Ionosonde Observations of Spread F and Spread Es at Low and Middle Latitudes during the Recovery Phase of the 7–9 September 2017 Geomagnetic Storm
Abstract
1. Introduction
2. Instruments and Data Processing
3. Observations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Booker, H.G.; Wells, H.W. Scattering of radio waves by theF-region of the ionosphere. J. Geophys. Res. Space Phys. 1938, 43, 249–256. [Google Scholar] [CrossRef]
- King, G. Spread-F on ionograms. J. Atmos. Terr. Phys. 1970, 32, 209–221. [Google Scholar] [CrossRef]
- Bowman, G.G. A review of some recent work on mid-latitude spread-F occurrence as detected by ionosondes. J. Geomagn. Geoelectr. 1990, 42, 109–138. [Google Scholar] [CrossRef]
- Fejer, B.G.; Scherliess, L.; De Paula, E.R. Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spreadF. J. Geophys. Res. Space Phys. 1999, 104, 19859–19869. [Google Scholar] [CrossRef]
- Abdu, M. Outstanding problems in the equatorial ionosphere–thermosphere electrodynamics relevant to spread F. J. Atmos. Sol. Terr. Phys. 2001, 63, 869–884. [Google Scholar] [CrossRef]
- Fukao, S.; Ozawa, Y.; Yokoyama, T.; Yamamoto, M.; Tsunoda, R.T. First observations of the spatial structure of F region 3-m-scale field-aligned irregularities with the Equatorial Atmosphere Radar in Indonesia. J. Geophy. Res. 2004, 109. [Google Scholar] [CrossRef]
- Dungey, J. Convective diffusion in the equatorial F region. J. Atmos. Terr. Phys. 1956, 9, 304–310. [Google Scholar] [CrossRef]
- Kelley, M.C.; Haerendel, G.; Kappler, H.; Valenzuela, A.; Balsley, B.B.; Carter, D.A.; Ecklund, W.L.; Carlson, C.W.; Häusler, B.; Torbert, R. Evidence for a Rayleigh-Taylor type instability and upwelling of depleted density regions during equatorial spread F. Geophys. Res. Lett. 1976, 3, 448–450. [Google Scholar] [CrossRef]
- Tsunoda, R.T.; Yamamoto, M.; Tsugawa, T.; Hoang, T.L.; Ram, S.T.; Thampi, S.V.; Chau, H.D.; Nagatsuma, T. On seeding, large-scale wave structure, equatorial spread F, and scintillations over Vietnam. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Heelis, R. Electrodynamics in the low and middle latitude ionosphere: A tutorial. J. Atmos. Sol. Terr. Phys. 2004, 66, 825–838. [Google Scholar] [CrossRef]
- Mendillo, M.; Baumgardner, J.; Pi, X.; Sultan, P.J.; Tsunoda, R. Onset conditions for equatorial spread F. J. Geophys. Res. Space Phys. 1992, 97, 13865. [Google Scholar] [CrossRef]
- Huang, C.-S.; Kelley, M.C.; Hysell, D.L. Nonlinear Rayleigh-Taylor instabilities, atmospheric gravity waves and equatorial spread F. J. Geophys. Res. Space Phys. 1993, 98, 15631–15642. [Google Scholar] [CrossRef]
- Huang, C.S.; Foster, J.C.; Sahai, Y. Significant depletions of the ionospheric plasma density at middle latitudes: A possible signature of equatorial spread F bubbles near the plasmapause. J. Geophy. Res. Space Phys. 2007, 112. [Google Scholar] [CrossRef]
- Perkins, F. Spread F and ionospheric currents. J. Geophy. Res. 1973, 78, 218–226. [Google Scholar] [CrossRef]
- Huang, C.S.; Miller, C.A.; Kelley, M.C. Basic properties and gravity wave initiation of the midlatitude F region instability. Radio Sci. 1994, 29, 395–405. [Google Scholar] [CrossRef]
