Individual Identification of Cheetah (Acinonyx jubatus) Based on Close-Range Remote Sensing: First Steps of a New Monitoring Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Track Sampling
2.3. Processing of Cheetahs’ Tracks
2.3.1. 2D Approach
2.3.2. 3D Approach
2.4. Geometric Morphometrics
2.4.1. Landmarking
2.4.2. Generalized Procrustes Analyses
2.4.3. Template Consideration
2.5. Statistical Analysis
2.5.1. Principal Component Analysis
2.5.2. Linear Discriminant Analysis
2.6. Accuracy Analysis
3. Results
3.1. Statistical Analysis Results
3.2. Accuracy Analysis Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vitousek, P.; Mooney, H.A.; Lubchenco, J.; Mellilo, J.M. Human Domination of Earth. Science 1997, 227, 494–499. [Google Scholar] [CrossRef] [Green Version]
- Ceballos, G.; Ehrlich, P.R.; Dirzo, R. Biological Annihilation via the Ongoing Sixth Mass Extinction Signaled by Vertebrate Population Losses and Declines. Proc. Natl. Acad. Sci. USA 2017, 114, E6089–E6096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardillo, M.; Purvis, A.; Sechrest, W.; Gittleman, J.L.; Bielby, J.; Mace, G.M. Human Population Density and Extinction Risk in the World’s Carnivores. PLoS Biol. 2004, 2, e197. [Google Scholar] [CrossRef]
- Karanth, K.U.; Chellam, R. Carnivore Conservation at the Crossroads. ORYX 2009, 43, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Durant, S.; Mitchell, N.; Ipavec, A.; Groom, R. Acinonyx Jubatus (Cheetah). IUCN Red List 2015. [Google Scholar] [CrossRef]
- Durant, S.M.; Mitchell, N.; Groom, R.; Pettorelli, N.; Ipavec, A.; Jacobson, A.P.; Woodroffe, R.; Böhm, M.; Hunter, L.T.B.; Becker, M.S.; et al. The Global Decline of Cheetah Acinonyx Jubatus and What It Means for Conservation. Proc. Natl. Acad. Sci. USA 2017, 114, 528–533. [Google Scholar] [CrossRef] [Green Version]
- Marker, L.; Cristescu, B.; Dickman, A.; Nghikembua, M.T.; Boast, L.K.; Morrison, T.; Melzheimer, J.; Fabiano, E.; Mills, G.; Wachter, B.; et al. Ecology of Free-Ranging Cheetahs. In Cheetahs: Biology and Conservation; Biodiversity of the World: Conservation from Genes to Landscapes; Academic Press: Cambridge, MA, USA, 2017; pp. 107–119. ISBN 9780128041208. [Google Scholar]
- West, G.; Heard, D.; Caulkett, N. Zoo Animal and Wildlife Immobilization and Anesthesia, 2nd ed.; John Wiley and Sons: Hoboken, NJ, USA, 2014; ISBN 9781118792919. [Google Scholar]
- Kauffman, M.J.; Sanjayan, M.; Lowenstein, J.; Nelson, A.; Jeo, R.M.; Crooks, K.R. Remote Camera-Trap Methods and Analyses Reveal Impacts of Rangeland Management on Namibian Carnivore Communities. Oryx 2007, 41, 70. [Google Scholar] [CrossRef] [Green Version]
- Liebenberg, L. A Field Guide to Animal Tracks of Southern Africa; David Philip Publishers: Cape Town, South Africa; Johannesburg, South Africa, 1990. [Google Scholar]
- Liebenberg, L. The Art of Tracking, the Origin of Science; David Philip Publishers: Cape Town, South Africa, 1990. [Google Scholar]
