Deep Fully Convolutional Embedding Networks for Hyperspectral Images Dimensionality Reduction
Abstract
:1. Introduction
- An end-to-end symmetric fully convolutional network, DFCEN, is proposed for HSIs DR, which is the foundation of unsupervised learning. In addition, owing to the symmetry of DFCEN, the network structure of symmetry layer in convolutional subnetwork and deconvolutional subnetwork is the same. For that, these two subnetwork can share the same pretraining parameters, which saves the pretraining time.
- A novel objective function with two terms constraining different layers respectively is designed for DFCEN. This allows DFCEN to explore not only completeness but also discriminability compared to the previous unsupervised CNN-based approaches
- This is the first work to introduce LLE and LE into an unsupervised fully convolutional network, which simultaneously solved their out-of-sample, linear transformation, and spatial feature extraction problem. In addition, other different DR concepts also can be implemented in embedding term as long as it can be expressed in the form of an objective function.
- Due to the limited training samples, inherent complexity and the presence of noise bands in HSIs, DFCEN as an unsupervised network is sensitive to input data. So, a preprocessing strategy of removing noise band is adopted, which is proved to effectively improve the DFCEN representation of HSIs.
2. Background and the Related Works
2.1. Mutual Information
2.2. Locally Linear Embedding
2.3. Laplacian Eigenmaps
2.4. Convolutional Autoencoder
3. The Proposed Method
3.1. Data Preprocessing
3.2. Structure of DFCEN
3.3. Objective Function of DFCEN
3.3.1. LLE-Based Embedding Term
3.3.2. LE-Based Embedding Term
3.3.3. Reconstruction Term
3.3.4. Objective Function
3.4. Learning of DFCEN
4. Experimental Study
4.1. Description of Data Sets
4.2. Experimental Setup
4.3. Parameters Analysis
4.4. Convergence and Discriminant Analysis
4.5. Classification Performance
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Murphy, R.J.; Monteiro, S.T.; Schneider, S. Evaluating Classification Techniques for Mapping Vertical Geology Using Field-Based Hyperspectral Sensors. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3066–3080. [Google Scholar] [CrossRef]
- Ryan, J.P.; Davis, C.O.; Tufillaro, N.B.; Kudela, R.M.; Gao, B.C. Application of the hyperspectral imager for the coastal ocean to phytoplankton ecology studies in Monterey Bay, CA, USA. Remote Sens. 2014, 6, 1007–1025. [Google Scholar] [CrossRef] [Green Version]
