Joint Learning of Contour and Structure for Boundary-Preserved Building Extraction
Abstract
:1. Introduction
- Contradiction of feature representation and spatial resolution. The encoder–decoder structure will produce more representative features in deeper layers, however, at the cost of coarser spatial resolution. This issue is widely acknowledged in the computer vision community. Although the decrease of spatial resolution may only cause issues for small objects in terrestrial or natural images, it causes blurry or zigzag effects on building boundaries when applied to orthoimages, which is undesirable for subsequent applications. As column (b) of Figure 1 shows, the boundary of the buildings are inaccurately extracted, and the smallest buildings cannot be recognized.
- Ignorance of building contours. Buildings have clear outlines, as opposed to the background, which is typically represented as the vector boundary in applications. However, the existing end-to-end paradigm generally ignores intuitive and important prior knowledge, even if the junction of the building and the background of manually labeled masks contains such vector outline information of the building. As a consequence, the extracted buildings are generally not regularized and adhesive in a complex urban environment. As Figure 1 shows, indicated by the yellow circle, column (b) extracted by MAP-Net [8], which proposed an independently parallel network that preserves multiscale spatial details and rich high-level semantics features, is inaccurate at the building boundary, specifically in adjacent areas. Even if the pixel-wise metrics such as the intersection over union (IoU) scores (as explicitly optimized in the end-to-end objective function) are relatively high, the above flaw still renders the results less useful.
2. Related Works
3. Methodology
3.1. Architecture Overview
3.2. Structural Constraint Module
3.3. Robust Feature Extraction
3.4. Loss Function
3.5. Evaluation Metrics
4. Experiments and Analysis
4.1. Datasets
4.2. Performance Comparison
4.2.1. Experiments on the WHU Dataset
4.2.2. Experiments on the Aerial Dataset
4.2.3. Experiments on the Massachusetts Dataset
4.3. Analysis on Instance-Level Metrics
4.4. Ablation Experiments
4.5. Efficiency Comparison
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jun, W.; Qiming, Q.; Xin, Y.; Jianhua, W.; Xuebin, Q.; Xiucheng, Y. A Survey of Building Extraction Methods from Optical High Resolution Remote Sensing Imagery. Remote Sens. Technol. Appl. 2016, 31, 653–662. [Google Scholar]
- Mayer, H. Automatic Object Extraction from Aerial Imagery—A Survey Focusing on Buildings. Comput. Vis. Image Underst. 1999, 74, 138–149. [Google Scholar] [CrossRef] [Green Version]
- Alshehhi, R.; Marpu, P.R.; Woon, W.L.; Dalla Mura, M. Simultaneous extraction of roads and buildings in remote sensing imagery with convolutional neural networks. ISPRS J. Photogramm. Remote Sens. 2017, 130, 139–149. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, L.; Xie, Z.; Chen, Z. Building Extraction in Very High Resolution Remote Sensing Imagery Using Deep Learning and Guided Filters. Remote Sens. 2018, 10, 144. [Google Scholar] [CrossRef] [Green Version]
- Hasan, S.; Linte, C.A. U-NetPlus: A modified encoder-decoder U-Net architecture for semantic and instance segmentation of surgical instrument. arXiv 2019, arXiv:1902.08994. [Google Scholar]
- Diakogiannis, F.I.; Waldner, F.; Caccetta, P.; Wu, C. Resunet-a: A deep learning framework for semantic segmentation of remotely sensed data. ISPRS J. Photogramm. Remote Sens. 2020, 162, 94–114. [Google Scholar] [CrossRef] [Green Version]
- Gharibbafghi, Z.; Tian, J.; Reinartz, P. Modified superpixel segmentation for digital surface model refinement and building ex-traction from satellite stereo imagery. Remote Sens. 2018, 10, 1824. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.; Liao, C.; Hu, H.; Mei, X.; Li, H. MAP-Net: Multiple Attending Path Neural Network for Building Footprint Extraction From Remote Sensed Imagery. IEEE Trans. Geosci. Remote Sens. 2020, 1–13. [Google Scholar] [CrossRef]