- Stander, P.E.; Ghau, I.I.; Tsisaba, D.; Oma, I.I., VI. Tracking and the Interpretation of Spoor: A Scientifically Sound Method in Ecology. J. Zool. 1997, 242, 329–341. [Google Scholar] [CrossRef]
- Smallwood, K.S.; Fitzhugh, E.L. A Rigorous Technique for Identifying Individual Mountain Lions Felis Concolor by Their Tracks. Biol. Conserv. 1993, 65, 51–59. [Google Scholar] [CrossRef]
- Alibhai, S.K.; Jewell, Z.C.; Law, P.R. A Footprint Technique to Identify White Rhino Ceratotherium Simum at Individual and Species Levels. Endanger. Species Res. 2008, 4, 205–218. [Google Scholar] [CrossRef]
- Alibhai, S.; Jewell, Z.; Evans, J. The Challenge of Monitoring Elusive Large Carnivores: An Accurate and Cost-Effective Tool to Identify and Sex Pumas (Puma Concolor) from Footprints. PLoS ONE 2017, 12, e0172065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jewell, Z.; Alibhai, S. Identifying Endangered Species from Footprints. SPIE 2012. [Google Scholar] [CrossRef]
- Jewell, Z.C.; Alibhai, S.K.; Weise, F.; Munro, S.; Van Vuuren, M.; Van Vuuren, R. Spotting Cheetahs: Identifying Individuals by Their Footprints. J. Vis. Exp. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Marchal, A.F.J.; Lejeune, P.; de Bruyn, P.J.N. Virtual Plaster Cast: Digital 3D Modelling of Lion Paws and Tracks Using Close-Range Photogrammetry. J. Zool. 2016, 300, 111–119. [Google Scholar] [CrossRef] [Green Version]
- Marchal, A.F.J.; Lejeune, P.; Bruyn, P.J.N. de Identification of the Anteroposterior and Mediolateral Position of Lion Paws and Tracks Using 3D Geometric Morphometrics. Afr. J. Wildl. Res. 2017, 47, 106–113. [Google Scholar] [CrossRef] [Green Version]
- Marchal, A.F.J. Monitoring Lions (Panthera Leo) Using Digital 3D Models of Their Tracks. Ph.D. Thesis, Université de Liège, Liège, Belgium, 2017. [Google Scholar]
- Zelditch, M.L.; Swiderski, D.L.; Sheets, H.D.; Fink, W.L. Geometric Morphometrics for Biologists: A Primer; Academic Press: London, UK; Waltham, MA, USA; San Diego, CA, USA, 2004; Volume 95, ISBN 9780127784601. [Google Scholar]
- Mitteroecker, P.; Gunz, P. Advances in Geometric Morphometrics. Evol. Biol. 2009, 36, 235–247. [Google Scholar] [CrossRef] [Green Version]
- Gunz, P.; Mitteroecker, P. Semilandmarks: A Method for Quantifying Curves and Surfaces. Hystrix 2013, 24. [Google Scholar] [CrossRef]
- Bookstein, F.L. Morphometric Tools for Landmark Data: Geometry and Biology; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Cucchi, T.; Baylac, M.; Evin, A.; Bignon-Lau, O.; Vigne, J.-D. Morphométrie géométrique et archéozoologie: Concepts, méthodes et applications. In Messages d’os Archéométrie du Squelette; Editions des Archives Contemporaines: Paris, France, 2015; ISBN 9782813001641. [Google Scholar]
- Sherratt, E. Quick Guide to Geomorph v.2.1.6. 2015, pp. 1–99. Available online: https://www.researchgate.net/profile/Ariel_Marcy/post/Morphometry_and_convergence_divergence/attachment/59d63b0879197b8077998163/AS%3A408679657558016%401474448231372/download/Quick_Guide_to_Geomorph_v2.1.pdf (accessed on 1 March 2021).
