spatial features of HSI and LiDAR. The results in Table 2, Table 3, Table 4 and Table 5 show that the use of these three features can improve the accuracy of land cover classification. In the 2012 Houston dataset, the EMAP feature provides the highest value of OA. Compared with other methods, the EMAP feature obtains the highest classification accuracy in the classes of healthy grass, stressed grass, synthetic grass, trees, soil, residential, commercial, and roads. However, it is slightly inferior to the performance of the LBP feature in the other classes. The EMAP extracts multi-scale structural information, while the LBP feature shows the texture feature of a local area. In the 2017 Houston dataset, different from the 2012 Houston dataset, the LBP obtains the highest classification accuracy. The reason is that the 2017 Houston dataset with a 1m GSD contains more detailed information, and the 2017 Houston dataset used in this paper only covers a part of the 2012 Houston dataset. When the sample is in a homogeneous region, the LBP feature plays an important role. When the sample contains more boundary regions, the performance of the EMAP feature is better.
- (2)
- Although the two datasets used in this paper cover part of the same area, the classification accuracy of the 2012 Houston dataset is slightly higher than that of the 2017 Houston dataset. This is due to many reasons. The two datasets have different spatial resolutions, where the 2012 Houston dataset has a 2.5 m GSD and the 2017 Houston dataset a 2.5 m GSD. The dimensions of the HSI and LiDAR are not the same in the two datasets. The two datasets use different data types. The 2017 Houston dataset contains multispectral LiDAR, while the 2012 Houston dataset contains a LiDAR-derived DSM. In addition, the dataset used in this paper is involved in the area of Houston University, but the geo-reference is not part of the paper.
- (3)
- The feature-level fusion method proposed in this paper only contains a single spatial feature. Some researchers have found that the fusion of multiple features can improve the accuracy of land cover classification [63,64]. Therefore, the fusion of multiple features to improve the usability of remote sensing images will be considered in future work.
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liao, W.; Pižurica, A.; Bellens, R.; Gautama, S.; Philips, W. Generalized Graph-Based Fusion of Hyperspectral and LiDAR Data Using Morphological Features. IEEE Geosci. Remote Sens. Lett. 2015, 12, 552–556. [Google Scholar] [CrossRef]
- Xia, J.; Yokoya, N.; Iwasaki, A. Fusion of Hyperspectral and LiDAR Data With a Novel Ensemble Classifier. IEEE Geosci. Remote Sens. Lett. 2018, 15, 957–961. [Google Scholar] [CrossRef]
- Gu, Y.; Wang, Q. Discriminative Graph-Based Fusion of HSI and LiDAR Data for Urban Area Classification. IEEE Geosci. Remote Sens. Lett. 2017, 14, 906–910. [Google Scholar] [CrossRef]
- Rasti, B.; Ghamisi, P.; Plaza, J.; Plaza, A. Fusion of Hyperspectral and LiDAR Data Using Sparse and Low-Rank Component Analysis. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6354–6365. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Wang, Q.; Jia, X.; Benediktsson, J.A. A Novel MKL Model of Integrating LiDAR Data and MSI for Urban Area Classification. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5312–5326. [Google Scholar] [CrossRef]
