Evapotranspiration on Natural and Reclaimed Coral Islands in the South China Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Model Description
2.3. Data
2.4. Model Validation
2.5. Dominant Driving Factor Analysis
3. Results
3.1. Evaluation of the Model
3.2. Evapotranspiration Characteristics on Different Islands
3.3. Dominant Driving Factors for ETa
3.4. Evapotranspiration Distribution on the Three Islands
4. Discussion
4.1. Evapotranspiration Differences in Natural and Reclaimed Areas of Coral Islands
4.2. Influences of Land Use Types on Water Dynamics in Reclaimed Islands
4.3. Implications and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Werner, A.D.; Sharp, H.K.; Galvis, S.C.; Post, V.E.A.; Sinclair, P. Hydrogeology and management of freshwater lenses on atoll islands: Review of current knowledge and research needs. J. Hydrol. 2017, 551, 819–844. [Google Scholar] [CrossRef]
- Storlazzi, C.D.; Gingerich, S.B.; van Dongeren, A.; Cheriton, O.M.; Swarzenski, P.W.; Quataert, E.; Voss, C.I.; Field, D.W.; Annamalai, H.; Piniak, G.A.; et al. Most atolls will be uninhabitable by the mid-21st century because of sea-level rise exacerbating wave-driven flooding. Sci. Adv. 2018, 4, eaap9741. [Google Scholar] [CrossRef] [Green Version]
- White, I.; Falkland, T. Management of freshwater lenses on small Pacific islands. Hydrogeol. J. 2010, 18, 227–246. [Google Scholar] [CrossRef]
- Falkland, A.; Woodroffe, C. Geology and hydrogeology of Tarawa and Christmas Island, Kiribati. In Developments in Sedimentology; Elsevier: Amsterdam, The Netherlands, 2004; Volume 54, pp. 577–610. [Google Scholar]
- Falkland, A.; Custodio, E. Hydrology and Water Resources of Small Islands: A Practical Guide; Unesco: Paris, France, 1991. [Google Scholar]
- Robins, N. A review of small island hydrogeology: Progress (and setbacks) during the recent past. Q. J. Eng. Geol. Hydrogeol. 2013, 46, 157–165. [Google Scholar] [CrossRef] [Green Version]
- White, I.; Falkland, T.; Scott, D. Droughts in Small Coral Islands: Case Study, South Tarawa, Kiribati; Unesco: Paris, France, 1999. [Google Scholar]
- Van der Velde, M.; Green, S.R.; Vanclooster, M.; Clothier, B.E. Sustainable development in small island developing states: Agricultural intensification, economic development, and freshwater resources management on the coral atoll of Tongatapu. Ecol. Econ. 2007, 61, 456–468. [Google Scholar] [CrossRef]
- Post, V.E.A.; Bosserelle, A.L.; Galvis, S.C.; Sinclair, P.J.; Werner, A.D. On the resilience of small-island freshwater lenses: Evidence of the long-term impacts of groundwater abstraction on Bonriki Island, Kiribati. J. Hydrol. 2018, 564, 133–148. [Google Scholar] [CrossRef]
- Swanepoel, C.R. Effect of Coral Reefs on Wave Attenuation and Erosion: Mnemba Island, Zanzibar; University of Kwazulu-Natal: Durban, South Africa, 2017. [Google Scholar]
- Hejazian, M.; Gurdak, J.J.; Swarzenski, P.; Odigie, K.O.; Storlazzi, C.D. Land-use change and managed aquifer recharge effects on the hydrogeochemistry of two contrasting atoll island aquifers, Roi-Namur Island, Republic of the Marshall Islands. Appl. Geochem. 2017, 80, 58–71. [Google Scholar] [CrossRef] [Green Version]
- Nullet, D. Water balance of pacific atolls 1. JAWRA J. Am. Water Resour. Assoc. 1987, 23, 1125–1132. [Google Scholar] [CrossRef]
- Jocson, J.M.U.; Jenson, J.W.; Contractor, D.N. Recharge and aquifer response: Northern Guam Lens Aquifer, Guam, Mariana Islands. J. Hydrol. 2002, 260, 231–254. [Google Scholar] [CrossRef]
- Woodroffe, C.D.; Falkland, A.C. Geology and hydrogeolgy of the cocos(Keeling) islands. Dev. Sedimentol. 1997. [Google Scholar] [CrossRef]
- Falkland, A. Climate, Hydrology, and Water Resources of the Cocos (Keeling) Islands; Atoll Research Bulletin: Washington, DC, USA, 1994. [Google Scholar] [CrossRef]
