Ionosonde Observations of Spread F and Spread Es at Low and Middle Latitudes during the Recovery Phase of the 7–9 September 2017 Geomagnetic Storm
Abstract
:1. Introduction
2. Instruments and Data Processing
3. Observations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Booker, H.G.; Wells, H.W. Scattering of radio waves by theF-region of the ionosphere. J. Geophys. Res. Space Phys. 1938, 43, 249–256. [Google Scholar] [CrossRef]
- King, G. Spread-F on ionograms. J. Atmos. Terr. Phys. 1970, 32, 209–221. [Google Scholar] [CrossRef]
- Bowman, G.G. A review of some recent work on mid-latitude spread-F occurrence as detected by ionosondes. J. Geomagn. Geoelectr. 1990, 42, 109–138. [Google Scholar] [CrossRef] [Green Version]
- Fejer, B.G.; Scherliess, L.; De Paula, E.R. Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spreadF. J. Geophys. Res. Space Phys. 1999, 104, 19859–19869. [Google Scholar] [CrossRef] [Green Version]
- Abdu, M. Outstanding problems in the equatorial ionosphere–thermosphere electrodynamics relevant to spread F. J. Atmos. Sol. Terr. Phys. 2001, 63, 869–884. [Google Scholar] [CrossRef]
- Fukao, S.; Ozawa, Y.; Yokoyama, T.; Yamamoto, M.; Tsunoda, R.T. First observations of the spatial structure of F region 3-m-scale field-aligned irregularities with the Equatorial Atmosphere Radar in Indonesia. J. Geophy. Res. 2004, 109. [Google Scholar] [CrossRef]
- Dungey, J. Convective diffusion in the equatorial F region. J. Atmos. Terr. Phys. 1956, 9, 304–310. [Google Scholar] [CrossRef]
- Kelley, M.C.; Haerendel, G.; Kappler, H.; Valenzuela, A.; Balsley, B.B.; Carter, D.A.; Ecklund, W.L.; Carlson, C.W.; Häusler, B.; Torbert, R. Evidence for a Rayleigh-Taylor type instability and upwelling of depleted density regions during equatorial spread F. Geophys. Res. Lett. 1976, 3, 448–450. [Google Scholar] [CrossRef]
- Tsunoda, R.T.; Yamamoto, M.; Tsugawa, T.; Hoang, T.L.; Ram, S.T.; Thampi, S.V.; Chau, H.D.; Nagatsuma, T. On seeding, large-scale wave structure, equatorial spread F, and scintillations over Vietnam. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Heelis, R. Electrodynamics in the low and middle latitude ionosphere: A tutorial. J. Atmos. Sol. Terr. Phys. 2004, 66, 825–838. [Google Scholar] [CrossRef]
- Mendillo, M.; Baumgardner, J.; Pi, X.; Sultan, P.J.; Tsunoda, R. Onset conditions for equatorial spread F. J. Geophys. Res. Space Phys. 1992, 97, 13865. [Google Scholar] [CrossRef]
- Huang, C.-S.; Kelley, M.C.; Hysell, D.L. Nonlinear Rayleigh-Taylor instabilities, atmospheric gravity waves and equatorial spread F. J. Geophys. Res. Space Phys. 1993, 98, 15631–15642. [Google Scholar] [CrossRef]
- Huang, C.S.; Foster, J.C.; Sahai, Y. Significant depletions of the ionospheric plasma density at middle latitudes: A possible signature of equatorial spread F bubbles near the plasmapause. J. Geophy. Res. Space Phys. 2007, 112. [Google Scholar] [CrossRef]
- Perkins, F. Spread F and ionospheric currents. J. Geophy. Res. 1973, 78, 218–226. [Google Scholar] [CrossRef]
- Huang, C.S.; Miller, C.A.; Kelley, M.C. Basic properties and gravity wave initiation of the midlatitude F region instability. Radio Sci. 1994, 29, 395–405. [Google Scholar] [CrossRef]