- Rasti, B.; Ghamisi, P.; Gloaguen, R. Hyperspectral and LiDAR Fusion Using Extinction Profiles and Total Variation Component Analysis. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3997–4007. [Google Scholar] [CrossRef]
- Sankey, T.; Donager, J.; McVay, J.; Sankey, J.B. UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA. Remote Sens. Environ. 2017, 195, 30–43. [Google Scholar] [CrossRef]
- Dalponte, M.; Bruzzone, L.; Gianelle, D. Fusion of Hyperspectral and LIDAR Remote Sensing Data for Classification of Complex Forest Areas. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1416–1427. [Google Scholar] [CrossRef] [Green Version]
- Alonzo, M.; Bookhagen, B.; Roberts, D.A. Urban tree species mapping using hyperspectral and lidar data fusion. Remote Sens. Environ. 2014, 148, 70–83. [Google Scholar] [CrossRef]
- Swatantran, A.; Dubayah, R.; Roberts, D.; Hofton, M.; Blair, J.B. Mapping biomass and stress in the Sierra Nevada using lidar and hyperspectral data fusion. Remote Sens. Environ. 2011, 115, 2917–2930. [Google Scholar] [CrossRef] [Green Version]
- Buckley, S.J.; Kurz, T.H.; Howell, J.A.; Schneider, D. Terrestrial lidar and hyperspectral data fusion products for geological outcrop analysis. Comput. Geosci. 2013, 54, 249–258. [Google Scholar] [CrossRef]
- Li, S.; Hao, Q.; Kang, X.; Benediktsson, J.A. Gaussian Pyramid Based Multiscale Feature Fusion for Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3312–3324. [Google Scholar] [CrossRef]
- Falco, N.; Benediktsson, J.A.; Bruzzone, L. Spectral and Spatial Classification of Hyperspectral Images Based on ICA and Reduced Morphological Attribute Profiles. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6223–6240. [Google Scholar] [CrossRef] [Green Version]
- Licciardi, G.; Pacifici, F.; Tuia, D.; Prasad, S.; West, T.; Giacco, F.; Thiel, C.; Inglada, J.; Christophe, E.; Chanussot, J.; et al. Decision Fusion for the Classification of Hyperspectral Data: Outcome of the 2008 GRS-S Data Fusion Contest. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3857–3865. [Google Scholar] [CrossRef] [Green Version]
- Hang, R.; Liu, Q.; Sun, Y.; Yuan, X.; Pei, H.; Plaza, J.; Plaza, A. Robust Matrix Discriminative Analysis for Feature Extraction from Hyperspectral Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2002–2011. [Google Scholar] [CrossRef]
- Kang, X.; Li, S.; Benediktsson, J.A. Feature Extraction of Hyperspectral Images with Image Fusion and Recursive Filtering. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3742–3752. [Google Scholar] [CrossRef]
- Fang, L.; He, N.; Li, S.; Ghamisi, P.; Benediktsson, J.A. Extinction Profiles Fusion for Hyperspectral Images Classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 1803–1815. [Google Scholar] [CrossRef]
- Gao, L.; Hong, D.; Yao, J.; Zhang, B.; Gamba, P.; Chanussot, J. Spectral Superresolution of Multispectral Imagery with Joint Sparse and Low-Rank Learning. IEEE Trans. Geosci. Remote Sens. 2020, 1–12. [Google Scholar] [CrossRef]
- Jia, S.; Wu, K.; Zhu, J.; Jia, X. Spectral-Spatial Gabor Surface Feature Fusion Approach for Hyperspectral Imagery Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 1142–1154. [Google Scholar] [CrossRef]
- Jia, S.; Tang, G.; Zhu, J.; Li, Q. A Novel Ranking-Based Clustering Approach for Hyperspectral Band Selection. IEEE Trans. Geosci. Remote Sens. 2016, 54, 88–102. [Google Scholar] [CrossRef]
- Dalla Mura, M.; Benediktsson, J.A.; Waske, B.; Bruzzone, L. Morphological Attribute Profiles for the Analysis of Very High Resolution Images. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3747–3762. [Google Scholar] [CrossRef]