- Pi, W.; Du, J.; Liu, H.; Zhu, X. Desertification Glassland Classification and Three-Dimensional Convolution Neural Network Model for Identifying Desert Grassland Landforms with Unmanned Aerial Vehicle Hyperspectral Remote Sensing Images. J. Appl. Spectrosc. 2020, 87, 309–318. [Google Scholar] [CrossRef]
- Ofner, J.; Kamilli, K.A.; Eitenberger, E.; Friedbacher, G.; Lendl, B.; Held, A.; Lohninger, H. Chemometric analysis of multisensor hyperspectral images of precipitated atmospheric particulate matter. Anal. Chem. 2015, 87, 9413–9420. [Google Scholar] [CrossRef] [PubMed]
- de la Ossa, M.Á.F.; Amigo, J.M.; García-Ruiz, C. Detection of residues from explosive manipulation by near infrared hyperspectral imaging: A promising forensic tool. Forensic Sci. Int. 2014, 242, 228–235. [Google Scholar] [CrossRef]
- Guo, X.; Huang, X.; Zhang, L.; Zhang, L. Hyperspectral image noise reduction based on rank-1 tensor decomposition. ISPRS J. Photogramm. Remote Sens. 2013, 83, 50–63. [Google Scholar] [CrossRef]
- Jia, X.; Kuo, B.C.; Crawford, M.M. Feature Mining for Hyperspectral Image Classification. Proc. IEEE 2013, 101, 676–697. [Google Scholar] [CrossRef]
- Guo, B.; Gunn, S.R.; Damper, R.I.; Nelson, J.D.B. Band Selection for Hyperspectral Image Classification Using Mutual Information. IEEE Geosci. Remote Sens. Lett. 2006, 3, 522–526. [Google Scholar] [CrossRef] [Green Version]
- Hughes, G. On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 1968, 14, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Qu, J.; Dong, W.; Zheng, Y. Hyperspectral pansharpening via improved PCA approach and optimal weighted fusion strategy. Neurocomputing 2018, 315, 371–380. [Google Scholar] [CrossRef]
- Belkin, M.; Niyogi, P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 2003, 15, 1373–1396. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Zhang, L.; Zhang, L.; Du, B. GPU parallel implementation of isometric mapping for hyperspectral classification. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1532–1536. [Google Scholar] [CrossRef]
- Bandos, T.V.; Bruzzone, L.; Camps-Valls, G. Classification of Hyperspectral Images With Regularized Linear Discriminant Analysis. IEEE Trans. Geosci. Remote Sens. 2009, 47, 862–873. [Google Scholar] [CrossRef]
- He, X.; Niyogi, P. Locality preserving projections. In Advances in Neural Information Processing Systems; The MIT Press: Cambridge, MA, USA, 2004; pp. 153–160. [Google Scholar]
- He, X.; Cai, D.; Yan, S.; Zhang, H.J. Neighborhood preserving embedding. In Proceedings of the Tenth IEEE ICCV, Beijing, China, 17–20 October 2005; Volume 2, pp. 1208–1213. [Google Scholar]
- Han, T.; Goodenough, D.G. Investigation of Nonlinearity in Hyperspectral Imagery Using Surrogate Data Methods. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2840–2847. [Google Scholar] [CrossRef]