- Kelley, M.C.; Fukao, S. Turbulent upwelling of the mid-latitude ionosphere: Theoretical framework. J. Geophys. Res. Space Phys. 1991, 96, 3747–3753. [Google Scholar] [CrossRef]
- Cosgrove, R.B.; Tsunoda, R.T. Instability of the E–F coupled nighttime midlatitude ionosphere. J. Geophy. Res. Space Phys. 2004, 109. [Google Scholar] [CrossRef]
- Tsunoda, R.T.; Cosgrove, R.B. Coupled electrodynamics in the nighttime midlatitude ionosphere. Geophys. Res. Lett. 2001, 28, 4171–4174. [Google Scholar] [CrossRef]
- Yokoyama, T.; Hysell, D.L.; Otsuka, Y.; Yamamoto, M. Three-dimensional simulation of the coupled Perkins andEs-layer instabilities in the nighttime midlatitude ionosphere. J. Geophys. Res. Space Phys. 2009, 114. [Google Scholar] [CrossRef]
- Kelley, M.C.; Fejer, B.G.; Gonzales, C.A. An explanation for anomalous equatorial ionospheric electric fields associated with a northward turning of the interplanetary magnetic field. Geophys. Res. Lett. 1979, 6, 301–304. [Google Scholar] [CrossRef]
- Buonsanto, M.J. Ionospheric storms—A review. Space Sci. Rev. 1999, 88, 563–601. [Google Scholar] [CrossRef]
- Huang, C.S.; Foster, J.C.; Kelley, M.C. Long-duration penetration of the interplanetary electric field to the low-latitude ion-osphere during the main phase of magnetic storms. J. Geophy. Res. Space Phys. 2005, 110. [Google Scholar] [CrossRef]
- Rastogi, R.G.; Chandra, H.; Janardhan, P.; Hoang, T.L.; Condori, L.; Pant, T.K.; Prasad, D.S.V.V.D.; Reinisch, B. Spread-F during the magnetic storm of 22 January 2004 at low latitudes: Effect of IMF-Bz in relation to local sunset time. J. Earth Syst. Sci. 2014, 123, 1273–1285. [Google Scholar] [CrossRef] [Green Version]
- Maruyama, N.; Richmond, A.D.; Fuller-Rowell, T.J.; Codrescu, M.V.; Sazykin, S.; Toffoletto, F.R.; Spiro, R.W.; Millward, G.H. Interaction between direct penetration and disturbance dynamo electric fields in the storm-time equatorial ionosphere. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Fejer, B.G.; Jensen, J.W.; Su, S.-Y. Seasonal and longitudinal dependence of equatorial disturbance vertical plasma drifts. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Abdu, M.A.; Sastri, M.A.; MacDougall, J.; Batista, I.S.; Sobral, J.H.A. Equatorial disturbance dynamo electric field, longi-tudinal structure and spread F: A case study from GUARA/EITS campaigns. Geophys. Res. Lett. 1997, 24, 1707–1710. [Google Scholar] [CrossRef]
- Linty, N.; Minetto, A.; Dovis, F.; Spogli, L. Effects of phase scintillation on the GNSS positioning error during the september 2017 storm at svalbard. Space Weather 2018, 16, 1317–1329. [Google Scholar] [CrossRef]
- Yamauchi, M.; Sergienko, T.; Enell, C.-F.; Schillings, A.; Slapak, R.; Johnsen, M.G.; Tjulin, A.; Nilsson, H. Ionospheric response observed by EISCAT during the 6–8 September 2017 Space Weather Event: Overview. Space Weather 2018, 16, 1437–1450. [Google Scholar] [CrossRef]
- Qian, L.; Wang, W.; Burns, A.G.; Chamberlin, P.C.; Coster, A.; Zhang, S.; Solomon, S.C. Solar flare and geomagnetic storm effects on the thermosphere and ionosphere during 6–11 September 2017. J. Geophys. Res. Space Phys. 2019, 124, 2298–2311. [Google Scholar] [CrossRef]