- Ghamisi, P.; Benediktsson, J.A.; Phinn, S. Land cover classification using both hyperspectral and LiDAR data. Int. J. Image Data Fusion 2015, 6, 189–215. [Google Scholar] [CrossRef]
- Khodadadzadeh, M.; Li, J.; Prasad, S.; Plaza, A. Fusion of Hyperspectral and LiDAR Remote Sensing Data Using Multiple Feature Learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2971–2983. [Google Scholar] [CrossRef]
- Mura, M.D.; Benediktsson, J.A.; Waske, B.; Bruzzone, L. Extended profiles with morphological attribute filters for the analysis of hyperspectral data. Int. J. Remote Sens. 2010, 31, 5975–5991. [Google Scholar] [CrossRef]
- Kwan, C.; Gribben, D.; Ayhan, B.; Bernabe, S.; Plaza, A.; Selva, M. Improving Land Cover Classification Using Extended Multi-Attribute Profiles (EMAP) Enhanced Color, Near Infrared, and LiDAR Data. Remote Sens. 2020, 12, 1392. [Google Scholar] [CrossRef]
- Luo, R.; Liao, W.; Zhang, H.; Zhang, L.; Scheunders, P.; Pi, Y.; Philips, W. Fusion of Hyperspectral and LiDAR Data for Classification of Cloud-Shadow Mixed Remote Sensed Scene. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3768–3781. [Google Scholar] [CrossRef]
- Kang, X.; Li, C.; Li, S.; Lin, H. Classification of Hyperspectral Images by Gabor Filtering Based Deep Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1166–1178. [Google Scholar] [CrossRef]
- Li, W.; Du, Q. Gabor-Filtering-Based Nearest Regularized Subspace for Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1012–1022. [Google Scholar] [CrossRef]
- He, L.; Li, J.; Plaza, A.; Li, Y. Discriminative Low-Rank Gabor Filtering for Spectral-Spatial Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1381–1395. [Google Scholar] [CrossRef]
- Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [Google Scholar] [CrossRef]
- Ge, C.; Du, Q.; Li, W.; Li, Y.; Sun, W. Hyperspectral and LiDAR Data Classification Using Kernel Collaborative Representation Based Residual Fusion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 1963–1973. [Google Scholar] [CrossRef]
- Fang, L.; Li, S.; Duan, W.; Ren, J.; Benediktsson, J.A. Classification of Hyperspectral Images by Exploiting Spectral-Spatial Information of Superpixel via Multiple Kernels. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6663–6674. [Google Scholar] [CrossRef] [Green Version]
- Puttonen, E.; Jaakkola, A.; Litkey, P.; Hyyppä, J. Tree classification with fused mobile laser scanning and hyperspectral data. Sensors 2011, 11, 5158–5182. [Google Scholar] [CrossRef] [PubMed]
- Pedergnana, M.; Marpu, P.R.; Dalla Mura, M.; Benediktsson, J.A.; Bruzzone, L. Classification of Remote Sensing Optical and LiDAR Data Using Extended Attribute Profiles. IEEE J. Sel. Top. Signal Process. 2012, 6, 856–865. [Google Scholar] [CrossRef]
- Imani, M.; Ghassemian, H. An overview on spectral and spatial information fusion for hyperspectral image classification: Current trends and challenges. Inf. Fusion 2020, 59, 59–83. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Gomez-Chova, L.; Munoz-Mari, J.; Rojo-Alvarez, J.L.; Martinez-Ramon, M. Kernel-Based Framework for Multitemporal and Multisource Remote Sensing Data Classification and Change Detection. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1822–1835. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, H.L.; Prasad, S.; Pasolli, E.; Jung, J.; Crawford, M. Ensemble Multiple Kernel Active Learning For Classification of Multisource Remote Sensing Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2015, 8, 845–858. [Google Scholar] [CrossRef]