- Bengio, Y.; Courville, A.C.; Vincent, P. Unsupervised feature learning and deep learning: A review and new perspectives. CoRR 2012, 1, 2012. [Google Scholar]
- Paoletti, M.E.; Haut, J.M.; Plaza, J.; Plaza, A. Deep learning classifiers for hyperspectral imaging: A review. ISPRS J. Photogramm. Remote Sens. 2019, 158, 279–317. [Google Scholar] [CrossRef]
- Paoletti, M.; Haut, J.; Plaza, J.; Plaza, A. A new deep convolutional neural network for fast hyperspectral image classification. ISPRS J. Photogramm. Remote Sens. 2018, 145, 120–147. [Google Scholar] [CrossRef]
- Zhong, Z.; Li, J.; Luo, Z.; Chapman, M. Spectral–spatial residual network for hyperspectral image classification: A 3-D deep learning framework. IEEE Trans. Geosci. Remote Sens. 2017, 56, 847–858. [Google Scholar]
- Han, M.; Cong, R.; Li, X.; Fu, H.; Lei, J. Joint spatial-spectral hyperspectral image classification based on convolutional neural network. Pattern Recognit. Lett. 2020, 130, 38–45. [Google Scholar] [CrossRef]
- Mou, L.; Ghamisi, P.; Zhu, X.X. Unsupervised spectral–spatial feature learning via deep residual Conv–Deconv network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2017, 56, 391–406. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Gong, M.; Mao, Y.; Li, J.; Wu, Y. Unsupervised feature extraction in hyperspectral images based on wasserstein generative adversarial network. IEEE Trans. Geosci. Remote Sens. 2018, 57, 2669–2688. [Google Scholar] [CrossRef]
- Zhang, M.; Gong, M.; He, H.; Zhu, S. Symmetric All Convolutional Neural-Network-Based Unsupervised Feature Extraction for Hyperspectral Images Classification. IEEE Trans. Cybern. 2020. [Google Scholar] [CrossRef]
- Estévez, P.A.; Tesmer, M.; Perez, C.A.; Zurada, J.M. Normalized mutual information feature selection. IEEE Trans. Neural Netw. 2009, 20, 189–201. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.I.; Kuo, Y.M.; Chen, S.; Liang, C.C.; Ma, K.Y.; Hu, P.F. Self-Mutual Information-Based Band Selection for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote. Sens. 2020. [Google Scholar] [CrossRef]
- Pan, Y.; Ge, S.S.; Al Mamun, A. Weighted locally linear embedding for dimension reduction. Pattern Recognit. 2009, 42, 798–811. [Google Scholar] [CrossRef]
- Roweis, S.T.; Saul, L.K. Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290, 2323–2326. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Yu, J.; Niu, L.; Sun, W. Unsupervised feature extraction for hyperspectral images using combined low rank representation and locally linear embedding. In Proceedings of the 2017 IEEE ICASSP, New Orleans, LA, USA, 5–9 March 2017; pp. 1428–1431. [Google Scholar]