- Kelley, M.C.; Fukao, S. Turbulent upwelling of the mid-latitude ionosphere: Theoretical framework. J. Geophys. Res. Space Phys. 1991, 96, 3747–3753. [Google Scholar] [CrossRef]
- Cosgrove, R.B.; Tsunoda, R.T. Instability of the E–F coupled nighttime midlatitude ionosphere. J. Geophy. Res. Space Phys. 2004, 109. [Google Scholar] [CrossRef]
- Tsunoda, R.T.; Cosgrove, R.B. Coupled electrodynamics in the nighttime midlatitude ionosphere. Geophys. Res. Lett. 2001, 28, 4171–4174. [Google Scholar] [CrossRef]
- Yokoyama, T.; Hysell, D.L.; Otsuka, Y.; Yamamoto, M. Three-dimensional simulation of the coupled Perkins andEs-layer instabilities in the nighttime midlatitude ionosphere. J. Geophys. Res. Space Phys. 2009, 114. [Google Scholar] [CrossRef]
- Kelley, M.C.; Fejer, B.G.; Gonzales, C.A. An explanation for anomalous equatorial ionospheric electric fields associated with a northward turning of the interplanetary magnetic field. Geophys. Res. Lett. 1979, 6, 301–304. [Google Scholar] [CrossRef]
- Buonsanto, M.J. Ionospheric storms—A review. Space Sci. Rev. 1999, 88, 563–601. [Google Scholar] [CrossRef]
- Huang, C.S.; Foster, J.C.; Kelley, M.C. Long-duration penetration of the interplanetary electric field to the low-latitude ion-osphere during the main phase of magnetic storms. J. Geophy. Res. Space Phys. 2005, 110. [Google Scholar] [CrossRef]
- Rastogi, R.G.; Chandra, H.; Janardhan, P.; Hoang, T.L.; Condori, L.; Pant, T.K.; Prasad, D.S.V.V.D.; Reinisch, B. Spread-F during the magnetic storm of 22 January 2004 at low latitudes: Effect of IMF-Bz in relation to local sunset time. J. Earth Syst. Sci. 2014, 123, 1273–1285. [Google Scholar] [CrossRef]
- Maruyama, N.; Richmond, A.D.; Fuller-Rowell, T.J.; Codrescu, M.V.; Sazykin, S.; Toffoletto, F.R.; Spiro, R.W.; Millward, G.H. Interaction between direct penetration and disturbance dynamo electric fields in the storm-time equatorial ionosphere. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Fejer, B.G.; Jensen, J.W.; Su, S.-Y. Seasonal and longitudinal dependence of equatorial disturbance vertical plasma drifts. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Abdu, M.A.; Sastri, M.A.; MacDougall, J.; Batista, I.S.; Sobral, J.H.A. Equatorial disturbance dynamo electric field, longi-tudinal structure and spread F: A case study from GUARA/EITS campaigns. Geophys. Res. Lett. 1997, 24, 1707–1710. [Google Scholar] [CrossRef]
- Linty, N.; Minetto, A.; Dovis, F.; Spogli, L. Effects of phase scintillation on the GNSS positioning error during the september 2017 storm at svalbard. Space Weather 2018, 16, 1317–1329. [Google Scholar] [CrossRef]
- Yamauchi, M.; Sergienko, T.; Enell, C.-F.; Schillings, A.; Slapak, R.; Johnsen, M.G.; Tjulin, A.; Nilsson, H. Ionospheric response observed by EISCAT during the 6–8 September 2017 Space Weather Event: Overview. Space Weather 2018, 16, 1437–1450. [Google Scholar] [CrossRef]
- Qian, L.; Wang, W.; Burns, A.G.; Chamberlin, P.C.; Coster, A.; Zhang, S.; Solomon, S.C. Solar flare and geomagnetic storm effects on the thermosphere and ionosphere during 6–11 September 2017. J. Geophys. Res. Space Phys. 2019, 124, 2298–2311. [Google Scholar] [CrossRef]