- Falkland, A.C. Hydrology and Water Management on Small Tropical Islands. Hydrol. Warm Humid Reg. 1993, 216, 263–303. [Google Scholar]
- Krauss, K.W.; Duberstein, J.A.; Cormier, N.; Young, H.S.; Hathaway, S.A. Proximity to encroaching coconut palm limits native forest water use and persistence on a Pacific atoll. Ecohydrology 2015, 8, 1514–1524. [Google Scholar] [CrossRef]
- Comte, J.C.; Join, J.L.; Banton, O.; Nicolini, E. Modelling the response of fresh groundwater to climate and vegetation changes in coral islands. Hydrogeol. J. 2014, 22, 1905–1920. [Google Scholar] [CrossRef] [Green Version]
- Roupsard, O.; Bonnefond, J.M.; Irvine, M.; Berbigier, P.; Nouvellon, Y.; Dauzat, J.; Taga, S.; Hamel, O.; Jourdan, C.; Saint-Andre, L.; et al. Partitioning energy and evapo-transpiration above and below a tropical palm canopy. Agric. For. Meteorol. 2006, 139, 252–268. [Google Scholar] [CrossRef]
- Veettil, B.K.; Van, D.D.; Quang, N.X. Biodiversity and nature conservation in island ecosystems: Spatiotemporal changes in Socotra archipelago (Yemen). J. Coast. Conserv. 2020, 24, 1–9. [Google Scholar] [CrossRef]
- Somching, N.; Wongsai, S.; Wongsai, N.; Koedsin, W. Using machine learning algorithm and landsat time series to identify establishment year of para rubber plantations: A case study in Thalang district, Phuket Island, Thailand. Int. J. Remote Sens. 2020, 41, 9075–9100. [Google Scholar] [CrossRef]
- Mo, X.; Liu, S.; Lin, Z.; Wang, S.; Hu, S. Trends in land surface evapotranspiration across China with remotely sensed NDVI and climatological data for 1981–2010. Hydrol. Sci. J. 2015, 60, 2163–2177. [Google Scholar] [CrossRef] [Green Version]
- Mo, X.G.; Liu, S.X. Simulating evapotranspiration and photosynthesis of winter wheat over the growing season. Agric. For. Meteorol. 2001, 109, 203–222. [Google Scholar] [CrossRef]
- Mo, X.G.; Beven, K. Multi-objective parameter conditioning of a three-source wheat canopy model. Agric. For. Meteorol. 2004, 122, 39–63. [Google Scholar] [CrossRef]
- Zuo, X.; Su, F.; Wu, W.; Chen, Z.; Shi, W. Spatial and temporal variability of thermal stress to China’s coral reefs in South China Sea. Chin. Geogr. Sci. 2015, 25, 159–173. [Google Scholar] [CrossRef]
- Sheng, C.; Han, D.M.; Xu, H.H.; Li, F.C.; Zhang, Y.F.; Shen, Y.Q. Evaluating dynamic mechanisms and formation process of freshwater lenses on reclaimed atoll islands in the South China Sea. J. Hydrol. 2020, 584, 124641. [Google Scholar] [CrossRef]
- Zhu, C.Q.; Qin, Y.; Meng, Q.S.; Wang, X.Z.; Wang, R. Formation and sedimentary evolution characteristics of Yongshu Atoll in the South China Sea Islands. Ocean Eng. 2014, 84, 61–66. [Google Scholar] [CrossRef]
- Mu, Q.; Heinsch, F.A.; Zhao, M.; Running, S.W. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ. 2007, 111, 519–536. [Google Scholar] [CrossRef]
- Zhang, K.; Kimball, J.S.; Nemani, R.R.; Running, S.W. A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef] [Green Version]
- Leuning, R.; Zhang, Y.Q.; Rajaud, A.; Cleugh, H.; Tu, K. A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman-Monteith equation. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Cheema, M.J.M.; Immerzeel, W.W.; Miltenburg, I.J.; Pelgrum, H. Surface energy balance and actual evapotranspiration of the transboundary Indus Basin estimated from satellite measurements and the ETLook model. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, B.J.; DiGirolamo, N.E. A biophysical process-based estimate of global land surface evaporation using satellite and ancillary data—I. Model description and comparison with observations. J. Hydrol. 1998, 205, 164–185. [Google Scholar] [CrossRef]