- Li, B.; Li, Y.R.; Zhang, X.L. A survey on Laplacian eigenmaps based manifold learning methods. Neurocomputing 2019, 335, 336–351. [Google Scholar]
- Ma, M.; Deng, T.; Wang, N.; Chen, Y. Semi-supervised rough fuzzy Laplacian Eigenmaps for dimensionality reduction. Int. J. Mach. Learn. Cybern. 2019, 10, 397–411. [Google Scholar] [CrossRef]
- Seyfioğlu, M.S.; Özbayoğlu, A.M.; Gürbüz, S.Z. Deep convolutional autoencoder for radar-based classification of similar aided and unaided human activities. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 1709–1723. [Google Scholar] [CrossRef]
- Azarang, A.; Manoochehri, H.E.; Kehtarnavaz, N. Convolutional autoencoder-based multispectral image fusion. IEEE Access 2019, 7, 35673–35683. [Google Scholar] [CrossRef]
- Palsson, B.; Ulfarsson, M.O.; Sveinsson, J.R. Convolutional Autoencoder for Spectral–Spatial Hyperspectral Unmixing. IEEE Trans. Geosci. Remote Sens. 2020, 59, 535–549. [Google Scholar]
- Fauvel, M.; Tarabalka, Y.; Benediktsson, J.A.; Chanussot, J.; Tilton, J.C. Advances in spectral-spatial classification of hyperspectral images. Proc. IEEE 2013, 101, 652–675. [Google Scholar] [CrossRef] [Green Version]
- Plaza, A.; Martínez, P.; Pérez, R.; Plaza, J. Spatial/spectral endmember extraction by multidimensional morphological operations. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2025–2041. [Google Scholar] [CrossRef] [Green Version]
- Bouvrie, J. Notes on Convolutional Neural Networks. Available online: http://cogprints.org/5869/ (accessed on 13 February 2021).
- Zhou, Y.; Peng, J.; Chen, C.P. Dimension reduction using spatial and spectral regularized local discriminant embedding for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2014, 53, 1082–1095. [Google Scholar] [CrossRef]
- Huang, H.; Shi, G.; He, H.; Duan, Y.; Luo, F. Dimensionality reduction of hyperspectral imagery based on spatial-spectral manifold learning. IEEE Trans. Cybern. 2019, 50, 2604–2616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, H.; Duan, Y.; He, H.; Shi, G.; Luo, F. Spatial-spectral local discriminant projection for dimensionality reduction of hyperspectral image. ISPRS J. Photogramm. Remote Sens. 2019, 156, 77–93. [Google Scholar] [CrossRef]
RAW | LE | LLE | SAE | LPNPE | SSRLDE | SSMRPE | SSLDP | DFCEN_LE | DFCEN_LLE | ||
---|---|---|---|---|---|---|---|---|---|---|---|
SVM | NBS | 76.1 | 78.0 | 61.3 | 75.0 | 86.2 | 83.1 | 78.9 | 74.1 | 88.4 | 89.9 |
BS | 83.1 | 78.1 | 60.5 | 81.6 | 85.3 | 84.6 | 81.1 | 75.7 | 90.3 | 91.7 | |
KNN | NBS | 68.7 | 77.5 | 57.6 | 61.4 | 85.4 | 81.6 | 77.7 | 72.5 | 85.0 | 87.5 |