- Aa, E.; Huang, W.; Liu, S.; Ridley, A.; Zou, S.; Shi, L.; Chen, Y.; Shen, H.; Yuan, T.; Li, J.; et al. Midlatitude plasma bubbles over China and adjacent areas during a magnetic storm on 8 September 2017. Space Weather 2018, 16, 321–331. [Google Scholar] [CrossRef]
- Aa, E.; Zou, S.; Ridley, A.J.; Zhang, S.R.; Coster, A.J.; Erickson, P.J.; Liu, S.; Ren, J. Merging of storm time midlatitude traveling ion-ospheric disturbances and equatorial plasma bubbles. Space Weather 2019, 17, 285–298. [Google Scholar] [CrossRef]
- Atıcı, R.; Sağır, S. Global investigation of the ionospheric irregularities during the severe geomagnetic storm on September 7–8, 2017. Geod. Geodyn. 2020, 11, 211–221. [Google Scholar] [CrossRef]
- Patra, A.K.; Taori, A.; Chaitanya, P.P.; Sripathi, S. Direct detection of wavelike spatial structure at the bottom of the F region and its role on the formation of equatorial plasma bubble. J. Geophys. Res. Space Phys. 2013, 118, 1196–1202. [Google Scholar] [CrossRef]
- Jin, H.; Zou, S.; Chen, G.; Yan, C.; Zhang, S.; Yang, G. Formation and evolution of low-latitude F region field-aligned irregu-larities during the 7–8 September 2017 storm: Hainan coherent scatter phased array radar and digisonde observations. Space Weather 2018, 16, 648–659. [Google Scholar] [CrossRef]
- Jiang, C.; Wei, L.; Yang, G.; Aa, E.; Lan, T.; Liu, T.; Liu, J.; Zhao, Z. Large-scale ionospheric irregularities detected by ionosonde and GNSS receiver network. IEEE Geosci. Remote Sens. Lett. 2020. [Google Scholar] [CrossRef]
- Jiang, C.; Yang, G.; Zhao, Z.; Zhang, Y.; Zhu, P.; Sun, H. An automatic scaling technique for obtaining F2 parameters and F1critical frequency from vertical incidence ionograms. Radio Sci. 2013, 48, 739–751. [Google Scholar] [CrossRef]
- Jiang, C.; Yang, G.; Zhao, Z.; Zhang, Y.; Zhu, P.; Sun, H.; Zhou, C. A method for the automatic calculation of electron density profiles from vertical incidence ionograms. J. Atmos. Sol. Terr. Phys. 2014, 107, 20–29. [Google Scholar] [CrossRef]
- Jiang, C.; Yang, G.; Zhou, Y.; Zhu, P.; Lan, T.; Zhao, Z.; Zhang, Y. Software for scaling and analysis of vertical incidence ionograms-ionoScaler. Adv. Space Res. 2017, 59, 968–979. [Google Scholar] [CrossRef]
- Friis-Christensen, E.; Lühr, H.; Knudsen, D.; Haagmans, R. Swarm—An earth observation mission investigating geospace. Adv. Space Res. 2008, 41, 210–216. [Google Scholar] [CrossRef]
- Ercha, A.; Huang, W.; Liu, S.; Shi, L.; Gong, J.; Chen, Y.; Shen, H. A regional ionospheric TEC mapping technique over China and adjacent areas: GNSS data processing and DINEOF analysis. Sci. China Inf. Sci. 2015, 58, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Pi, X.; Mannucci, A.J.; Lindqwister, U.J.; Ho, C.M. Monitoring of global ionospheric irregularities using the Worldwide GPS Network. Geophys. Res. Lett. 1997, 24, 2283–2286. [Google Scholar] [CrossRef]
- Tsunoda, R.T. Satellite traces: An ionogram signature for large-scale wave structure and a precursor for equatorial spread F. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Ji, S.; Chen, W.; Weng, D.; Wang, Z. Characteristics of equatorial plasma bubble zonal drift velocity and tilt based on Hong Kong GPS CORS network: From 2001 to 2012. J. Geophys. Res. Space Phys. 2015, 120, 7021–7029. [Google Scholar] [CrossRef]