- Xie, S.; Tu, Z. Holistically-Nested Edge Detection. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 11–18 December 2015; pp. 1395–1403. [Google Scholar]
- Cote, M.; Saeedi, P. Automatic Rooftop Extraction in Nadir Aerial Imagery of Suburban Regions Using Corners and Variational Level Set Evolution. IEEE Trans. Geosci. Remote Sens. 2012, 51, 313–328. [Google Scholar] [CrossRef]
- Li, Z.; Shi, W.; Wang, Q.; Miao, Z. Extracting Man-Made Objects From High Spatial Resolution Remote Sensing Images via Fast Level Set Evolutions. IEEE Trans. Geosci. Remote Sens. 2014, 53, 883–899. [Google Scholar] [CrossRef]
- Liasis, G.; Stavrou, S. Building extraction in satellite images using active contours and colour features. Int. J. Remote Sens. 2016, 37, 1127–1153. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Y.; Liu, Q.; Wang, W. Hough Transform Guided Deep Feature Extraction for Dense Building Detection in Remote Sensing Images. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018. [Google Scholar]
- Hao, L.; Zhang, Y.; Cao, Z. Active Cues Collection and Integration for Building Extraction with High-Resolution Color Remote Sensing Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2675–2694. [Google Scholar] [CrossRef]
- Wang, X.; Li, P. Extraction of urban building damage using spectral, height and corner information from VHR satellite images and airborne LiDAR data. ISPRS J. Photogramm. Remote Sens. 2020, 159, 322–336. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, H.; Xiao, W.; Sheng, Y.; Su, D.; Wang, P. Building Extraction from High-Resolution Remote Sensing Images Based on GrabCut with Automatic Selection of Foreground and Background Samples. Photogramm. Eng. Remote Sens. 2020, 86, 235–245. [Google Scholar] [CrossRef]
- Huang, Z.; Cheng, G.; Wang, H.; Li, H.; Shi, L.; Pan, C. Building extraction from multi-source remote sensing images via deep deconvolution neural networks. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016. [Google Scholar]
- Kemker, R.; Salvaggio, C.; Kanan, C. Algorithms for semantic segmentation of multispectral remote sensing imagery using deep learning. ISPRS J. Photogramm. Remote Sens. 2018, 145, 60–77. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Zhang, X.; Xin, Q.; Huang, J. Developing a multi-filter convolutional neural network for semantic segmentation using high-resolution aerial imagery and LiDAR data. ISPRS J. Photogramm. Remote Sens. 2018, 143, 3–14. [Google Scholar] [CrossRef]
- Bittner, K.; Adam, F.; Cui, S.; Korner, M.; Reinartz, P. Building Footprint Extraction From VHR Remote Sensing Images Combined With Normalized DSMs Using Fused Fully Convolutional Networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2615–2629. [Google Scholar] [CrossRef] [Green Version]
- Feng, M.; Zhang, T.; Li, S.; Jin, G.; Xia, Y. An improved minimum bounding rectangle algorithm for regularized building boundary extraction from aerial LiDAR point clouds with partial occlusions. Int. J. Remote Sens. 2019, 41, 300–319. [Google Scholar] [CrossRef]
- Zhang, S.; Han, F.; Bogus, S.M. Building Footprint and Height Information Extraction from Airborne LiDAR and Aerial Imagery. In Construction Research Congress 2020: Computer Applications; American Society of Civil Engineers: Reston, VA, USA, 2020; pp. 326–335. [Google Scholar]
- Dey, E.K.; Awrangjeb, M.; Stantic, B. Outlier detection and robust plane fitting for building roof extraction from LiDAR data. Int. J. Remote Sens. 2020, 41, 6325–6354. [Google Scholar] [CrossRef]
- Zhang, P.; Du, P.; Lin, C.; Wang, X.; Li, E.; Xue, Z.; Bai, X. A Hybrid Attention-Aware Fusion Network (HAFNet) for Building Extraction from High-Resolution Imagery and LiDAR Data. Remote Sens. 2020, 12, 3764. [Google Scholar] [CrossRef]