BS | 72.4 | 77.2 | 68.8 | 70.5 | 80.5 | 78.9 | 74.7 | 67.1 | 86.9 | 89.3 |
DFCEN_LLE | DFCEN_LE | |||||
---|---|---|---|---|---|---|
Parameters | ||||||
Indian Pines | 0.5 | 5 | 20 | 0.3 | 5 | 15 |
Pavia U | 0.5 | 5 | 90 | 1 | 5 | 400 |
Salinas | 0.3 | 7 | 120 | 0.5 | 7 | 600 |
Dataset | RAW | LE | LLE | SAE | LPNPE | SSRLDE | SSMRPE | SSLDP | DFCEN_LE | DFCEN_LLE | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Indian | 5% | SVM | 75.40 | 74.68 | 59.29 | 77.81 | 82.47 | 78.26 | 73.78 | 70.58 | 84.55 | 86.30 |
KNN | 65.00 | 73.48 | 56.08 | 66.59 | 81.71 | 80.45 | 74.97 | 70.41 | 81.01 | 81.85 | ||
10% | SVM | 76.06 | 77.99 | 61.26 | 81.64 | 86.24 | 83.11 | 78.93 | 74.07 | 90.25 | 91.18 | |
KNN | 68.70 | 77.48 | 57.85 | 70.52 | 85.39 | 81.56 | 77.66 | 72.45 | 86.74 | 88.52 | ||
15% | SVM | 83.90 | 78.88 | 62.03 | 83.58 | 88.13 | 85.81 | 81.48 | 75.01 | 92.60 | 93.28 | |
KNN | 70.63 | 79.04 | 58.91 | 72.25 | 87.11 | 82.62 | 79.66 | 72.96 | 89.89 | 91.81 | ||
Pavia U | 5% | SVM | 93.56 | 80.20 | 89.33 | 92.72 | 89.63 | 89.10 | 88.05 | 78.55 | 96.09 | 96.32 |
KNN | 84.96 | 73.95 | 81.22 | 82.88 | 91.69 | 90.35 | 86.05 | 77.74 | 94.00 | 93.45 | ||
10% | SVM | 94.49 | 81.09 | 90.40 | 93.49 | 91.13 | 90.57 | 89.70 | 80.03 | 97.25 | 97.05 | |
KNN | 86.63 | 74.60 | 82.49 | 84.02 | 92.41 | 91.43 | 87.11 | 77.95 | 95.73 | 95.37 | ||
15% | SVM | 94.82 | 81.31 | 90.99 | 93.80 | 92.11 | 91.37 | 90.69 | 80.81 | 97.76 | 97.57 | |
KNN | 87.37 | 74.84 | 83.41 | 84.72 | 92.84 | 92.01 | 87.66 | 78.86 | 96.39 | 96.26 | ||
Salinas | 5% | SVM | 93.37 | 85.85 | 90.14 | 92.32 | 92.82 | 91.82 | 93.51 | 92.54 | 96.12 | 96.87 |
KNN | 86.93 | 81.95 | 86.01 | 88.15 | 94.13 | 91.74 | 90.96 | 93.58 | 95.53 | 97.11 | ||
10% | SVM | 94.04 | 86.23 | 90.82 | 93 | 93.88 | 93.23 | 94.12 | 93.01 | 96.82 | 97.64 | |
KNN | 88.13 | 82.84 | 86.76 | 89.18 | 94.51 | 92.14 | 91.85 | 93.96 | 96.84 | 98.29 | ||
15% | SVM | 94.58 | 86.48 | 91.11 | 93.2 | 94.42 | 93.94 | 94.46 | 93.24 | 97.09 | 98.02 | |
KNN | 88.66 | 83.36 | 87.37 | 89.74 | 94.85 | 92.41 | 92.00 | 94.22 | 97.53 | 98.69 |
Class | RAW | LE | LLE | SAE | LPNPE | SSRLDE | SSMRPE | SSLDP | DFCEN_LE | DFCEN_LLE | |
---|---|---|---|---|---|---|---|---|---|---|---|
C1 | SVM | 19.5 | 19.5 | 34.1 | 75.6 | 68.3 | 90.0 | 58.5 | 62.5 | 56.1 | 85.4 |
KNN | 43.9 | 48.8 | 22.0 | 29.3 | 80.5 | 70.0 | 53.7 | 62.5 | 46.3 | 73.2 | |
C2 | SVM | 77.7 | 72.8 | 40.5 | 80.4 | 86.4 | 78.1 | 74.6 | 76.0 | 89.6 | 85.9 |
KNN | 56.0 | 70.6 | 43.3 | 66.5 | 80.2 | 75.2 | 69.3 | 69.9 | 81.2 | 83.1 | |
C3 | SVM | 68.3 | 43.8 | 9.9 | 67.3 | 80.1 | 69.3 | 62.8 | 63.5 | 90.2 | 87.3 |
KNN | 53.7 | 62.1 | 33.1 | 52.3 | 76.0 | 67.2 | 62.5 | 53.7 | 76.2 | 79.1 | |