- Zhang, Y.; Prasad, S. Multisource Geospatial Data Fusion via Local Joint Sparse Representation. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3265–3276. [Google Scholar] [CrossRef]
- Rasti, B.; Ghamisi, P. Remote sensing image classification using subspace sensor fusion. Inf. Fusion 2020, 64, 121–130. [Google Scholar] [CrossRef]
- Dian, R.; Li, S.; Fang, L.; Wei, Q. Multispectral and hyperspectral image fusion with spatial-spectral sparse representation. Inf. Fusion 2019, 49, 262–270. [Google Scholar] [CrossRef]
- Hong, D.; Gao, L.; Yao, J.; Zhang, B.; Plaza, A.; Chanussot, J. Graph Convolutional Networks for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2020, 1–13. [Google Scholar] [CrossRef]
- Chen, Y.; Li, C.; Ghamisi, P.; Jia, X.; Gu, Y. Deep Fusion of Remote Sensing Data for Accurate Classification. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1253–1257. [Google Scholar] [CrossRef]
- Zhang, M.; Li, W.; Du, Q.; Gao, L.; Zhang, B. Feature Extraction for Classification of Hyperspectral and LiDAR Data Using Patch-to-Patch CNN. IEEE Trans. Cybern. 2020, 50, 100–111. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Zhu, D.; Yang, J.; Li, B. Multisource hyperspectral and lidar data fusion for urban land use mapping based on a modified two-branch convolutional neural network. ISPRS Int. J. Geo Inf. 2019, 8, 28. [Google Scholar] [CrossRef] [Green Version]
- Rudin, L.I.; Osher, S.; Fatemi, E. Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 1992, 60, 259–268. [Google Scholar] [CrossRef]
- Palsson, F.; Sveinsson, J.R.; Ulfarsson, M.O. A New Pansharpening Algorithm Based on Total Variation. IEEE Geosci. Remote Sens. Lett. 2014, 11, 318–322. [Google Scholar] [CrossRef]
- Chang, Y.; Yan, L.; Fang, H.; Liu, H. Simultaneous Destriping and Denoising for Remote Sensing Images With Unidirectional Total Variation and Sparse Representation. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1051–1055. [Google Scholar] [CrossRef]
- Duan, P.; Kang, X.; Li, S.; Ghamisi, P. Noise-Robust Hyperspectral Image Classification via Multi-Scale Total Variation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 1948–1962. [Google Scholar] [CrossRef]
- Kumar, M.; Dass, S. A Total Variation-Based Algorithm for Pixel-Level Image Fusion. IEEE Trans. Image Process. 2009, 18, 2137–2143. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Chen, C.; Li, C.; Huang, J. Infrared and visible image fusion via gradient transfer and total variation minimization. Inf. Fusion 2016, 31, 100–109. [Google Scholar] [CrossRef]
- Quan, Y.; Tong, Y.; Feng, W.; Dauphin, G.; Huang, W.; Xing, M. A Novel Image Fusion Method of Multi-Spectral and SAR Images for Land Cover Classification. Remote Sens. 2020, 12, 3801. [Google Scholar] [CrossRef]
- Feng, W.; Dauphin, G.; Huang, W.; Quan, Y.; Liao, W. New margin-based subsampling iterative technique in modified random forests for classification. Knowl. Syst. 2019, 182, 104845. [Google Scholar] [CrossRef]
- Feng, W.; Dauphin, G.; Huang, W.; Quan, Y.; Bao, W.; Wu, M.; Li, Q. Dynamic Synthetic Minority Over-Sampling Technique-Based Rotation Forest for the Classification of Imbalanced Hyperspectral Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2159–2169. [Google Scholar] [CrossRef]