- Mnih, V. Machine Learning for Aerial Image Labeling; University of Toronto: Toronto, ON, Canada, 2013. [Google Scholar]
- Chen, L.; Zhu, Q.; Xie, X.; Hu, H.; Zeng, H. Road extraction from VHR remote-sensing imagery via object segmentation con-strained by Gabor features. ISPRS Int. J. Geo-Inf. 2018, 7, 362. [Google Scholar] [CrossRef] [Green Version]
- Guo, M.; Liu, H.; Xu, Y.; Huang, Y. Building Extraction Based on U-Net with an Attention Block and Multiple Losses. Remote Sens. 2020, 12, 1400. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhang, J.; Ding, Y.; Liu, M.; Li, Y.; Feng, B.; Miao, S.; Yang, W.; He, H.; Zhu, J. Semantics-Constrained Advantageous Information Selection of Multimodal Spatiotemporal Data for Landslide Disaster Assessment. ISPRS Int. J. Geo-Inf. 2019, 8, 68. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.; Wang, G.; He, G.; Long, T.; Yin, R.; Zhang, Z.; Chen, S.; Luo, B. Robust Building Extraction for High Spatial Resolution Remote Sensing Images with Self-Attention Network. Sensors 2020, 20, 7241. [Google Scholar] [CrossRef]
- Wagner, F.H.; Dalagnol, R.; Tarabalka, Y.; Segantine, T.Y.; Thomé, R.; Hirye, M. U-Net-Id, an Instance Segmentation Model for Building Extraction from Satellite Images—Case Study in the Joanópolis City, Brazil. Remote Sens. 2020, 12, 1544. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, J.; Zhu, Q.; Xie, Y.; Li, W.; Fu, L.; Zhang, J.; Tan, J. The construction of personalized virtual landslide disaster environments based on knowledge graphs and deep neural networks. Int. J. Digit. Earth 2020, 13, 1637. [Google Scholar] [CrossRef]
- Zhu, Q.; Chen, L.; Hu, H.; Pirasteh, S.; Li, H.; Xie, X. Unsupervised Feature Learning to Improve Transferability of Landslide Susceptibility Representations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3917–3930. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Bittner, K.; Cui, S.; Reinartz, P. Building Extraction from Remote Sensing Data Using Fully Convolutional Networks. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-1/W1, 481–486. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Shao, X.; Guo, Z.; Chen, Q.; Yuan, W.; Shi, X.; Xu, Y.; Shibasaki, R. Automatic Building Segmentation of Aerial Imagery Using Multi-Constraint Fully Convolutional Networks. Remote Sens. 2018, 10, 407. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Hu, Y.; Peng, L.; Chen, R. Improved Anchor-Free Instance Segmentation for Building Extraction from High-Resolution Remote Sensing Images. Remote Sens. 2020, 12, 2910. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolu-tional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [Google Scholar] [CrossRef]
- Pan, X.; Zhao, J.; Xu, J. An End-to-End and Localized Post-Processing Method for Correcting High-Resolution Remote Sensing Classification Result Images. Remote Sens. 2020, 12, 852. [Google Scholar] [CrossRef] [Green Version]
- Wei, S.; Ji, S.; Lu, M. Toward Automatic Building Footprint Delineation From Aerial Images Using CNN and Regularization. IEEE Trans. Geosci. Remote Sens. 2020, 58, 2178–2189. [Google Scholar] [CrossRef]
- Li, E.; Femiani, J.; Xu, S.; Zhang, X.; Wonka, P. Robust Rooftop Extraction From Visible Band Images Using Higher Order CRF. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4483–4495. [Google Scholar] [CrossRef]
- Huang, X.; Yuan, W.; Li, J.; Zhang, L. A new building extraction postprocessing framework for high-spatial-resolution re-mote-sensing imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 10, 654–668. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Identity Mappings in Deep Residual Networks; European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2016; pp. 630–645. [Google Scholar]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890. [Google Scholar]