C4 | SVM | 56.8 | 21.1 | 24.9 | 62.0 | 73.2 | 79.3 | 57.7 | 45.5 | 77.9 | 78.9 |
KNN | 41.3 | 30.0 | 35.2 | 41.8 | 73.7 | 62.0 | 64.3 | 54.9 | 52.6 | 67.6 | |
C5 | SVM | 90.3 | 77.2 | 73.1 | 88.7 | 93.8 | 94.3 | 89.7 | 86.4 | 97.0 | 98.2 |
KNN | 79.1 | 81.6 | 72.4 | 77.2 | 94.9 | 90.8 | 90.6 | 79.5 | 94.9 | 96.1 | |
C6 | SVM | 93.6 | 98.0 | 95.9 | 93.6 | 98.2 | 93.9 | 94.5 | 94.1 | 96.8 | 99.1 |
KNN | 93.8 | 91.5 | 80.8 | 93.3 | 97.9 | 96.5 | 94.5 | 89.8 | 98.9 | 98.3 | |
C7 | SVM | 88.0 | 92.0 | 68.0 | 64.0 | 100 | 90.9 | 84.0 | 72.7 | 88.0 | 96.0 |
KNN | 88.0 | 92.0 | 44.0 | 80.0 | 92.0 | 81.8 | 92.0 | 86.4 | 88.0 | 100 | |
C8 | SVM | 97.9 | 97.7 | 90.2 | 98.4 | 99.8 | 98.6 | 99.3 | 99.3 | 98.1 | 99.3 |
KNN | 94.0 | 93.0 | 89.5 | 95.1 | 100 | 99.3 | 97.0 | 99.8 | 99.3 | 100 | |
C9 | SVM | 5.6 | 11.1 | 0 | 50.0 | 88.9 | 85.7 | 44.4 | 21.4 | 100 | 83.3 |
KNN | 16.7 | 22.2 | 44.4 | 33.3 | 66.7 | 100 | 38.9 | 35.7 | 100 | 100 | |
C10 | SVM | 71.3 | 72.2 | 25.5 | 71.5 | 81.9 | 74.9 | 74.6 | 58.7 | 85.4 | 91.0 |
KNN | 61.6 | 74.6 | 40.8 | 58.9 | 81.8 | 78.5 | 73.6 | 58.1 | 90.1 | 92.1 | |
C11 | SVM | 83.9 | 86.3 | 87.5 | 85.8 | 83.0 | 82.1 | 78.1 | 78.2 | 87.5 | 89.7 |
KNN | 71.5 | 81.8 | 60.3 | 72.7 | 85.8 | 86.9 | 79.6 | 83.8 | 88.0 | 87.9 | |
C12 | SVM | 71.9 | 56.6 | 21.5 | 70.6 | 83.5 | 81.1 | 59.9 | 67.8 | 86.3 | 88.8 |
KNN | 40.8 | 50.6 | 27.2 | 57.7 | 85.2 | 70.0 | 63.9 | 69.9 | 70.4 | 73.2 | |
C13 | SVM | 93.5 | 85.3 | 90.2 | 96.7 | 99.5 | 95.1 | 96.7 | 96.7 | 99.5 | 100 |
KNN | 95.1 | 96.2 | 85.3 | 88.0 | 98.9 | 96.2 | 96.2 | 97.8 | 98.9 | 98.9 | |
C14 | SVM | 95.7 | 94.5 | 94.4 | 89.6 | 95.0 | 92.9 | 93.3 | 96.1 | 96.9 | 96.1 |
KNN | 85.4 | 92.0 | 90.9 | 86.9 | 94.3 | 91.3 | 90.9 | 95.3 | 95.9 | 97.1 | |
C15 | SVM | 61.1 | 78.4 | 15.9 | 53.3 | 78.1 | 69.2 | 56.8 | 43.8 | 83.0 | 83.0 |
KNN | 36.6 | 69.7 | 33.7 | 34.0 | 74.1 | 67.1 | 55.9 | 36.0 | 70.9 | 83.6 | |
C16 | SVM | 83.3 | 97.6 | 85.7 | 81.0 | 86.9 | 91.7 | 85.7 | 84.5 | 86.9 | 97.6 |
KNN | 85.7 | 98.8 | 88.1 | 83.3 | 88.1 | 92.9 | 90.5 | 84.5 | 94.0 | 92.9 | |
OA | SVM | 80.5 | 77.7 | 61.3 | 81.3 | 87.0 | 83.1 | 78.6 | 77.2 | 90.3 | 91.1 |
KNN | 67.5 | 77.2 | 58.0 | 70.5 | 86.3 | 82.7 | 78.1 | 76.2 | 86.5 | 88.5 | |
AA | SVM | 72.4 | 69.0 | 53.6 | 76.8 | 87.3 | 85.4 | 75.7 | 71.7 | 88.7 | 91.2 |
KNN | 65.2 | 72.2 | 55.7 | 65.7 | 85.6 | 82.9 | 75.8 | 72.3 | 84.1 | 88.9 | |
SVM | 78.5 | 74.4 | 54.3 | 78.6 | 85.2 | 80.8 | 75.5 | 73.8 | 88.9 | 89.9 | |
KNN | 63.7 | 74.0 | 52.0 | 66.3 | 84.4 | 80.3 | 75.0 | 72.5 | 84.6 | 86.9 |
Class | RAW | LE | LLE | SAE | LPNPE | SSRLDE | SSMRPE | SSLDP | DFCEN_LE | DFCEN_LLE | |
---|---|---|---|---|---|---|---|---|---|---|---|