- Feng, W.; Huang, W.; Bao, W. Imbalanced Hyperspectral Image Classification With an Adaptive Ensemble Method Based on SMOTE and Rotation Forest With Differentiated Sampling Rates. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1879–1883. [Google Scholar] [CrossRef]
- Feng, W.; Huang, W.; Ren, J. Class Imbalance Ensemble Learning Based on the Margin Theory. Appl. Sci. 2018, 8, 815. [Google Scholar] [CrossRef] [Green Version]
- Quan, Y.; Zhong, X.; Feng, W.; Dauphin, G.; Gao, L.; Xing, M. A Novel Feature Extension Method for the Forest Disaster Monitoring Using Multispectral Data. Remote Sens. 2020, 12, 2261. [Google Scholar] [CrossRef]
- Qiang Li, W.F.; Quan, Y. Trend and forecasting of the COVID-19 outbreak in China. J. Infect. 2020, 80, 469–496. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.K.; Krishna, G.; Dubey, S.R.; Chaudhuri, B.B. HybridSN: Exploring 3D-2-D CNN Feature Hierarchy for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2020, 17, 277–281. [Google Scholar] [CrossRef] [Green Version]
- Shen, L.; Jia, S. Three-Dimensional Gabor Wavelets for Pixel-Based Hyperspectral Imagery Classification. IEEE Trans. Geosci. Remote Sens. 2011, 49, 5039–5046. [Google Scholar] [CrossRef]
- Xu, L.; Yan, Q.; Xia, Y.; Jia, J. Structure extraction from texture via relative total variation. ACM Trans. Graph. TOG 2012, 31, 1–10. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J. An assessment of the effectiveness of a random forest classifier for land cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Mu, C.; Liu, Y.; Liu, Y. Hyperspectral Image Spectral-Spatial Classification Method Based on Deep Adaptive Feature Fusion. Remote Sens. 2021, 13, 746. [Google Scholar] [CrossRef]
- Mohla, S.; Pande, S.; Banerjee, B.; Chaudhuri, S. FusAtNet: Dual Attention Based SpectroSpatial Multimodal Fusion Network for Hyperspectral and LiDAR Classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Seattle, WA, USA, 14–19 June 2020. [Google Scholar]
Dataset | The 2012 Houston Dataset | Dataset | The 2017 Houston Dataset | ||||||
---|---|---|---|---|---|---|---|---|---|
No. | Class Name | Train | Test | Total | No. | Class Name | Train | Test | Total |
1 | Healthy grass | 198 | 1053 | 1251 | 1 | Healthy grass | 98 | 9701 | 9799 |
2 | Stressed grass | 190 | 1064 | 1254 | 2 | Stressed grass | 325 | 32,177 | 32,502 |
3 | Synthetic grass | 192 | 505 | 697 | 3 | Artificial turf | 7 | 677 | 684 |
4 | Trees | 188 | 1056 | 1244 | 4 | Evergreen trees | 136 | 13,452 | 13,588 |
5 | Soil | 186 | 1056 | 1242 | 5 | Deciduous trees | 50 | 4998 | 5048 |
6 | Water | 182 | 143 | 325 | 6 | Bare earth | 45 | 4471 | 4516 |
7 | Residential | 196 | 1072 | 1268 | 7 | Water | 3 | 263 | 266 |
8 | Commercial | 191 | 1053 | 1244 | 8 | Residential | 398 | 39,364 | 39,762 |
9 | Road | 193 | 1059 | 1252 | 9 | Commercial | 2237 | 221,447 | 223,684 |
10 | Highway | 191 | 1036 | 1227 | 10 | Roads | 458, | 45,352 | 45,810 |
11 | Railway | 181 | 1054 | 1235 | 11 | Sidewalks | 340 | 33,662 | 34,002 |
12 | Parking Lot 1 | 192 | 1041 | 1233 | 12 | Crosswalks | 15 | 1501 | 1516 |
13 | Parking Lot 2 | 184 | 285 | 469 | 13 | Major thoroughfares | 464 | 45,894 | 46,358 |
14 | Tennis Court | 181 | 247 | 428 | 14 | Highways | 98 | 9751 | 9849 |
15 | Running Track | 187 | 473 | 660 | 15 | Railways | 69 | 6868 | 6937 |
16 | Paved parking lots | 115 | 11,360 | 11475 | |||||
17 | Unpaved parking lots | 1 | 148 | 149 | |||||