- Yang, G.; Jiang, C.; Lan, T.; Huang, W.; Zhao, Z. Ionosonde observations of daytime spread F at middle latitudes during a geomagnetic storm. J. Atmos. Sol. Terr. Phys. 2018, 179, 174–180. [Google Scholar] [CrossRef]
- Huang, C. Long-lasting penetration electric fields during geomagnetic storms: Observations and mechanisms. J. Geophys. Res. Space Phys. 2019, 124, 9640–9664. [Google Scholar] [CrossRef]
- Abdu, M.A.; Nogueira, P.A.B.; Santos, A.M.; De Souza, J.R.; Batista, I.S.; Sobral, J.H.A. Impact of disturbance electric fields in the evening on prereversal vertical drift and spread F developments in the equatorial ionosphere. Ann. Geophys. 2018, 36, 609–620. [Google Scholar] [CrossRef]
- Cherniak, I.; Zakharenkova, I. First observations of super plasma bubbles in Europe. Geophys. Res. Lett. 2016, 43, 11–137. [Google Scholar] [CrossRef]
- Basu, S.; Rich, F.J.; Groves, K.M.; MacKenzie, E.; Coker, C.; Sahai, Y.; Fagundes, P.R.; Becker-Guedes, F. Response of the equatorial ionosphere at dusk to penetration electric fields during intense magnetic storms. J. Geophys. Res. Space Phys. 2007, 112. [Google Scholar] [CrossRef]
- De Paula, E.R.; de Oliveira, C.B.; Caton, R.G.; Negreti, P.M.; Batista, I.S.; Martinon, A.R.; Moraes, A.O. Ionospheric irreg-ularity behavior during the September 6–10, 2017 magnetic storm over Brazilian equatorial–low latitudes. Earth Planets Space 2019, 71, 42. [Google Scholar] [CrossRef]
- Wakai, N.; Ohyama, H.; Koizumi, T. Manual of Ionogram Scaling; Radio Research Laboratory, Ministry of Posts and Telecommunications: Tokyo, Japan, 1987.
- Bowman, G. Some aspects of mid-latitude spread-Es, and its relationship with spread-F. Planet. Space Sci. 1985, 33, 1081–1089. [Google Scholar] [CrossRef]
- Li, G.; Ning, B.; Abdu, M.A.; Wan, W.; Hu, L. Precursor signatures and evolution of post-sunset equatorial spread-F observed over Sanya. J. Geophys. Res. Space Phys. 2012, 117. [Google Scholar] [CrossRef]
- Abdu, M.A.; Alam Kherani, E.; Batista, I.S.; De Paula, E.R.; Fritts, D.C.; Sobral, J.H.A. Gravity wave initiation of equatorial spread F/plasma bubble irregularities based on observational data from the SpreadFEx campaign. Ann. Geophys. 2009, 27, 2607–2622. [Google Scholar] [CrossRef] [Green Version]
- Mandal, S.; Pallamraju, D.; Karan, D.K.; Phadke, K.A.; Singh, R.P.; Suryawanshi, P. On deriving gravity wave characteristics in the daytime upper atmosphere using radio technique. J. Geophys. Res. Space Phys. 2019, 124, 6985–6997. [Google Scholar] [CrossRef]
- Aa, E.; Zou, S.; Eastes, R.; Karan, D.K.; Zhang, S.; Erickson, P.J.; Coster, A.J. Coordinated ground-based and space-based observations of equatorial plasma bubbles. J. Geophys. Res. Space Phys. 2020, 125. [Google Scholar] [CrossRef]
- Lyons, L.R.; Nishimura, Y.; Zhang, S.-R.; Coster, A.J.; Bhatt, A.; Kendall, E.; Deng, Y. Identification of auroral zone activity driving large-scale traveling ionospheric disturbances. J. Geophys. Res. Space Phys. 2019, 124, 700–714. [Google Scholar] [CrossRef]