- Li, F.; Kustas, W.P.; Prueger, J.H.; Neale, C.M.; Jackson, T.J. Utility of remote sensing–based two-source energy balance model under low-and high-vegetation cover conditions. J. Hydrometeorol. 2005, 6, 878–891. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Han, S.; Liu, S.; Song, X.; Mo, X.; Yang, L. Field evapotranspiration experiment in Zhaoshu Island of Xisha Islands, South China sea. Geogr. Res. 2021, 40, 174–186, (in Chinese with abstract in English). [Google Scholar] [CrossRef]
- Plauborg, F. Evaporation from bare soil in a temperate humid climate—Measurement using micro-lysimeters and time domain reflectometry. Agric. For. Meteorol. 1995, 76, 1–17. [Google Scholar] [CrossRef]
- Li, J.; Liu, N.; Ren, H.; Shen, W.; Jian, S. Ecological Adaptability of Seven Plant Species to Tropical Coral Island Habitat. Ecol. Environ. Sci. 2016, 25, 790–794, (in Chinese with abstract in English). [Google Scholar] [CrossRef]
- Šimůnek, J.; Šejna, M.; Saito, H.; Sakai, M.; Genuchten, M.T.V. The Hydrus-1D Software Package for Simulating the Movement of Water, Heat, and Multiple Solutes in Variably Saturated Media; Version 4.17; HYDRUS Software Series 3; Department of Environmental Sciences, University of California Riverside: Riverside, CA, USA, 2013; p. 315. [Google Scholar]
- Fayer, M.J. UNSAT-H Version 3.0: Unsaturated Soil Water and Heat Flow Model, Theory, User Manual, and Examples; Report PNNL-13249; Pacific Northwest National Laboratory: Richland, WA, USA, 2000. [Google Scholar]
- Nicholls, N. Increased Australian wheat yield due to recent climate trends. Nature 1997, 387, 484–485. [Google Scholar] [CrossRef]
- Lobell, D.B.; Field, C.B. Global scale climate–crop yield relationships and the impacts of recent warming. Environ. Res. Lett. 2007, 2. [Google Scholar] [CrossRef]
- Bai, M.; Mo, X.; Liu, S.; Hu, S. Contributions of climate change and vegetation greening to evapotranspiration trend in a typical hilly-gully basin on the Loess Plateau, China. Sci. Total. Environ. 2019, 657, 325–339. [Google Scholar] [CrossRef]
- Pei, T.T.; Wu, X.C.; Li, X.Y.; Zhang, Y.; Shi, F.Z.; Ma, Y.J.; Wang, P.; Zhang, C.C. Seasonal divergence in the sensitivity of evapotranspiration to climate and vegetation growth in the Yellow River Basin, China. J. Geophys. Res. Biogeosci. 2017, 122, 103–118. [Google Scholar] [CrossRef]
- She, D.; Xia, J.; Zhang, Y. Changes in reference evapotranspiration and its driving factors in the middle reaches of Yellow River Basin, China. Sci. Total Environ. 2017, 607–608, 1151–1162. [Google Scholar] [CrossRef]
- Chen, X.J.; Mo, X.G.; Hu, S.; Liu, S.X. Contributions of climate change and human activities to ET and GPP trends over North China Plain from 2000 to 2014. J. Geogr. Sci. 2017, 27, 661–680. [Google Scholar] [CrossRef]
- Gao, G.; Chen, D.; Xu, C.-y.; Simelton, E. Trend of estimated actual evapotranspiration over China during 1960–2002. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Pitman, J.I. Ecophysiology of tropical dry evergreen forest, Thailand: Measured and modelled stomatal conductance of Hopea ferrea, a dominant canopy emergent. J. Appl. Ecol. 1996, 33, 1366–1378. [Google Scholar] [CrossRef]
- Pour, S.H.; Abd Wahab, A.K.; Shahid, S.; Bin Ismail, Z. Changes in reference evapotranspiration and its driving factors in peninsular Malaysia. Atmos. Res. 2020, 246. [Google Scholar] [CrossRef]
- Salvucci, G.D.; Gentine, P. Emergent relation between surface vapor conductance and relative humidity profiles yields evaporation rates from weather data. Proc. Natl. Acad. Sci. USA 2013, 110, 6287–6291. [Google Scholar] [CrossRef] [Green Version]
- Bailey, R.T.; Jenson, J.W.; Olsen, A.E. Estimating the Ground Water Resources of Atoll Islands. Water 2010, 2, 1. [Google Scholar] [CrossRef]