C1 | SVM | 94.9 | 84.8 | 90.7 | 93.9 | 91.5 | 90.1 | 91.3 | 79.5 | 97.5 | 97.5 |
KNN | 87.4 | 80.1 | 80.2 | 85.4 | 91.7 | 89.5 | 84.5 | 78.4 | 93.9 | 94.5 | |
C2 | SVM | 98.4 | 97.0 | 97.2 | 97.6 | 96.9 | 96.1 | 96.4 | 93.1 | 99.2 | 99.0 |
KNN | 94.4 | 83.4 | 94.7 | 92.1 | 97.4 | 97.7 | 95.9 | 94.5 | 99.6 | 99.6 | |
C3 | SVM | 80.7 | 31.1 | 71.7 | 75.9 | 71.6 | 71.9 | 70.2 | 56.4 | 92.3 | 90.8 |
KNN | 65.2 | 40.4 | 56.5 | 60.5 | 78.3 | 78.1 | 63.5 | 59.4 | 87.8 | 86.7 | |
C4 | SVM | 95.3 | 77.9 | 91.1 | 93.1 | 92.2 | 92.8 | 90.4 | 69.1 | 98.5 | 97.1 |
KNN | 84.0 | 74.8 | 74.7 | 84.0 | 92.5 | 87.2 | 85.6 | 64.9 | 92.7 | 92.5 | |
C5 | SVM | 99.7 | 98.6 | 99.8 | 99.3 | 99.8 | 99.9 | 99.8 | 99.8 | 100 | 100 |
KNN | 98.8 | 99.1 | 99.5 | 99.5 | 99.6 | 99.8 | 99.8 | 99.8 | 100 | 99.9 | |
C6 | SVM | 87.3 | 31.2 | 77.3 | 84.0 | 85.6 | 83.0 | 81.0 | 73.2 | 93.0 | 93.6 |
KNN | 66.1 | 46.0 | 63.7 | 59.7 | 88.0 | 80.7 | 77.6 | 72.6 | 87.7 | 86.3 | |
C7 | SVM | 87.5 | 70.7 | 72.5 | 82.6 | 72.3 | 71.4 | 67.3 | 44.9 | 90.6 | 87.5 |
KNN | 81.5 | 58.4 | 69.4 | 80.7 | 88.6 | 88.1 | 74.7 | 51.5 | 94.0 | 92.3 | |
C8 | SVM | 88.1 | 86.0 | 87.2 | 89.4 | 79.2 | 79.4 | 77.5 | 55.8 | 94.0 | 96.1 |
KNN | 81.9 | 68.2 | 71.6 | 81.9 | 80.2 | 85.1 | 72.5 | 54.7 | 93.5 | 92.4 | |
C9 | SVM | 99.9 | 99.6 | 99.6 | 99.8 | 99.8 | 99.8 | 99.9 | 74.9 | 99.9 | 99.9 |
KNN | 99.6 | 99.6 | 99.8 | 100 | 100 | 99.9 | 98.1 | 89.4 | 99.8 | 99.3 | |
OA | SVM | 94.2 | 81.1 | 90.7 | 93.0 | 91.0 | 90.2 | 89.8 | 80.2 | 97.1 | 97.0 |
KNN | 86.3 | 74.5 | 83.0 | 84.3 | 92.5 | 91.4 | 87.1 | 80.9 | 95.6 | 95.2 | |
AA | SVM | 92.4 | 75.2 | 87.5 | 90.6 | 87.7 | 87.2 | 86.0 | 71.8 | 96.1 | 95.7 |
KNN | 84.3 | 72.2 | 78.9 | 82.6 | 90.7 | 89.6 | 83.6 | 73.9 | 94.3 | 93.7 | |
SVM | 92.4 | 74.0 | 87.5 | 90.6 | 88.0 | 87.0 | 86.3 | 73.5 | 96.2 | 96.1 | |
KNN | 82.0 | 66.1 | 77.1 | 79.0 | 90.0 | 88.6 | 82.8 | 74.3 | 94.1 | 93.7 |
Class | RAW | LE | LLE | SAE | LPNPE | SSRLDE | SSMRPE | SSLDP | DFCEN_LE | DFCEN_LLE | |
---|---|---|---|---|---|---|---|---|---|---|---|
C1 | SVM | 99.8 | 97.5 | 98.6 | 99.0 | 99.9 | 99.4 | 99.4 | 99.9 | 100 | 100 |
KNN | 98.3 | 97.1 | 98.4 | 98.6 | 99.9 | 99.2 | 99.5 | 99.9 | 99.5 | 100 | |
C2 | SVM | 99.9 | 98.8 | 99.2 | 99.8 | 99.9 | 99.8 | 99.9 | 99.9 | 100 | 100 |
KNN | 99.7 | 98.3 | 99.5 | 99.7 | 100 | 99.8 | 100 | 100 | 99.9 | 99.9 | |
C3 | SVM | 99.9 | 96.9 | 97.8 | 99.6 | 99.7 | 99.2 | 99.7 | 99.8 | 99.7 | 99.7 |
KNN | 98.8 | 95.7 | 85.2 | 99.0 | 99.9 | 99.7 | 99.8 | 100 | 99.9 | 99.7 | |
C4 | SVM | 99.4 | 98.6 | 99.4 | 99.5 | 97.4 | 98.7 | 99.8 | 99.2 | 100 | 100 |
KNN | 99.0 | 97.5 | 98.3 | 99.5 | 99.2 | 99.3 | 99.9 | 99.8 | 99.8 | 99.5 | |