- Liu, P.; Liu, X.; Liu, M.; Shi, Q.; Yang, J.; Xu, X.; Zhang, Y. Building Footprint Extraction from High-Resolution Images via Spatial Residual Inception Convolutional Neural Network. Remote Sens. 2019, 11, 830. [Google Scholar] [CrossRef] [Green Version]
- Sun, G.; Huang, H.; Zhang, A.; Li, F.; Zhao, H.; Fu, H. Fusion of Multiscale Convolutional Neural Networks for Building Extraction in Very High-Resolution Images. Remote Sens. 2019, 11, 227. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Liang, J.; Weng, M.; Zhu, H. A Multiple-Feature Reuse Network to Extract Buildings from Remote Sensing Imagery. Remote Sens. 2018, 10, 1350. [Google Scholar] [CrossRef] [Green Version]
- Ji, S.; Wei, S.; Lu, M. A scale robust convolutional neural network for automatic building extraction from aerial and satellite imagery. Int. J. Remote Sens. 2019, 40, 3308–3322. [Google Scholar] [CrossRef]
- Yu, Y.; Ren, Y.; Guan, H.; Li, D.; Yu, C.; Jin, S.; Wang, L. Capsule Feature Pyramid Network for Building Footprint Extraction From High-Resolution Aerial Imagery. IEEE Geosci. Remote Sens. Lett. 2020, 1–5. [Google Scholar] [CrossRef]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- Liu, H.; Luo, J.; Huang, B.; Hu, X.; Sun, Y.; Yang, Y.; Xu, N.; Zhou, N. DE-Net: Deep Encoding Network for Building Extraction from High-Resolution Remote Sensing Imagery. Remote Sens. 2019, 11, 2380. [Google Scholar] [CrossRef] [Green Version]
- Kang, W.; Xiang, Y.; Wang, F.; You, H. EU-Net: An Efficient Fully Convolutional Network for Building Extraction from Optical Remote Sensing Images. Remote Sens. 2019, 11, 2813. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Sun, G.; Zhang, A.; Hao, Y.; Rong, J.; Zhang, L. Combined Multiscale Convolutional Neural Networks and Super-pixels for Building Extraction in Very High-Resolution Images. In Proceedings of the IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 7415–7418. [Google Scholar]
- Derksen, D.; Inglada, J.; Michel, J. Geometry Aware Evaluation of Handcrafted Superpixel-Based Features and Convolutional Neural Networks for Land Cover Mapping Using Satellite Imagery. Remote Sens. 2020, 12, 513. [Google Scholar] [CrossRef] [Green Version]
- Marmanis, D.; Schindler, K.; Wegner, J.D.; Galliani, S.; Datcu, M.; Stilla, U. Classification with an edge: Improving semantic image segmentation with boundary detection. ISPRS J. Photogramm. Remote Sens. 2018, 135, 158–172. [Google Scholar] [CrossRef] [Green Version]
- Cheng, D.; Meng, G.; Xiang, S.; Pan, C. FusionNet: Edge Aware Deep Convolutional Networks for Semantic Segmentation of Remote Sensing Harbor Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 5769–5783. [Google Scholar] [CrossRef]
- Chen, L.-C.; Barron, J.T.; Papandreou, G.; Murphy, K.; Yuille, A.L. Semantic Image Segmentation with Task-Specific Edge Detection Using CNNs and a Discriminatively Trained Domain Transform. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Takikawa, T.; Acuna, D.; Jampani, V.; Fidler, S. Gated-SCNN: Gated Shape CNNs for Semantic Segmentation. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019. [Google Scholar]
- Milletari, F.; Navab, N.; Ahmadi, S.-A. V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016. [Google Scholar]
- Ji, S.; Wei, S.; Lu, M. Fully Convolutional Networks for Multisource Building Extraction From an Open Aerial and Satellite Imagery Data Set. IEEE Trans. Geosci. Remote Sens. 2019, 57, 574–586. [Google Scholar] [CrossRef]
- Maggiori, E.; Tarabalka, Y.; Charpiat, G.; Alliez, P. Can semantic labeling methods generalize to any city? The inria aerial image labeling benchmark. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; IEEE: New York, NY, USA, 2017; Volume 2017, pp. 3226–3229. [Google Scholar]