- Han, D.; Cao, G.; Song, X. Formation processes and influencing factors of freshwater lens in artificial island of coral reef in South China Sea. Acta Geogr. Sin. 2020, 75, 1053–1064, (in Chinese with abstract in English). [Google Scholar] [CrossRef]
- Wallace, C.D.; Bailey, R.T.; Arabi, M. Rainwater catchment system design using simulated future climate data. J. Hydrol. 2015, 529, 1798–1809. [Google Scholar] [CrossRef]
- White, I.; Falkland, T.; Perez, P.; Dray, A.; Metuter, T.; Metai, E.; Overmars, M. Challenges in freshwater management in low coral atolls. J. Clean. Prod. 2007, 15, 1522–1528. [Google Scholar] [CrossRef]
- Morrison, R.J.; Woodroffe, C.D. The Soils of Kiritimati (Christmas) island, Kiribati, central Pacific: New information and comparison with previous studies. Report 2009, 63, 397–411. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Liu, X.; Xu, L. Change of Organic δ13C in Ornithogenic Sediments of the Xisha Archipelago, South China Sea and its Implication for Ecological Development. Acta Geol. Sin. Engl. Ed. 2017, 91, 1109–1119. [Google Scholar] [CrossRef]
- Graham, N.A.J.; Wilson, S.K.; Carr, P.; Hoey, A.S.; Jennings, S.; MacNeil, M.A. Seabirds enhance coral reef productivity and functioning in the absence of invasive rats. Nature 2018, 559, 250–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallace, C.D. Atoll Island Freshwater Resources: Modeling, Analysis, and Optimization; Colorado State University: Fort Collins, OR, USA, 2015. [Google Scholar]
Land Use Types | Basis of Classification | Sample Numbers |
---|---|---|
Evergreen forest | Mainly the community of Cocos nucifera on Yongxing Island | 15 |
Evergreen shrubs | Mainly the community of Scaevola sericea on Zhaoshu Island | 12 |
Mixed forests | Mainly a mixture of different vegetation species (common vegetation species, such as Calophylluminophyllum, Terminalia catappa, Cocos nucifera, Clerodendrum inerme, Scaevola sericea, Pandanus tectorius, Ceodes grandis, Guettarda speciosa, Canavalia maritima, etc.) | 31 |
Grassland | The lawn beside the airport, roads, or built-up area | 12 |
Built-up or hardened roads | Construction land or concrete roads | 12 |
Barren or sparsely vegetated area | Bare land or sparsely vegetated areas | 15 |
Land Use Types | Yongxing Island | Yongshu Island | Zhaoshu Island |
---|---|---|---|
EF/ES | NDVI | - | NDVI |
MF | NDVI | RH | NDVI |
GL | NDVI | NDVI | - |
BS | NDVI | RH | NDVI |
Land Use Types | Ec (mm)/Ratio | Es (mm)/Ratio | Ei (mm)/Ratio | ΔV (mm)/Ratio |
---|---|---|---|---|
Trees and shrubs | 520/430% | 253/57% | 118/389% | 552/−50% |
Grassland | 193/97% | 307/90% | 46/89% | 897/−23% |
Barren or sparsely vegetated areas | 89/−9% | 319/98% | 27/13% | 1007/−13% |
Built-up or hardened roads | 0/−100% | 24/−85% | 0/−100% | 1419/22% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, S.; Liu, S.; Hu, S.; Song, X.; Mo, X. Evapotranspiration on Natural and Reclaimed Coral Islands in the South China Sea. Remote Sens. 2021, 13, 1110. https://doi.org/10.3390/rs13061110
Han S, Liu S, Hu S, Song X, Mo X. Evapotranspiration on Natural and Reclaimed Coral Islands in the South China Sea. Remote Sensing. 2021; 13(6):1110. https://doi.org/10.3390/rs13061110
Chicago/Turabian StyleHan, Shengsheng, Suxia Liu, Shi Hu, Xianfang Song, and Xingguo Mo. 2021. "Evapotranspiration on Natural and Reclaimed Coral Islands in the South China Sea" Remote Sensing 13, no. 6: 1110. https://doi.org/10.3390/rs13061110
APA StyleHan, S., Liu, S., Hu, S., Song, X., & Mo, X. (2021). Evapotranspiration on Natural and Reclaimed Coral Islands in the South China Sea. Remote Sensing, 13(6), 1110. https://doi.org/10.3390/rs13061110