18 | Cars | 66 | 6512 | 6578 | |||||
19 | Trains | 54 | 5311 | 5365 | |||||
20 | Stadium seats | 68 | 6756 | 6824 | |||||
Total | 2832 | 12,197 | 15,029 | Total | 5047 | 499,665 | 504,712 |
Features | LBP | EMAP | Gabor | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Class | HSI | LiDAR | HSI | LiDAR | RTVSA | HSI | LiDAR | RTVSA | HSI | LiDAR | RTVSA |
r | 144 | 1 | 413 | 59 | 30 | 1584 | 11 | 30 | 364 | 52 | 30 |
Healthy grass | 96.18 | 41.36 | 96.79 | 40.31 | 93.48 | 96.70 | 73.94 | 98.09 | 94.96 | 17.20 | 95.40 |
Stressed grass | 98.09 | 22.88 | 95.23 | 32.93 | 87.18 | 98.53 | 57.02 | 99.05 | 96.36 | 7.19 | 93.59 |
Synthetic grass | 93.14 | 57.57 | 94.70 | 67.86 | 96.88 | 99.69 | 91.89 | 100.00 | 98.44 | 34.17 | 98.44 |
Trees | 98.25 | 37.94 | 96.15 | 51.31 | 89.95 | 95.72 | 76.57 | 97.64 | 91.17 | 46.07 | 96.50 |
Soil | 96.33 | 38.32 | 97.81 | 37.97 | 90.55 | 97.99 | 71.74 | 100.00 | 99.91 | 15.14 | 96.85 |
Water | 90.97 | 22.74 | 87.63 | 13.38 | 93.98 | 88.96 | 75.25 | 86.29 | 74.58 | 0.33 | 81.27 |
Residential | 85.00 | 31.62 | 84.32 | 36.16 | 92.03 | 95.54 | 79.86 | 97.17 | 88.77 | 46.87 | 92.72 |
Commercial | 87.50 | 52.71 | 81.12 | 51.40 | 87.67 | 85.31 | 87.33 | 97.55 | 90.21 | 34.44 | 95.19 |
Road | 77.26 | 27.00 | 73.26 | 32.55 | 75.69 | 88.37 | 53.56 | 95.31 | 77.34 | 24.05 | 90.89 |
Highway | 86.09 | 21.43 | 79.89 | 24.62 | 98.41 | 88.57 | 54.30 | 97.79 | 96.72 | 20.11 | 98.94 |
Railway | 81.16 | 26.50 | 80.90 | 45.95 | 99.91 | 96.83 | 68.05 | 98.50 | 94.19 | 44.81 | 96.74 |
Parking Lot 1 | 79.10 | 26.90 | 82.98 | 22.57 | 92.86 | 88.98 | 66.40 | 92.06 | 95.33 | 23.81 | 96.83 |
Parking Lot 2 | 25.29 | 6.03 | 25.99 | 5.10 | 93.27 | 80.51 | 44.55 | 77.49 | 92.34 | 0.46 | 92.81 |
Tennis Court | 92.89 | 23.60 | 96.95 | 44.92 | 100.00 | 97.21 | 78.68 | 99.49 | 93.15 | 0.76 | 80.71 |
Running Track | 95.72 | 44.15 | 97.20 | 54.04 | 99.01 | 99.84 | 89.95 | 99.67 | 97.69 | 2.80 | 99.67 |
AA (%) | 85.53 | 32.05 | 84.73 | 37.41 | 92.73 | 93.25 | 71.27 | 95.74 | 92.08 | 21.21 | 93.77 |
OA (%) | 87.25 | 33.03 | 86.08 | 38.39 | 91.81 | 93.48 | 70.55 | 96.75 | 92.61 | 24.93 | 94.88 |
Kappa | 0.8619 | 0.2760 | 0.8494 | 0.3336 | 0.9114 | 0.9294 | 0.6816 | 0.9649 | 0.9201 | 0.1835 | 0.9446 |
Features | LBP | EMAP | Gabor | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Class | HSI | LiDAR | HSI | LiDAR | RTVSA | HSI | LiDAR | RTVSA | HSI | LiDAR | RTVSA |
r | 144 | 1 | 413 | 59 | 30 | 1584 | 11 | 30 | 364 | 52 | 30 |
Healthy grass | 92.59 | 15.46 | 95.57 | 25.11 | 80.97 | 98.52 | 71.33 | 98 | 98.26 | 80.19 | 95.4 |
Stressed grass | 95.73 | 22.18 | 98.61 | 38.39 | 89.77 | 98.18 | 71.06 | 100 | 89.25 | 70.28 | 94.45 |
Synthetic grass | 98.08 | 6.54 | 99.53 | 16.67 | 99.07 | 99.84 | 92.52 | 99.69 | 100 | 100 | 99.69 |
Trees | 93.37 | 10.31 | 96.77 | 47.07 | 89.61 | 94.5 | 79.91 | 100 | 98.25 | 92.49 | 96.07 |
Soil | 100 | 12.69 | 99.74 | 11.64 | 86.53 | 99.83 | 80.05 | 100 | 100 | 83.9 | 98.86 |
Water | 82.59 | 3.01 | 92.64 | 4.35 | 85.95 | 95.99 | 61.54 | 100 | 96.32 | 93.31 | 86.29 |
Residential | 97.4 | 33.85 | 97.26 | 37.87 | 95.63 | 96.32 | 80.98 | 97.94 | 87.66 | 83.12 | 91.26 |
Commercial | 93.87 | 9.87 | 93.19 | 70.13 | 91.27 | 91 | 88.38 | 94.93 | 92.23 | 88.73 | 98.17 |
Road | 86.91 | 11.81 | 95.57 | 50.87 | 85.33 | 96.35 | 77.6 | 98.7 | 88.02 | 76.39 | 91.06 |
Highway | 99.66 | 3.1 | 99.38 | 43.76 | 77.77 | 100 | 98.85 | 100 | 92.12 | 93.8 | 98.94 |
