Research of Target Detection and Classification Techniques Using Millimeter-Wave Radar and Vision Sensors
Abstract
:1. Introduction
2. Methodology
2.1. Radar and Camera Fusion Structure
2.2. Radar Data Preprocessing
- 1.
- Select reference units for the signal data after two-dimensional FFT, and estimate the noise background in the range dimension and Doppler dimension.
- 2.
- A protective window is set to increase the detection accuracy, as the background is relatively complex. The detection threshold equation is as follows, where the detection unit is , the protection window is a rectangular window of , and μ is the threshold factor.
- 3.
- The detection threshold is compared with the average estimated noise value of the two-dimensional reference unit area. If the detection statistics of the unit to be detected exceed the threshold value determined by the false alarm probability, the detection unit is judged to have a target of
2.3. Radar and Vision Alignment
- 1.
- The offset vector of the radar relative to the world coordinate system is , and the transform equation between the polar coordinate system of the radar coordinate system and the three-dimensional world coordinate system is such that is the radial distance between the millimeter-wave radar and the target and is the azimuth angle between the radar and the target.
- 2.
- The camera imaging projects the three-dimensional objects of the world onto a two-dimensional pixel image through the camera lens. The image coordinate system is generated by the image plane into which the camera projects the world coordinate points. The center point of the image physical coordinate system is the intersection point of the optical axis and the plane, the origin pixel point of the pixel coordinate system of the image and origin point of camera coordinate system, as shown in Figure 7.
- 3.
- The transform relationship between pixel coordinate system and camera coordinate system, between camera coordinate system and world coordinate system, and between world coordinate system and image pixel coordinate system are shown as follows, where and are the physical size of each pixel of the image in and direction, respectively, is the focal length of the camera imaging, is the orthogonal unit matrix, is offset vector of the camera relative to the world coordinate system, is the camera internal parameter matrix and is the camera external parameter matrix.
2.4. Network Fusion Architecture
2.4.1. Fusion Object Detection
2.4.2. Fusion Object Classifier
3. Results
3.1. Dataset Establishment
3.1.1. Equipment
3.1.2. Dataset Structure
3.2. Joint Calibration Experiment
3.3. Radar Time-Frequency Transform
3.4. Results of Target Detection and Classification
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nobis, F.; Geisslinger, M.; Weber, M.; Betz, J.; Lienkamp, M. A Deep Learning-Based Radar and Camera Sensor Fusion Architecture for Object Detection. In Proceedings of the 2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF), Bonn, DE, USA, 15–17 October 2019; pp. 1–7. [Google Scholar]
- Xie, Y.; Tian, J.; Zhu, X.X. Linking Points with Labels in 3D: A Review of Point Cloud Semantic Segmentation. IEEE Geosci. Remote. Sens. Mag. 2020, 8, 38–59. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.-P.; Du, J.-S.; Gao, J.; Wang, W. Pedestrian Detection Based on Fusion of Millimeter Wave Radar and Vision. In Proceedings of the 2018 International Conference on Artificial Intelligence and Pattern Recognition; Association for Computing Machinery: New York, NY, USA, 2018; pp. 38–42. [Google Scholar]
