Feasibility Analysis of GNSS-Reflectometry for Monitoring Coastal Hazards
Abstract
:1. Introduction
2. GNSS-Reflectometry for Extreme Coastal Events
2.1. GNSS-R Rased Water Level Measurements
2.2. Enhanced GNSS-R Based Tide Gauge for Extreme Coastal Events
3. Water Level Estimation during Tsunamis in 2012 and 2015
3.1. 2012 Haida Gwaii Earthquake
3.2. 2015 Illapel Earthquake
4. Water Level Estimation during Storm Surges
4.1. Hurricane Harvey in 2017
4.2. Storm Surge in Alaska in 2019
5. Discussion
6. Summary and Conclusion
- In normal wave condition, water level fluctuation estimated by GNSS-R showed a good agreement with that by tide gauge, showing correlation coefficients of 0.933 minimum and 0.987 maximum from 2015 tsunami and Harvey events, respectively.
- GNSS-R results for both 2012 and 2015 tsunami data showed that the time of CLR drop corresponds to the tsunami arrival time collected by tidal gauges. The CLR deductions from the tsunamis were confirmed to be 47% and 59%, respectively.
- For storm surge cases, GNSS-R results kept high CLR during the entire event of storm surge and showed a high correlation with tide gauge data. The CLR calculated from Harvey indicates only 23% of deduction caused by the storm surge. Even the storm surge in Alaska showed an average CLR increase from 16.625 to 18.328 before and after the storm surge, respectively.
- The CLR difference between tsunami and storm surge events may result from the GNSS-R data window width. The characteristic periods of the extreme events, shorter than the window width, possibly degrade the CLR.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- National Centers for Environmental Information. Available online: https://www.ngdc.noaa.gov/hazard/data/publications/tsunami-hazard-assessment-2015.pdf (accessed on 15 April 2020).
- Rabinovich, A.B.; Fritz, H.M.; Tanioka, Y.; Geist, E.L. Introduction to “Global Tsunami Science: Past and Future, Volume II”. Pure Appl. Geophys. 2017, 174, 2883–2889. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.; Jung, T.; Shin, S. Numerical and Probabilistic Study on the Optimal Region for Tsunami Detection Instrument Deployment in the Eastern Sea of Korea. Appl. Sci. 2020, 10, 6071. [Google Scholar] [CrossRef]
- Rabinovich, A.B.; Eblé, M.C. Deep-Ocean Measurements of Tsunami Waves. Pure Appl. Geophys. 2015, 172, 3281–3312. [Google Scholar] [CrossRef]
- Kong, L. Post-Tsunami Field Surveys are Essential for Mitigating the Next Tsunami Disaster. Oceanography 2011, 24, 222–226. [Google Scholar] [CrossRef]
- Levin, B.; Nosov, M. Physics of Tsunamis; Springer: Dordrecht, The Netherlands, 2009; ISBN 9781402088551. [Google Scholar]
- Arcos, N.P.; Dunbar, P.K.; Stroker, K.J.; Kong, L.S.L. The Impact of Post-tsunami Surveys on the NCEI/WDS Global Historical Tsunami Database. Pure Appl. Geophys. 2019, 176, 2809–2829. [Google Scholar] [CrossRef]
- Syamsidik; Benazir; Muksin, U.; Giordano, M.; Afri, F. Post-tsunami survey of the 28 September 2018 tsunami near Palu Bay in Central Sulawesi, Indonesia: Impacts and challenges to coastal communities. Int. J. Disaster Risk Reduct. 2019, 38, 101229. [Google Scholar] [CrossRef]
- Ji, T.; Li, G. Contemporary monitoring of storm surge activity. Prog. Phys. Geogr. Earth Environ. 2020, 44, 299–314. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.; Dasgupta, R.; Hazra, S.; Mitra, D. Coastal Hazards and Vulnerability: A Review. Int. J. Geol. Earth Environ. Sci. 2012, 2, 57–69. [Google Scholar]
- Pugh, D.; Woodworth, P. Sea-Level Science: Understanding Tides, Surges, Tsunamis and Mean Sea-Level Changes; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Rabinovich, A.B. Twenty-Seven Years of Progress in the Science of Meteorological Tsunamis Following the 1992 Daytona Beach Event. Pure Appl. Geophys. 2020, 177, 1193–1230. [Google Scholar] [CrossRef]
- Stallings, R.A. “Methodological issues”. In Handbook of Disaster Research; Rodríguez, H., Quarantelli, E.L., Dynes, R.R., Eds.; Springer: New York, NY, USA, 2007; pp. 21–44. [Google Scholar]
- Geremia-Nievinski, F.; Hobiger, T.; Haas, R.; Liu, W.; Strandberg, J.; Tabibi, S.; Vey, S.; Wickert, J.; Williams, S. SNR-based GNSS reflectometry for coastal sea-level altimetry: Results from the first IAG inter-comparison campaign. J. Geod. 2020, 94, 70. [Google Scholar] [CrossRef]
- Larson, K.M.; Small, E.E.; Gutmann, E.; Bilich, A.; Axelrad, P.; Braun, J. Using GPS multipath to measure soil moisture fluctuations: Initial results. GPS Solut. 2008, 12, 173–177. [Google Scholar] [CrossRef]
- Roussel, N.; Ramillien, G.; Frappart, F.; Darrozes, J.; Gay, A.; Biancale, R.; Striebig, N.; Hanquiez, V.; Bertin, X.; Allain, D. Sea level monitoring and sea state estimate using a single geodetic receiver. Remote Sens. Environ. 2015, 171, 261–277. [Google Scholar] [CrossRef]