Railway | 96.91 | 5.98 | 97.19 | 35.97 | 95.16 | 100 | 95.25 | 100 | 99.12 | 98.33 | 97.63 |
Parking Lot 1 | 94.99 | 5.9 | 99.3 | 19.65 | 75.42 | 97.36 | 77.89 | 98.94 | 94.89 | 79.03 | 98.24 |
Parking Lot 2 | 86.37 | 1.16 | 91.9 | 4.86 | 67.82 | 93.06 | 40.28 | 95.6 | 95.6 | 84.95 | 90.28 |
Tennis Court | 100 | 0 | 100 | 25.89 | 83.25 | 100 | 98.73 | 100 | 100 | 98.98 | 99.75 |
Running Track | 100 | 0.82 | 98.85 | 5.76 | 94.24 | 100 | 91.78 | 100 | 100 | 92.76 | 98.03 |
AA (%) | 94.57 | 9.51 | 97.03 | 29.20 | 86.52 | 97.40 | 80.41 | 98.92 | 95.45 | 87.75 | 95.61 |
OA (%) | 95.08 | 11.36 | 97.24 | 33.54 | 86.97 | 97.37 | 81.72 | 98.89 | 94.78 | 86.27 | 95.97 |
Kappa | 0.9468 | 0.0341 | 0.9701 | 0.2787 | 0.8590 | 0.9716 | 0.8022 | 0.9880 | 0.9436 | 0.8517 | 0.9564 |
Features | LBP | EMAP | Gabor | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Class | HSI | LiDAR | HSI | LiDAR | RTVSA | HSI | LiDAR | RTVSA | HSI | LiDAR | RTVSA |
r | 48 | 7 | 96 | 14 | 30 | 528 | 77 | 30 | 364 | 364 | 30 |
Healthy grass | 92.45 | 68.40 | 90.91 | 63.16 | 84.48 | 91.93 | 61.02 | 82.43 | 71.69 | 76.70 | 79.49 |
Stressed grass | 92.65 | 87.88 | 94.25 | 89.61 | 94.76 | 94.19 | 87.84 | 94.36 | 85.74 | 86.43 | 89.26 |
Artificial turf | 95.50 | 95.13 | 94.35 | 92.76 | 99.85 | 98.08 | 6.76 | 99.93 | 82.50 | 8.08 | 87.12 |
Evergreen trees | 93.05 | 86.64 | 92.96 | 87.57 | 97.16 | 94.08 | 88.30 | 97.05 | 84.83 | 93.50 | 92.01 |
Deciduous trees | 51.01 | 60.05 | 47.90 | 63.82 | 89.60 | 60.85 | 32.57 | 88.45 | 26.13 | 64.82 | 55.34 |
Bare earth | 78.30 | 63.26 | 74.39 | 52.91 | 99.36 | 85.89 | 30.27 | 94.60 | 88.74 | 39.15 | 93.79 |
Water | 59.35 | 56.70 | 67.05 | 36.28 | 89.36 | 81.10 | 30.48 | 62.77 | 32.38 | 15.67 | 69.14 |
Residential | 76.00 | 71.10 | 73.15 | 70.40 | 90.46 | 87.43 | 69.34 | 85.94 | 73.88 | 57.52 | 84.42 |
Commercial | 93.63 | 95.06 | 93.58 | 95.40 | 99.02 | 96.16 | 92.79 | 98.82 | 96.26 | 94.58 | 97.01 |
Roads | 49.91 | 54.78 | 48.07 | 54.05 | 80.28 | 58.41 | 33.75 | 75.79 | 45.45 | 48.48 | 61.63 |
Sidewalks | 43.25 | 62.11 | 40.06 | 66.91 | 69.80 | 51.42 | 27.02 | 65.22 | 31.94 | 44.70 | 47.53 |
Crosswalks | 3.52 | 2.28 | 1.47 | 1.15 | 18.66 | 5.97 | 2.67 | 8.24 | 0.70 | 2.45 | 8.05 |
Major thoroughfares | 61.00 | 56.33 | 58.91 | 55.25 | 88.78 | 70.76 | 33.15 | 79.99 | 65.91 | 52.80 | 80.04 |
Highways | 59.28 | 41.17 | 57.17 | 39.77 | 82.16 | 69.86 | 23.64 | 81.04 | 64.55 | 35.73 | 81.72 |
Railways | 87.65 | 62.00 | 89.07 | 54.80 | 98.95 | 90.28 | 6.42 | 97.61 | 93.23 | 36.95 | 96.43 |
Paved parking lots | 66.28 | 46.53 | 60.97 | 45.69 | 94.95 | 78.06 | 34.20 | 95.87 | 72.85 | 36.05 | 87.50 |
Unpaved parking lots | 38.55 | 0.86 | 4.82 | 0.00 | 91.57 | 77.11 | 3.79 | 67.99 | 52.84 | 0.17 | 53.18 |
Cars | 11.37 | 55.34 | 5.61 | 55.94 | 68.42 | 51.84 | 23.07 | 43.72 | 8.55 | 24.21 | 50.08 |
Trains | 38.31 | 50.24 | 28.22 | 44.09 | 85.76 | 67.49 | 41.11 | 67.17 | 54.05 | 52.78 | 75.21 |
Stadium seats | 73.56 | 61.70 | 68.77 | 59.21 | 99.16 | 81.83 | 20.95 | 92.40 | 56.09 | 43.78 | 75.13 |
AA (%) | 63.23 | 58.88 | 59.58 | 56.44 | 86.13 | 74.64 | 37.46 | 78.97 | 59.42 | 45.73 | 73.20 |
OA (%) | 77.61 | 77.51 | 76.39 | 77.50 | 91.83 | 83.62 | 66.71 | 89.06 | 76.85 | 72.80 | 84.52 |
Kappa | 0.7024 | 0.7055 | 0.6847 | 0.7047 | 0.8925 | 0.7837 | 0.5319 | 0.8546 | 0.6827 | 0.6280 | 0.7936 |
Features | LBP | EMAP | Gabor | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Class | HSI | LiDAR | HSI | LiDAR | RTVSA | HSI | LiDAR | RTVSA | HSI | LiDAR | RTVSA |