- Fujiwara, H.; Miyoshi, Y. Global distribution of the thermospheric disturbances produced by effects from the upper and lower regions: Simulations by a whole atmosphere GCM. Earth Planets Space 2009, 61, 463–470. [Google Scholar] [CrossRef] [Green Version]
- Borchevkina, O.; Karpov, I.; Karpov, M. Meteorological storm influence on the ionosphere parameters. Atmosphere 2020, 11, 1017. [Google Scholar] [CrossRef]
- Habarulema, J.B.; Katamzi-Joseph, Z.T.; Burešová, D.; Nndanganeni, R.; Matamba, T.; Tshisaphungo, M.; Buchert, S.; Kosch, M.; Lotz, S.; Cilliers, P.; et al. Ionospheric response at conjugate locations during the 7–8 September 2017 geomagnetic storm over the Europe-African longitude sector. J. Geophys. Res. Space Phys. 2020, 125. [Google Scholar] [CrossRef]
- Ferreira, A.A.; Borries, C.; Xiong, C.; Borges, R.A.; Mielich, J.; Kouba, D. Identification of potential precursors for the occurrence of large-scale traveling ionospheric disturbances in a case study during September 2017. J. Space Weather Space Clim. 2020, 10, 32. [Google Scholar] [CrossRef]
- Xu, X.H.; Guo, J.C.; Luo, J. Analysis of the active characteristics of stratosphere gravity waves over the Qinghai-tibetan Plateau using COSMIC radio occultation data. Chin. J. Geophys. 2016, 59. [Google Scholar] [CrossRef]
- Miller, C.A. Electrodynamics of midlatitude spread FA new theory of gravity wave electric fields. J. Geophys. Res. Space Phys. 1997, 102, 11533–11538. [Google Scholar] [CrossRef]
- Joshi, L.M.; Patra, A.K.; Rao, S.V.B. Low-latitude Es capable of controlling the onset of equatorial spread F. J. Geophy. Res. Space Phys. 2013, 118, 1170–1179. [Google Scholar] [CrossRef]
- Haldoupis, C.; Kelley, M.C.; Hussey, G.C.; Shalimov, S. Role of unstable sporadic-E layers in the generation of midlatitude spread F. J. Geophy. Res. Space Phys. 2003, 108. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, L.; Jiang, C.; Hu, Y.; Aa, E.; Huang, W.; Liu, J.; Yang, G.; Zhao, Z. Ionosonde Observations of Spread F and Spread Es at Low and Middle Latitudes during the Recovery Phase of the 7–9 September 2017 Geomagnetic Storm. Remote Sens. 2021, 13, 1010. https://doi.org/10.3390/rs13051010
Wei L, Jiang C, Hu Y, Aa E, Huang W, Liu J, Yang G, Zhao Z. Ionosonde Observations of Spread F and Spread Es at Low and Middle Latitudes during the Recovery Phase of the 7–9 September 2017 Geomagnetic Storm. Remote Sensing. 2021; 13(5):1010. https://doi.org/10.3390/rs13051010
Chicago/Turabian StyleWei, Lehui, Chunhua Jiang, Yaogai Hu, Ercha Aa, Wengeng Huang, Jing Liu, Guobin Yang, and Zhengyu Zhao. 2021. "Ionosonde Observations of Spread F and Spread Es at Low and Middle Latitudes during the Recovery Phase of the 7–9 September 2017 Geomagnetic Storm" Remote Sensing 13, no. 5: 1010. https://doi.org/10.3390/rs13051010
APA StyleWei, L., Jiang, C., Hu, Y., Aa, E., Huang, W., Liu, J., Yang, G., & Zhao, Z. (2021). Ionosonde Observations of Spread F and Spread Es at Low and Middle Latitudes during the Recovery Phase of the 7–9 September 2017 Geomagnetic Storm. Remote Sensing, 13(5), 1010. https://doi.org/10.3390/rs13051010