- Zewge, N.S.; Kim, Y.; Kim, J.; Kim, J.-H. Millimeter-Wave Radar and RGB-D Camera Sensor Fusion for Real-Time People Detection and Tracking. In Proceedings of the 2019 7th International Conference on Robot Intelligence Technology and Applications (RiTA), Daejeon, Korea, 1–3 November 2019; IEEE: New York, NY, USA, 2019; pp. 93–98. [Google Scholar]
- Guo, Y.; Wang, H.; Hu, Q.; Liu, H.; Liu, L.; Bennamoun, M. Deep Learning for 3d Point Clouds: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 1. [Google Scholar] [CrossRef]
- YI, C.; Zhang, K.; Peng, N. A Multi-Sensor Fusion and Object Tracking Algorithm for Self-Driving Vehicles. Proceedings of the Institution of Mechanical Engineers. Part D J. Automob. Eng. 2019, 233, 2293–2300. [Google Scholar] [CrossRef]
- Elgharbawy, M.; Schwarzhaupt, A.; Frey, M.; Gauterin, F. A Real-Time Multisensor Fusion Verification Framework for Advanced Driver Assistance Systems. Transp. Res. Part F Traffic Psychol. Behav. 2019, 61, 259–267. [Google Scholar] [CrossRef]
- Corbett, E.A.; Smith, P.L. A Diffusion Model Analysis of Target Detection in Near-Threshold Visual Search. Cogn. Psychol. 2020, 120, 101289. [Google Scholar] [CrossRef]
- Zou, Z.; Shi, Z.; Guo, Y.; Ye, J. Object Detection in 20 Years: A Survey. arXiv 2019, arXiv:1905.05055. [Google Scholar]
- Hu, J.-W.; Zheng, B.-Y.; Wang, C.; Zhao, C.-H.; Hou, X.-L.; Pan, Q.; Xu, Z. A Survey on Multi-Sensor Fusion Based Obstacle Detection for Intelligent Ground Vehicles in Off-Road Environments. Front. Inf. Technol. Electron. Eng. 2020, 21, 675–769. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Y.; Niu, Q. Multi-Sensor Fusion in Automated Driving: A. Aurvey. IEEE Access 2019, 8, 2847–2868. [Google Scholar] [CrossRef]
- Feng, M.; Chen, Y.; Zheng, T.; Cen, M.; Xiao, H. Research on Information Fusion Method of Millimeter Wave Radar and Monocular Camera for Intelligent Vehicle. J. Phys. Conf. Ser. 2019, 1314, 012059. [Google Scholar] [CrossRef]
- Steinbaeck, J.; Steger, C.; Brenner, E.; Holweg, G.; Druml, N. Occupancy Grid Fusion of Low-Level Radar and Time-of-Flight Sensor Data. In Proceedings of the: 2019 22nd Euromicro Conference on Digital System Design (DSD), Kallithea, Greece, 28–30 August 2019; IEEE: New York, NY, USA, 2019; pp. 200–205. [Google Scholar]
- Will, C.; Vaishnav, P.; Chakraborty, A.; Santra, A. Human Target Detection, Tracking, and Classification Using 24-GHz FMCW Radar. IEEE Sens. J. 2019, 19, 7283–7299. [Google Scholar] [CrossRef]
- Chen, B.; Pei, X.; Chen, Z. Research on Target Detection Based on Distributed Track Fusion for Intelligent Vehicles. Sensors 2020, 20, 56. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Kim, S. Extrinsic Parameter Calibration of 2D Radar-Camera Using Point Matching and Generative Optimization. In Proceedings of the 2019 19th International Conference on Control, Automation and Systems (ICCAS), Jeju, Korea, 15–18 October 2019; IEEE: New York, NY, USA, 2019; pp. 99–103. [Google Scholar]
- Palffy, A.; Kooij, J.F.P.; Gavrila, D.M. Occlusion Aware Sensor Fusion for Early Crossing Pedestrian Detection. In Proceedings of the 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9–12 June 2019; IEEE: New York, NY, USA, 2019; pp. 1768–1774. [Google Scholar]