- Aa, E.; Huang, W.; Liu, S.; Ridley, A.; Zou, S.; Shi, L.; Chen, Y.; Shen, H.; Yuan, T.; Li, J.; et al. Midlatitude plasma bubbles over China and adjacent areas during a magnetic storm on 8 September 2017. Space Weather 2018, 16, 321–331. [Google Scholar] [CrossRef]
- Aa, E.; Zou, S.; Ridley, A.J.; Zhang, S.R.; Coster, A.J.; Erickson, P.J.; Liu, S.; Ren, J. Merging of storm time midlatitude traveling ion-ospheric disturbances and equatorial plasma bubbles. Space Weather 2019, 17, 285–298. [Google Scholar] [CrossRef]
- Atıcı, R.; Sağır, S. Global investigation of the ionospheric irregularities during the severe geomagnetic storm on September 7–8, 2017. Geod. Geodyn. 2020, 11, 211–221. [Google Scholar] [CrossRef]
- Patra, A.K.; Taori, A.; Chaitanya, P.P.; Sripathi, S. Direct detection of wavelike spatial structure at the bottom of the F region and its role on the formation of equatorial plasma bubble. J. Geophys. Res. Space Phys. 2013, 118, 1196–1202. [Google Scholar] [CrossRef]
- Jin, H.; Zou, S.; Chen, G.; Yan, C.; Zhang, S.; Yang, G. Formation and evolution of low-latitude F region field-aligned irregu-larities during the 7–8 September 2017 storm: Hainan coherent scatter phased array radar and digisonde observations. Space Weather 2018, 16, 648–659. [Google Scholar] [CrossRef]
- Jiang, C.; Wei, L.; Yang, G.; Aa, E.; Lan, T.; Liu, T.; Liu, J.; Zhao, Z. Large-scale ionospheric irregularities detected by ionosonde and GNSS receiver network. IEEE Geosci. Remote Sens. Lett. 2020. [Google Scholar] [CrossRef]
- Jiang, C.; Yang, G.; Zhao, Z.; Zhang, Y.; Zhu, P.; Sun, H. An automatic scaling technique for obtaining F2 parameters and F1critical frequency from vertical incidence ionograms. Radio Sci. 2013, 48, 739–751. [Google Scholar] [CrossRef]
- Jiang, C.; Yang, G.; Zhao, Z.; Zhang, Y.; Zhu, P.; Sun, H.; Zhou, C. A method for the automatic calculation of electron density profiles from vertical incidence ionograms. J. Atmos. Sol. Terr. Phys. 2014, 107, 20–29. [Google Scholar] [CrossRef]
- Jiang, C.; Yang, G.; Zhou, Y.; Zhu, P.; Lan, T.; Zhao, Z.; Zhang, Y. Software for scaling and analysis of vertical incidence ionograms-ionoScaler. Adv. Space Res. 2017, 59, 968–979. [Google Scholar] [CrossRef]
- Friis-Christensen, E.; Lühr, H.; Knudsen, D.; Haagmans, R. Swarm—An earth observation mission investigating geospace. Adv. Space Res. 2008, 41, 210–216. [Google Scholar] [CrossRef]
- Ercha, A.; Huang, W.; Liu, S.; Shi, L.; Gong, J.; Chen, Y.; Shen, H. A regional ionospheric TEC mapping technique over China and adjacent areas: GNSS data processing and DINEOF analysis. Sci. China Inf. Sci. 2015, 58, 1–11. [Google Scholar] [CrossRef]
- Pi, X.; Mannucci, A.J.; Lindqwister, U.J.; Ho, C.M. Monitoring of global ionospheric irregularities using the Worldwide GPS Network. Geophys. Res. Lett. 1997, 24, 2283–2286. [Google Scholar] [CrossRef]
- Tsunoda, R.T. Satellite traces: An ionogram signature for large-scale wave structure and a precursor for equatorial spread F. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Ji, S.; Chen, W.; Weng, D.; Wang, Z. Characteristics of equatorial plasma bubble zonal drift velocity and tilt based on Hong Kong GPS CORS network: From 2001 to 2012. J. Geophys. Res. Space Phys. 2015, 120, 7021–7029. [Google Scholar] [CrossRef]