r | 48 | 7 | 96 | 14 | 30 | 528 | 77 | 30 | 364 | 364 | 30 |
Healthy grass | 94.53 | 69.9 | 18.94 | 74.53 | 74.28 | 61.38 | 77.37 | 86.05 | 80.25 | 81.05 | 78.67 |
Stressed grass | 93.34 | 84.96 | 80.23 | 89.1 | 93.39 | 92.48 | 90.85 | 94.9 | 92.51 | 91.1 | 93.85 |
Artificial turf | 95.05 | 0 | 0.52 | 15.47 | 96.83 | 98.27 | 85.05 | 99.67 | 100 | 91.95 | 93.58 |
Evergreen trees | 97.92 | 91.16 | 69.62 | 93.56 | 99.16 | 95.62 | 90.86 | 98.38 | 96.07 | 97.02 | 97.08 |
Deciduous trees | 83.68 | 0.6 | 5.97 | 39.56 | 96.05 | 79.84 | 69.75 | 92.29 | 75.06 | 85.38 | 75.15 |
Bare earth | 98.94 | 0 | 6.26 | 49.06 | 99.97 | 99.38 | 88.9 | 99.98 | 98.28 | 90.28 | 99.94 |
Water | 76.57 | 0 | 0 | 23.15 | 50.38 | 27.32 | 15.56 | 56.64 | 38.05 | 32.64 | 83.59 |
Residential | 93.4 | 76.33 | 47.62 | 84.62 | 99.42 | 97.53 | 90.48 | 99.16 | 92.84 | 93.08 | 94.65 |
Commercial | 98.06 | 92.76 | 91.5 | 95.64 | 99.47 | 97.58 | 96.88 | 98.79 | 98.01 | 97.94 | 98.71 |
Roads | 77.01 | 46.56 | 40.43 | 65.49 | 89.51 | 73.63 | 66.97 | 89.64 | 77.27 | 73.9 | 83.18 |
Sidewalks | 74.73 | 47.61 | 35.77 | 63.7 | 88.27 | 65.76 | 69.25 | 81.98 | 68.11 | 71.27 | 70.68 |
Crosswalks | 11.44 | 0 | 0.23 | 3.05 | 21.85 | 0.87 | 18.35 | 37.24 | 9.42 | 18.85 | 24.45 |
Major thoroughfares | 84.57 | 37.51 | 51.07 | 74.73 | 97.08 | 87.77 | 85.3 | 93.94 | 85.38 | 92.19 | 92.46 |
Highways | 94.09 | 0 | 41.84 | 72.61 | 98.84 | 93.89 | 78.52 | 97.44 | 92.78 | 93.79 | 96.19 |
Railways | 99.34 | 0 | 22.94 | 64.84 | 99.99 | 99.24 | 91.32 | 99.79 | 97.97 | 90.71 | 98.08 |
Paved parking lots | 91.97 | 16.06 | 22.75 | 65.13 | 99.51 | 95.65 | 82.43 | 99.12 | 95.06 | 87.96 | 95.64 |
Unpaved parking lots | 0.17 | 0 | 0 | 0 | 50.69 | 3.78 | 6.53 | 97.42 | 31.1 | 9.79 | 56.01 |
Cars | 95.13 | 0 | 7.52 | 56.86 | 98.4 | 90.6 | 89.56 | 98.39 | 90.36 | 89.98 | 93.7 |
Trains | 94.4 | 13.26 | 76.46 | 80.95 | 99.98 | 96.42 | 95.42 | 99.36 | 94.29 | 94.98 | 98.58 |
Stadium seats | 94.53 | 0 | 5.67 | 77.24 | 99.89 | 86.37 | 76.73 | 99.16 | 99.03 | 98.06 | 98.84 |
AA (%) | 82.44 | 28.83 | 31.27 | 59.46 | 87.65 | 77.17 | 73.30 | 90.97 | 80.59 | 79.10 | 86.15 |
OA (%) | 91.83 | 67.79 | 65.24 | 83.17 | 96.39 | 90.41 | 88.00 | 95.64 | 90.96 | 91.22 | 93.10 |
Kappa | 0.8935 | 0.5454 | 0.5285 | 0.7766 | 0.9530 | 0.8752 | 0.8424 | 0.9434 | 0.8818 | 0.8852 | 0.9100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quan, Y.; Tong, Y.; Feng, W.; Dauphin, G.; Huang, W.; Zhu, W.; Xing, M. Relative Total Variation Structure Analysis-Based Fusion Method for Hyperspectral and LiDAR Data Classification. Remote Sens. 2021, 13, 1143. https://doi.org/10.3390/rs13061143
Quan Y, Tong Y, Feng W, Dauphin G, Huang W, Zhu W, Xing M. Relative Total Variation Structure Analysis-Based Fusion Method for Hyperspectral and LiDAR Data Classification. Remote Sensing. 2021; 13(6):1143. https://doi.org/10.3390/rs13061143
Chicago/Turabian StyleQuan, Yinghui, Yingping Tong, Wei Feng, Gabriel Dauphin, Wenjiang Huang, Wentao Zhu, and Mengdao Xing. 2021. "Relative Total Variation Structure Analysis-Based Fusion Method for Hyperspectral and LiDAR Data Classification" Remote Sensing 13, no. 6: 1143. https://doi.org/10.3390/rs13061143
APA StyleQuan, Y., Tong, Y., Feng, W., Dauphin, G., Huang, W., Zhu, W., & Xing, M. (2021). Relative Total Variation Structure Analysis-Based Fusion Method for Hyperspectral and LiDAR Data Classification. Remote Sensing, 13(6), 1143. https://doi.org/10.3390/rs13061143