- Chang, S.; Zhang, Y.; Zhao, X.; Huang, S.; Feng, Z.; Wei, Z.; Zhang, F. Spatial Attention Fusion for Obstacle Detection Using MmWave Radar and Vision Sensor. Sensors 2020, 20, 956. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Guo, R.; Liang, M.; Casas, S.; Urtasun, R. Radarnet: Exploiting Radar for Robust Perception of Dynamic Objects. In Proceedings of the European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2020; pp. 496–512. [Google Scholar]
- Li, L.; Zhang, W.; Liang, Y.; Zhou, H. Preceding Vehicle Detection Method Based on Information Fusion of Millimeter Wave Radar and Deep Learning Vision. J. Phys. Conf. Ser. 2019, 1314, 012063. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Deng, Y. The Generalization Negation of Probability Distribution and its Application in Target Recognition Based on Sensor Fusion. Int. J. Distrib. Sens. Netw. 2019, 15, 1550147719849381. [Google Scholar] [CrossRef]
- Yu, Z.; Bai, J.; Chen, S.; Huang, L.; Bi, X. Camera-Radar Data Fusion for Target Detection via Kalman Filter and Bayesian Estimation. SAE Tech. Pap. 2018, 1, 1608. [Google Scholar]
- Wu, X.; Ren, J.; Wu, Y.; Shao, J. Study on Target Tracking Based on Vision and Radar Sensor Fusion. SAE Tech. Pap. 2018, 1, 613. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-Cnn: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Zhou, M.; Qiu, P.; Huang, Y.; Li, J. Radar and Vision Fusion for the Real-Time Obstacle Detection and Identification. Ind. Robot. Int. J. Robot. Res. Appl. 2019, 46, 391–395. [Google Scholar] [CrossRef]
- Kocić, J.; Nenad, J.; Vujo, D. Sensors and Sensor Fusion in Autonomous Vehicles. In Proceedings of the 2018 26th Telecommunications Forum (TELFOR), Belgrade, Serbia, 20–21 November 2018; IEEE: New York, NY, USA, 2018. [Google Scholar]
- Zhou, X.; Qian, L.-C.; You, P.-J.; Ding, Z.-G.; Han, Y.-Q. Fall Detection Using Convolutional Neural Network with Multi-Sensor Fusion. In Proceedings of the 2018 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), San Diego, CA, USA, 23–27 July 2018; IEEE: New York, NY, USA, 2018. [Google Scholar]
- Sengupta, A.; Feng, J.; Siyang, C. A Dnn-LSTM based target tracking approach using mmWave radar and camera sensor fusion. In Proceedings of the 2019 IEEE National Aerospace and Electronics Conference (NAECON), Dayton, OH, USA, 15–19 July 2019; IEEE: New York, NY, USA, 2019. [Google Scholar]
- Jha, H.; Vaibhav, L.; Debashish, C. Object Detection and Identification Using Vision and Radar Data Fusion System for Ground-Based Navigation. In Proceedings of the2019 6th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 7–8 March 2019; IEEE: New York, NY, USA, 2019. [Google Scholar]
- Ulrich, M.; Hess, T.; Abdulatif, S.; Yang, B. Person Recognition Based on Micro-Doppler and Thermal Infrared Camera Fusion for Firefighting. In Proceedings of the 2018 21st International Conference on Information Fusion (FUSION), Cambridge, UK, 10–13 July 2018; IEEE: New York, NY, USA, 2018. [Google Scholar]
- Zhong, Z.; Liu, S.; Mathew, M.; Dubey, A. Camera Radar Fusion for Increased Reliability in ADAS Applications. Electron. Imaging 2018, 2018, 258-1–258-4. [Google Scholar] [CrossRef]
- Jibrin, F.A.; Zhenmiao, D.; Yixiong, Z. An Object Detection and Classification Method using Radar and Camera Data Fusion. In Proceedings of the 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Chongqing, China, 10–13 December 2019; IEEE: New York, NY, USA, 2019. [Google Scholar]
- Cormack, D.; Schlangen, I.; Hopgood, J.R.; Clark, D.E. Joint Registration and Fusion of an Infrared Camera and Scanning Radar in a Maritime Context. IEEE Trans. Aerosp. Electron. Syst. 2019, 56, 1357–1369. [Google Scholar] [CrossRef] [Green Version]