- Marker, L.L.; Dickman, A.J. Morphology, Physical Condition, and Growth of the Cheetah (Acinonyx Jubatus Jubatus). J. Mammal. 2003, 84, 840–850. [Google Scholar] [CrossRef] [Green Version]
- Schanz, T.; Lins, Y.; Viefhaus, H.; Barciaga, T.; Läbe, S.; Preuschoft, H.; Witzel, U.; Sander, P.M.; Dodson, P. Quantitative Interpretation of Tracks for Determination of Body Mass. PLoS ONE 2013, 8, e77606. [Google Scholar] [CrossRef] [Green Version]
- Western, D.; Moss, C.; Georgiadis, N. Age Estimation and Population Age Structure of Elephants from Footprint Dimensions. J. Wildl. Manag. 1983, 47, 1192. [Google Scholar] [CrossRef]
- Peters, S.E. Postnatal Development of Gait Behaviour and Functional Allometry in the Domestic Cat (Felis Catus). J. Zool. 1983, 199, 461–486. [Google Scholar] [CrossRef]
- Gu, J.; Alibhai, S.K.; Jewell, Z.C.; Jiang, G.; Ma, J. Sex Determination of Amur Tigers (Panthera Tigris Altaica) from Footprints in Snow. Wildl. Soc. Bull. 2014, 38, 495–502. [Google Scholar] [CrossRef]
- Russell, J.C.; Hasler, N.; Klette, R.; Rosenhahn, B. Automatic Track Recognition of Footprints for Identifying Cryptic Species. Ecology 2009, 90, 2007–2013. [Google Scholar] [CrossRef] [PubMed]
Cheetah | LH | LF | RH | RF | Total |
---|---|---|---|---|---|
AF1 | 22 | 20 | 19 | 20 | 81 |
AF2 | 18 | 21 | 20 | 24 | 83 |
AF3 | 20 | 20 | 23 | 24 | 87 |
AF4 | 23 | 19 | 24 | 21 | 87 |
AM1 | 20 | 20 | 20 | 20 | 80 |
AM2 | 20 | 20 | 20 | 20 | 80 |
AM3 | 21 | 20 | 20 | 20 | 81 |
AM4 | 23 | 21 | 24 | 22 | 90 |
Total | 167 | 161 | 170 | 171 | 669 |
2D | 3D | ||||||||
---|---|---|---|---|---|---|---|---|---|
Landmark Configuration | Fixed | Fixed | Fixed + Surface-Sliders (Common Template) | Fixed + Surface-Sliders (One Template per Dataset) | |||||
Tracks Used (n) | Factor | Shape | Form | Shape | Form | Shape | Form | Shape | Form |
All (669) | Position | 91.0% | 91.6% | 98.2% | 98.2% | 97.9% | 97.9% | − | − |
Sex | 76.8% | 87.6% | 84.5% | 87.1% | 86.2% | 89.4% | − | − | |
ID | 57.0% | 66.5% | 74.3% | 75.3% | 80.7% | 82.1% | − | − | |
LF (161) | Sex | 89.4% | 91.3% | 96.9% | 96.3% | 98.1% | 98.1% | 98.8% | 98.1% |
ID | 77.6% | 80.7% | 90.7% | 90.7% | 93.2% | 93.2% | 93.8% | 93.8% | |
LH (169) | Sex | 82.6% | 88.6% | 88.6% | 92.8% | 91.6% | 95.8% | 92.2% | 95.8% |
ID | 80.2% | 81.4% | 89.2% | 92.8% | 95.2% | 97.6% | 97.6% | 97.6% | |
RF (171) | Sex | 95.9% | 97.7% | 98.8% | 98.8% | 100.0% | 100.0% | 100.0% | 100.0% |
ID | 85.4% | 88.9% | 94.2% | 93.6% | 94.7% | 94.2% | 95.3% | 95.3% | |
RH (170) | Sex | 80.0% | 90.0% | 90.0% | 89.4% | 92.9% | 93.5% | 92.9% | 92.9% |
ID | 84.7% | 90.0% | 94.1% | 94.7% | 96.5% | 96.5% | 96.5% | 96.5% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baralle, G.; Marchal, A.F.J.; Lejeune, P.; Michez, A. Individual Identification of Cheetah (Acinonyx jubatus) Based on Close-Range Remote Sensing: First Steps of a New Monitoring Technique. Remote Sens. 2021, 13, 1090. https://doi.org/10.3390/rs13061090
Baralle G, Marchal AFJ, Lejeune P, Michez A. Individual Identification of Cheetah (Acinonyx jubatus) Based on Close-Range Remote Sensing: First Steps of a New Monitoring Technique. Remote Sensing. 2021; 13(6):1090. https://doi.org/10.3390/rs13061090
Chicago/Turabian StyleBaralle, Guillaume, Antoine F. J. Marchal, Philippe Lejeune, and Adrien Michez. 2021. "Individual Identification of Cheetah (Acinonyx jubatus) Based on Close-Range Remote Sensing: First Steps of a New Monitoring Technique" Remote Sensing 13, no. 6: 1090. https://doi.org/10.3390/rs13061090
APA StyleBaralle, G., Marchal, A. F. J., Lejeune, P., & Michez, A. (2021). Individual Identification of Cheetah (Acinonyx jubatus) Based on Close-Range Remote Sensing: First Steps of a New Monitoring Technique. Remote Sensing, 13(6), 1090. https://doi.org/10.3390/rs13061090