- Yang, G.; Jiang, C.; Lan, T.; Huang, W.; Zhao, Z. Ionosonde observations of daytime spread F at middle latitudes during a geomagnetic storm. J. Atmos. Sol. Terr. Phys. 2018, 179, 174–180. [Google Scholar] [CrossRef]
- Huang, C. Long-lasting penetration electric fields during geomagnetic storms: Observations and mechanisms. J. Geophys. Res. Space Phys. 2019, 124, 9640–9664. [Google Scholar] [CrossRef]
- Abdu, M.A.; Nogueira, P.A.B.; Santos, A.M.; De Souza, J.R.; Batista, I.S.; Sobral, J.H.A. Impact of disturbance electric fields in the evening on prereversal vertical drift and spread F developments in the equatorial ionosphere. Ann. Geophys. 2018, 36, 609–620. [Google Scholar] [CrossRef]
- Cherniak, I.; Zakharenkova, I. First observations of super plasma bubbles in Europe. Geophys. Res. Lett. 2016, 43, 11–137. [Google Scholar] [CrossRef]
- Basu, S.; Rich, F.J.; Groves, K.M.; MacKenzie, E.; Coker, C.; Sahai, Y.; Fagundes, P.R.; Becker-Guedes, F. Response of the equatorial ionosphere at dusk to penetration electric fields during intense magnetic storms. J. Geophys. Res. Space Phys. 2007, 112. [Google Scholar] [CrossRef]
- De Paula, E.R.; de Oliveira, C.B.; Caton, R.G.; Negreti, P.M.; Batista, I.S.; Martinon, A.R.; Moraes, A.O. Ionospheric irreg-ularity behavior during the September 6–10, 2017 magnetic storm over Brazilian equatorial–low latitudes. Earth Planets Space 2019, 71, 42. [Google Scholar] [CrossRef]
- Wakai, N.; Ohyama, H.; Koizumi, T. Manual of Ionogram Scaling; Radio Research Laboratory, Ministry of Posts and Telecommunications: Tokyo, Japan, 1987.
- Bowman, G. Some aspects of mid-latitude spread-Es, and its relationship with spread-F. Planet. Space Sci. 1985, 33, 1081–1089. [Google Scholar] [CrossRef]
- Li, G.; Ning, B.; Abdu, M.A.; Wan, W.; Hu, L. Precursor signatures and evolution of post-sunset equatorial spread-F observed over Sanya. J. Geophys. Res. Space Phys. 2012, 117. [Google Scholar] [CrossRef]
- Abdu, M.A.; Alam Kherani, E.; Batista, I.S.; De Paula, E.R.; Fritts, D.C.; Sobral, J.H.A. Gravity wave initiation of equatorial spread F/plasma bubble irregularities based on observational data from the SpreadFEx campaign. Ann. Geophys. 2009, 27, 2607–2622. [Google Scholar] [CrossRef]
- Mandal, S.; Pallamraju, D.; Karan, D.K.; Phadke, K.A.; Singh, R.P.; Suryawanshi, P. On deriving gravity wave characteristics in the daytime upper atmosphere using radio technique. J. Geophys. Res. Space Phys. 2019, 124, 6985–6997. [Google Scholar] [CrossRef]
- Aa, E.; Zou, S.; Eastes, R.; Karan, D.K.; Zhang, S.; Erickson, P.J.; Coster, A.J. Coordinated ground-based and space-based observations of equatorial plasma bubbles. J. Geophys. Res. Space Phys. 2020, 125. [Google Scholar] [CrossRef]
- Lyons, L.R.; Nishimura, Y.; Zhang, S.-R.; Coster, A.J.; Bhatt, A.; Kendall, E.; Deng, Y. Identification of auroral zone activity driving large-scale traveling ionospheric disturbances. J. Geophys. Res. Space Phys. 2019, 124, 700–714. [Google Scholar] [CrossRef]