- Kang, D.; Dongsuk, K. Camera and Radar Sensor Fusion for Robust Vehicle Localization via Vehicle Part Localization. IEEE Access 2020, 8, 75223–75236. [Google Scholar] [CrossRef]
- Dimitrievski, M.; Jacobs, L.; Veelaert, P.; Philips, W. People Tracking by Cooperative Fusion of RADAR and Camera Sensors. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 27–30 October 2019; IEEE: New York, NY, USA, 2019. [Google Scholar]
- Nabati, R.; Hairong, Q. Radar-Camera Sensor Fusion for Joint Object Detection and Distance Estimation in Autonomous Vehicles. arXiv 2020, arXiv:2009.08428. [Google Scholar]
- Jiang, Q.; Lijun, Z.; Dejian, M. Target Detection Algorithm Based on MMW Radar and Camera Fusion. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 27–30 October 2019; IEEE: New York, NY, USA, 2019. [Google Scholar]
- Zhang, R.; Siyang, C. Extending Reliability of mmWave Radar Tracking and Detection via Fusion with Camera. IEEE Access 2019, 7, 137065–137079. [Google Scholar] [CrossRef]
- Luo, F.; Stefan, P.; Eliane, B. Human Activity Detection and Coarse Localization Outdoors Using Micro-Doppler Signatures. IEEE Sens. J. 2019, 19, 8079–8094. [Google Scholar] [CrossRef]
- Severino, J.V.B.; Zimmer, A.; Brandmeier, T.; Freire, R.Z. Pedestrian Recognition Using Micro Doppler Effects of Radar Signals Based on Machine Learning and Multi-Objective Optimization. Expert Syst. Appl. 2019, 136, 304–315. [Google Scholar] [CrossRef]
- Saho, K.; Uemura, K.; Sugano, K.; Matsumoto, M. Using Micro-Doppler Radar to Measure Gait Features Associated with Cognitive Functions in Elderly Adults. IEEE Access 2019, 7, 24122–24131. [Google Scholar] [CrossRef]
- Erol, B.; Sevgi, Z.G.; Moeness, G.A. Motion Classification Using Kinematically Sifted Acgan-Synthesized Radar Micro-Doppler Signatures. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 3197–3213. [Google Scholar] [CrossRef] [Green Version]
- Lekic, V.; Zdenka, B. Automotive Radar and Camera Fusion Using Generative Adversarial Networks. Comput. Vis. Image Underst. 2019, 184, 1–8. [Google Scholar] [CrossRef]
- Alnujaim, I.; Daegun, O.; Youngwook, K. Generative Adversarial Networks for Classification of Micro-Doppler Signatures of Human Activity. IEEE Geosci. Remote. Sens. Lett. 2019, 17, 396–400. [Google Scholar] [CrossRef]
- Nabati, R.; Hairong, Q. CenterFusion: Center-based Radar and Camera Fusion for 3D Object Detection. arXiv 2020, arXiv:2011.04841. [Google Scholar]
- Yu, H.; Zhang, F.; Huang, P.; Wang, C.; Yuanhao, L. Autonomous Obstacle Avoidance for UAV based on Fusion of Radar and Monocular Camera. In Proceedings of the J International Conference on Intelligent Robots and System, Las Vegas, NV, USA, 25–29 October 2020. [Google Scholar]
- Samaras, S.; Diamantidou, E.; Ataloglou, D.; Sakellariou, N.; Vafeiadis, A.; Magoulianitis, V.; Lalas, A.; Dimou, A.; Zarpalas, D.; Votis, K.; et al. Deep Learning on Multi Sensor Data for Counter UAV Applications—A Systematic Review. Sensors 2019, 19, 4837. [Google Scholar] [CrossRef] [Green Version]
- Jovanoska, S.; Martina, B.; Wolfgang, K. Multisensor Data Fusion for UAV Detection and Tracking. In Proceedings of the2018 19th International Radar Symposium (IRS), Bonn, Germany, 20–22 June 2018; IEEE: New York, NY, USA, 2018. [Google Scholar]
- Wang, C.; Wang, Z.; Yu, Y.; Miao, X. Rapid Recognition of Human Behavior Based on Micro-Doppler Feature. In Proceedings of the 2019 International Conference on Control, Automation and Information Sciences (ICCAIS), Chengdu, China, 23–26 October 2019; IEEE: New York, NY, USA, 2019. [Google Scholar]