- Larson, K.M.; Ray, R.D.; Nievinski, F.G.; Freymueller, J.T. The accidental tide gauge: A GPS reflection case study from kachemak bay, Alaska. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1200–1204. [Google Scholar] [CrossRef] [Green Version]
- Löfgren, J.S.; Haas, R.; Scherneck, H.G. Sea level time series and ocean tide analysis from multipath signals at five GPS sites in different parts of the world. J. Geodyn. 2014, 80, 66–80. [Google Scholar] [CrossRef] [Green Version]
- Larson, K.M.; Ray, R.D.; Williams, S.D.P. A 10-year comparison of water levels measured with a geodetic GPS receiver versus a conventional tide gauge. J. Atmos. Ocean. Technol. 2017, 34, 295–307. [Google Scholar] [CrossRef] [Green Version]
- Williams, S.D.P.; Nievinski, F.G. Tropospheric delays in ground-based GNSS multipath reflectometry—Experimental evidence from coastal sites. J. Geophys. Res. Solid Earth 2017, 122, 2310–2327. [Google Scholar] [CrossRef] [Green Version]
- Leandro, R.; Santos, M.; Langley, R.B. UNB Neutral Atmosphere Models: Development and Performance. In Proceedings of the 2006 National Technical Meeting of The Institute of Navigation, Monterey, CA, USA, 18–20 January 2006. [Google Scholar]
- Saastamoinen, J. Contributions to the theory of atmospheric refraction—Part II. Refraction corrections in satellite geodesy. Bull. Géod. 1973, 47, 13–34. [Google Scholar] [CrossRef]
- Satirapod, C.; Chalermwattanachai, P. Impact of Different Tropospheric Models on GPS Baseline Accuracy: Case Study in Thailand. J. Glob. Position. Syst. 2005, 4, 36–40. [Google Scholar] [CrossRef] [Green Version]
- Boehm, J.; Niell, A.; Tregoning, P.; Schuh, H. Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; He, X.; Zhang, Q. Evaluation and combination of quad-constellation multi-GNSS multipath reflectometry applied to sea level retrieval. Remote Sens. Environ. 2019, 231. [Google Scholar] [CrossRef]
- Kalman, R.E. A new approach to linear filtering and prediction problems. J. Fluids Eng. Trans. ASME 1960, 82, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Roesler, C.; Larson, K.M. Software tools for GNSS interferometric reflectometry (GNSS-IR). GPS Solut. 2018, 22, 80. [Google Scholar] [CrossRef] [Green Version]
- Crawford, G.B.; Admire, A.R.; Dengler, L.A. Spectral Analysis of Water Level and Velocity Data from Crescent City Harbor During the April 1, 2014 Chilean Tsunami. Pure Appl. Geophys. 2017, 174, 2987–3002. [Google Scholar] [CrossRef]
- Wu, Q.; Sun, M.; Zhou, C.; Zhang, P. Precise Point Positioning Using Dual-Frequency GNSS Observations on Smartphone. Sensors 2019, 19, 2189. [Google Scholar] [CrossRef] [Green Version]
- Robustelli, U.; Baiocchi, V.; Marconi, L.; Radicioni, F.; Pugliano, G. Precise Point Positioning with single and dual-frequency multi-GNSS Android smartphones. CEUR Workshop Proc. 2020, 2626. [Google Scholar]
Entire Processing Period (15 Oct–13 Nov) | Period of the Tsunami Event (28 Oct 05:44*–29 Oct 12:00) | |
---|---|---|
Mean [m] | 0.189 | 0.217 |
RMS [m] | 0.230 | 0.257 |
Median [m] | 0.170 | 0.209 |
Std. [m] | 0.132 | 0.138 |
Entire Processing Period (1 Sep –30 Sep) | Period of the Tsunami Event (17 Sep 13:39*–20 Sep 3:00) | |
---|---|---|
Mean [m] | 0.201 | 0.144 |
RMS [m] | 0.243 | 0.190 |
Median [m] | 0.181 | 0.109 |
Std. [m] | 0.137 | 0.124 |
Entire Processing Period (14 Aug –7 Sep) | Period of Harvey (24 Aug 12:00–30 Aug 24:00) | |
---|---|---|
Mean [m] | 0.027 | 0.037 |
RMS [m] | 0.038 | 0.055 |
Median [m] | 0.020 | 0.028 |
Std. [m] | 0.027 | 0.041 |
Entire Processing Period (26 Jan–19 Feb) | Period of the Storm Surge (12 Feb 00:00–13 Feb 12:00) | |
---|---|---|
Mean [m] | 0.140 | 0.410 |
RMS [m] | 0.200 | 0.540 |
Median [m] | 0.104 | 0.309 |
Std. [m] | 0.142 | 0.352 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-K.; Lee, E.; Park, J.; Shin, S. Feasibility Analysis of GNSS-Reflectometry for Monitoring Coastal Hazards. Remote Sens. 2021, 13, 976. https://doi.org/10.3390/rs13050976
Kim S-K, Lee E, Park J, Shin S. Feasibility Analysis of GNSS-Reflectometry for Monitoring Coastal Hazards. Remote Sensing. 2021; 13(5):976. https://doi.org/10.3390/rs13050976
Chicago/Turabian StyleKim, Su-Kyung, Eunju Lee, Jihye Park, and Sungwon Shin. 2021. "Feasibility Analysis of GNSS-Reflectometry for Monitoring Coastal Hazards" Remote Sensing 13, no. 5: 976. https://doi.org/10.3390/rs13050976
APA StyleKim, S. -K., Lee, E., Park, J., & Shin, S. (2021). Feasibility Analysis of GNSS-Reflectometry for Monitoring Coastal Hazards. Remote Sensing, 13(5), 976. https://doi.org/10.3390/rs13050976