- Shao, Z.; Tang, P.; Wang, Z.; Saleem, N.; Yam, S.; Sommai, C. BRRNet: A Fully Convolutional Neural Network for Automatic Building Extraction From High-Resolution Remote Sensing Images. Remote Sens. 2020, 12, 1050. [Google Scholar] [CrossRef] [Green Version]
Methods | IoU (%) | Precision (%) | Recall (%) | F1-Score (%) |
---|---|---|---|---|
UNet | 89.51 | 95.11 | 93.83 | 94.47 |
PSPNet | 88.87 | 94.28 | 93.93 | 94.10 |
DeepLabv3+ | 88.16 | 94.64 | 92.79 | 93.71 |
MAPNet | 90.86 | 95.62 | 94.81 | 95.21 |
SRI-Net [45] | 89.23 | 95.67 | 93.69 | 94.51 |
DE-Net [51] | 90.12 + 0.24 | 95.00 + 0.16 | 94.60 + 0.19 | 94.80 + 0.18 |
EU-Net [52] | 90.56 | 94.98 | 95.10 | 95.04 |
MA-FCN [40] | 90.70 | 95.20 | 95.10 | 95.15 |
Ours | 91.64 | 95.83 | 95.44 | 95.64 |
Methods | IoU (%) | Precision (%) | Recall (%) | F1-Score (%) |
---|---|---|---|---|
UNet | 77.51 | 88.83 | 85.88 | 87.33 |
PSPNet | 78.18 | 88.48 | 87.40 | 87.75 |
DeepLabv3+ | 73.83 | 87.27 | 82.75 | 84.95 |
MAPNet | 80.33 | 89.61 | 88.58 | 89.09 |
SRI-Net [45] | 71.76 | 85.77 | 81.46 | 83.56 |
EU-Net [52] | 80.50 | 90.28 | 88.14 | 89.20 |
Ours | 81.15 | 91.78 | 87.51 | 89.59 |
Methods | IoU (%) | Precision (%) | Recall (%) | F1-Score (%) |
---|---|---|---|---|
UNet | 70.99 | 85.53 | 80.68 | 83.33 |
PSPNet | 71.57 | 88.24 | 79.12 | 83.43 |
DeepLabv3+ | 66.18 | 82.84 | 76.69 | 79.65 |
MAPNet | 73.34 | 85.49 | 83.76 | 84.62 |
EU-Net [52] | 73.93 | 86.70 | 83.40 | 85.01 |
BRRNet [62] | 74.46 | - | - | 85.36 |
Ours | 74.51 | 85.44 | 85.34 | 85.39 |
Data Sets | TH | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Methods | F1 | IoU | F1 | IoU | F1 | IoU | F1 | IoU | F1 | IoU | ||
MAP-Net | 90.70 | 82.99 | 89.48 | 80.97 | 87.68 | 78.06 | 84.84 | 73.67 | 78.80 | 65.02 | ||
WHU | Ours | 91.66 | 84.59 | 90.66 | 82.92 | 89.22 | 80.55 | 86.80 | 76.68 | 81.46 | 68.73 | |
Improved | +0.96 | +1.60 | +1.18 | +1.95 | +1.54 | +2.49 | +1.96 | +3.01 | +2.66 | +3.71 | ||
MAP-Net | 79.56 | 66.06 | 75.53 | 60.68 | 70.98 | 55.02 | 62.81 | 45.78 | 45.57 | 29.51 | ||
Aerial | Ours | 81.87 | 69.30 | 77.95 | 63.87 | 73.75 | 58.41 | 66.40 | 49.70 | 49.31 | 32.72 | |
Improved | +2.31 | +3.24 | +2.42 | +3.19 | +2.77 | +3.39 | +3.59 | +3.92 | +3.74 | +3.21 | ||
MAP-Net | 87.29 | 77.44 | 82.65 | 70.44 | 73.67 | 58.31 | 53.01 | 36.06 | 20.49 | 11.41 | ||
Massa | Ours | 89.64 | 81.23 | 85.48 | 74.65 | 77.49 | 63.26 | 57.94 | 40.79 | 24.11 | 13.70 | |
Improved | +2.35 | +3.79 | +2.83 | +4.21 | +3.82 | +4.95 | +4.93 | +4.73 | +3.62 | +2.29 |
Methods | Structural | Multi-Loss | IoU | Precision | Recall | F1-Score |
---|---|---|---|---|---|---|
MAP-Net [8] | × | × | 90.86 | 95.62 | 94.81 | 95.21 |
Baseline | × | × | 91.00 | 95.21 | 95.36 | 95.29 |
Baseline-S | √ | × | 91.43 | 95.95 | 95.10 | 95.52 |
BaseLine+S+M | √ | √ | 91.64 | 95.83 | 95.44 | 95.64 |
Methods | IoU (%) | FLOPs (M) | Parameters (M) |
---|---|---|---|
U-NetPlus | 89.51 | 17.28 | 8.64 |
PSPNet | 88.87 | 93.48 | 46.72 |
DeepLabv3+ | 88.16 | 51.40 | 25.63 |
MAP-Net | 90.86 | 48.09 | 24.00 |
Ours | 91.64 | 49.42 | 24.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, C.; Hu, H.; Li, H.; Ge, X.; Chen, M.; Li, C.; Zhu, Q. Joint Learning of Contour and Structure for Boundary-Preserved Building Extraction. Remote Sens. 2021, 13, 1049. https://doi.org/10.3390/rs13061049
Liao C, Hu H, Li H, Ge X, Chen M, Li C, Zhu Q. Joint Learning of Contour and Structure for Boundary-Preserved Building Extraction. Remote Sensing. 2021; 13(6):1049. https://doi.org/10.3390/rs13061049
Chicago/Turabian StyleLiao, Cheng, Han Hu, Haifeng Li, Xuming Ge, Min Chen, Chuangnong Li, and Qing Zhu. 2021. "Joint Learning of Contour and Structure for Boundary-Preserved Building Extraction" Remote Sensing 13, no. 6: 1049. https://doi.org/10.3390/rs13061049
APA StyleLiao, C., Hu, H., Li, H., Ge, X., Chen, M., Li, C., & Zhu, Q. (2021). Joint Learning of Contour and Structure for Boundary-Preserved Building Extraction. Remote Sensing, 13(6), 1049. https://doi.org/10.3390/rs13061049