- Yu, Y.; Wang, Z.; Miao, X.; Wang, C. Human Parameter Estimation Based on Sparse Reconstruction. In Proceedings of the 2019 International Conference on Control, Automation and Information Sciences (ICCAIS), Chengdu, China, 23–26 October 2019; IEEE: New York, NY, USA, 2019. [Google Scholar]
- Simonyan, K.; Andrew, Z. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
Type | Advantages | Disadvantages | Max Working Distance |
---|---|---|---|
MMW-Radar |
|
| 5 m–200 m |
Camera |
|
| 250 m |
LiDAR |
|
| 200 m |
Main Parameters | Value |
---|---|
Middle frequency | 76.5 GHz |
Sampling bandwidth | 960 MHz |
Chirp time | 70.025 us |
Range resolution | 0.15625 m |
Speed resolution | 0.39139 km/h |
Maximum detection distance | 50 m |
Detection speed range | −50~50 km/h |
Detection azimuth | 48° |
Main Parameters | Value |
---|---|
Resolving power | 1920×1080 |
Sensor type | CMOS |
Focal Length & FOV | 4 mm, Horizontal: 86.2°, Vertical: 46.7°, Diagonal: 103° 6 mm, Horizontal: 54.4°, Vertical: 31.3°, Diagonal: 62.2° 8 mm, Horizontal: 42.4°, Vertical: 23.3°, Diagonal: 49.2° 12 mm, Horizontal: 26.3°, Vertical: 14.9°, Diagonal: 30° |
Dataset | Number |
---|---|
Train | 3385 |
Validation | 1451 |
Test | 1209 |
Total | 6045 |
Labels | Number |
---|---|
Pedestrians | 4188 |
Vehicle | 1857 |
Camera disabled | 1617 |
Radar disabled | 348 |
- | ||
---|---|---|
False Negative(FN) | 2064 | 525 |
False Positive(FP) | 237 | 1209 |
True Positive(TP) | 4137 | 5163 |
Precision (%) | 94.58% | 81.02% |
Recall (%) | 66.71% | 90.77% |
Model | Backbone | Car (AP50) | Car (AP75) | Car (AP100) | Person (AP50) | Person (AP75) | Person (AP100) |
---|---|---|---|---|---|---|---|
Faster R-CNN | VGG-16 | 49.67% | 45.87% | 42.26% | 64.22% | 56.91% | 47.13% |
Faster R-CNN | VGG-19 | 53.71% | 47.02% | 41.21% | 92.49% | 83.91% | 69.15% |
Radar&Faster R-CNN | VGG-16 | 53.50% | 50.29% | 48.89% | 68.72% | 65.22% | 61.96% |
Radar&Faster R-CNN | VGG-19 | 57.43% | 52.52% | 49.85% | 91.38% | 89.18% | 83.53% |
RCF-Faster R-CNN | VGG-16 | 83.21% | 77.46% | 72.08% | 92.52% | 89.42% | 76.87% |
RCF-Faster R-CNN | VGG-19 | 83.34% | 77.03% | 71.36% | 95.50% | 93.18% | 83.54% |
Model | Backbone | mAP(AP50) | mAP(AP75) | mAP(AP100) |
---|---|---|---|---|
Faster R-CNN | VGG-16 | 56.95% | 51.39% | 44.69% |
Faster R-CNN | VGG-19 | 73.10% | 65.47% | 55.08% |
Radar&Faster R-CNN | VGG-16 | 61.11% | 57.76% | 55.43% |
Radar&Faster R-CNN | VGG-19 | 74.43% | 70.85% | 66.69% |
RCF-Faster R-CNN | VGG-16 | 87.86% | 83.44% | 74.48% |
RCF-Faster R-CNN | VGG-19 | 89.42% | 85.10% | 77.45% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Miao, X.; Huang, Z.; Luo, H. Research of Target Detection and Classification Techniques Using Millimeter-Wave Radar and Vision Sensors. Remote Sens. 2021, 13, 1064. https://doi.org/10.3390/rs13061064
Wang Z, Miao X, Huang Z, Luo H. Research of Target Detection and Classification Techniques Using Millimeter-Wave Radar and Vision Sensors. Remote Sensing. 2021; 13(6):1064. https://doi.org/10.3390/rs13061064
Chicago/Turabian StyleWang, Zhangjing, Xianhan Miao, Zhen Huang, and Haoran Luo. 2021. "Research of Target Detection and Classification Techniques Using Millimeter-Wave Radar and Vision Sensors" Remote Sensing 13, no. 6: 1064. https://doi.org/10.3390/rs13061064
APA StyleWang, Z., Miao, X., Huang, Z., & Luo, H. (2021). Research of Target Detection and Classification Techniques Using Millimeter-Wave Radar and Vision Sensors. Remote Sensing, 13(6), 1064. https://doi.org/10.3390/rs13061064