- Fujiwara, H.; Miyoshi, Y. Global distribution of the thermospheric disturbances produced by effects from the upper and lower regions: Simulations by a whole atmosphere GCM. Earth Planets Space 2009, 61, 463–470. [Google Scholar] [CrossRef][Green Version]
- Borchevkina, O.; Karpov, I.; Karpov, M. Meteorological storm influence on the ionosphere parameters. Atmosphere 2020, 11, 1017. [Google Scholar] [CrossRef]
- Habarulema, J.B.; Katamzi-Joseph, Z.T.; Burešová, D.; Nndanganeni, R.; Matamba, T.; Tshisaphungo, M.; Buchert, S.; Kosch, M.; Lotz, S.; Cilliers, P.; et al. Ionospheric response at conjugate locations during the 7–8 September 2017 geomagnetic storm over the Europe-African longitude sector. J. Geophys. Res. Space Phys. 2020, 125. [Google Scholar] [CrossRef]
- Ferreira, A.A.; Borries, C.; Xiong, C.; Borges, R.A.; Mielich, J.; Kouba, D. Identification of potential precursors for the occurrence of large-scale traveling ionospheric disturbances in a case study during September 2017. J. Space Weather Space Clim. 2020, 10, 32. [Google Scholar] [CrossRef]
- Xu, X.H.; Guo, J.C.; Luo, J. Analysis of the active characteristics of stratosphere gravity waves over the Qinghai-tibetan Plateau using COSMIC radio occultation data. Chin. J. Geophys. 2016, 59. [Google Scholar] [CrossRef]
- Miller, C.A. Electrodynamics of midlatitude spread FA new theory of gravity wave electric fields. J. Geophys. Res. Space Phys. 1997, 102, 11533–11538. [Google Scholar] [CrossRef]
- Joshi, L.M.; Patra, A.K.; Rao, S.V.B. Low-latitude Es capable of controlling the onset of equatorial spread F. J. Geophy. Res. Space Phys. 2013, 118, 1170–1179. [Google Scholar] [CrossRef]
- Haldoupis, C.; Kelley, M.C.; Hussey, G.C.; Shalimov, S. Role of unstable sporadic-E layers in the generation of midlatitude spread F. J. Geophy. Res. Space Phys. 2003, 108. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, L.; Jiang, C.; Hu, Y.; Aa, E.; Huang, W.; Liu, J.; Yang, G.; Zhao, Z. Ionosonde Observations of Spread F and Spread Es at Low and Middle Latitudes during the Recovery Phase of the 7–9 September 2017 Geomagnetic Storm. Remote Sens. 2021, 13, 1010. https://doi.org/10.3390/rs13051010
Wei L, Jiang C, Hu Y, Aa E, Huang W, Liu J, Yang G, Zhao Z. Ionosonde Observations of Spread F and Spread Es at Low and Middle Latitudes during the Recovery Phase of the 7–9 September 2017 Geomagnetic Storm. Remote Sensing. 2021; 13(5):1010. https://doi.org/10.3390/rs13051010
Chicago/Turabian StyleWei, Lehui, Chunhua Jiang, Yaogai Hu, Ercha Aa, Wengeng Huang, Jing Liu, Guobin Yang, and Zhengyu Zhao. 2021. "Ionosonde Observations of Spread F and Spread Es at Low and Middle Latitudes during the Recovery Phase of the 7–9 September 2017 Geomagnetic Storm" Remote Sensing 13, no. 5: 1010. https://doi.org/10.3390/rs13051010
APA StyleWei, L., Jiang, C., Hu, Y., Aa, E., Huang, W., Liu, J., Yang, G., & Zhao, Z. (2021). Ionosonde Observations of Spread F and Spread Es at Low and Middle Latitudes during the Recovery Phase of the 7–9 September 2017 Geomagnetic Storm. Remote Sensing, 13(5), 1010. https://doi.org/10.3390/rs13051010