C5 | SVM | 99.2 | 96.6 | 98.7 | 98.2 | 98.7 | 99.3 | 99.2 | 98.8 | 100 | 99.9 |
KNN | 98.5 | 97.3 | 95.9 | 98.0 | 99.1 | 99.2 | 99.5 | 98.5 | 99.4 | 100 | |
C6 | SVM | 99.8 | 99.5 | 100 | 99.8 | 99.9 | 100 | 100 | 99.9 | 100 | 100 |
KNN | 99.8 | 99.2 | 99.9 | 99.7 | 99.9 | 100 | 99.9 | 99.9 | 100 | 100 | |
C7 | SVM | 99.8 | 99.3 | 99.8 | 99.9 | 99.9 | 99.8 | 100 | 99.9 | 99.9 | 100 |
KNN | 99.6 | 98.0 | 99.9 | 99.3 | 99.9 | 99.9 | 100 | 99.9 | 100 | 100 | |
C8 | SVM | 90.3 | 81.1 | 86.2 | 89.7 | 90.9 | 87.5 | 88.4 | 88.7 | 93.1 | 95.0 |
KNN | 75.1 | 66.3 | 72.0 | 76.2 | 87.7 | 82.1 | 80.9 | 88.7 | 92.6 | 94.3 | |
C9 | SVM | 99.9 | 98.6 | 99.8 | 100 | 99.6 | 99.1 | 99.7 | 100 | 99.9 | 99.8 |
KNN | 99.4 | 98.3 | 99.2 | 99.5 | 99.9 | 99.8 | 99.9 | 100 | 99.9 | 99.8 | |
C10 | SVM | 96.9 | 86.8 | 90.7 | 94.7 | 98.3 | 97.7 | 98.8 | 97.9 | 99.4 | 99.3 |
KNN | 90.6 | 81.6 | 89.6 | 90.9 | 98.3 | 97.1 | 98.0 | 97.6 | 98.5 | 99.2 | |
C11 | SVM | 98.9 | 87.2 | 96.1 | 96.0 | 98.9 | 98.4 | 99.7 | 99.4 | 98.1 | 99.9 |
KNN | 94.9 | 87.3 | 91.1 | 97.5 | 97.8 | 99.6 | 99.8 | 99.5 | 100 | 100 | |
C12 | SVM | 99.3 | 98.1 | 99.2 | 99.9 | 99.6 | 98.6 | 99.9 | 100 | 100 | 100 |
KNN | 99.3 | 95.2 | 97.1 | 99.9 | 100 | 99.9 | 100 | 100 | 100 | 100 | |
C13 | SVM | 97.9 | 97.5 | 98.4 | 99.0 | 95.8 | 98.7 | 99.6 | 99.5 | 100 | 100 |
KNN | 97.6 | 96.1 | 97.5 | 96.1 | 99.2 | 98.8 | 99.0 | 99.5 | 100 | 100 | |
C14 | SVM | 97.0 | 91.4 | 92.7 | 95.1 | 96.1 | 96.4 | 97.6 | 97.0 | 99.7 | 99.9 |
KNN | 93.8 | 91.3 | 94.1 | 95.6 | 98.2 | 96.7 | 98.4 | 96.7 | 99.6 | 99.3 | |
C15 | SVM | 73.5 | 44.1 | 61.6 | 63.9 | 73.2 | 74.8 | 76.4 | 67.3 | 85.3 | 91.5 |
KNN | 60.5 | 47.4 | 60.3 | 64.1 | 81.4 | 73.0 | 68.6 | 77.8 | 87.7 | 95.3 | |
C16 | SVM | 98.8 | 92.7 | 99.2 | 98.5 | 99.0 | 99.0 | 99.6 | 98.6 | 98.8 | 100 |
KNN | 98.2 | 91.5 | 99.0 | 96.9 | 99.8 | 99.5 | 99.5 | 98.6 | 99.4 | 99.9 | |
OA | SVM | 93.7 | 86.2 | 90.8 | 92.2 | 94.0 | 93.4 | 94.1 | 92.9 | 96.5 | 97.7 |
KNN | 87.9 | 82.9 | 86.7 | 89.0 | 94.7 | 92.2 | 91.6 | 94.3 | 96.6 | 98.1 | |
AA | SVM | 96.9 | 91.5 | 94.8 | 95.8 | 96.7 | 96.6 | 97.4 | 96.6 | 98.4 | 99.1 |
KNN | 93.9 | 89.9 | 92.3 | 94.4 | 97.5 | 96.5 | 96.4 | 97.3 | 98.5 | 99.2 | |
SVM | 93.3 | 84.6 | 89.7 | 91.4 | 93.3 | 92.6 | 93.5 | 92.1 | 96.1 | 97.5 | |
KNN | 86.9 | 80.9 | 85.2 | 87.8 | 94.0 | 91.3 | 90.6 | 93.6 | 96.2 | 97.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, N.; Zhou, D.; Shi, J.; Zhang, M.; Wu, T.; Gong, M. Deep Fully Convolutional Embedding Networks for Hyperspectral Images Dimensionality Reduction. Remote Sens. 2021, 13, 706. https://doi.org/10.3390/rs13040706
Li N, Zhou D, Shi J, Zhang M, Wu T, Gong M. Deep Fully Convolutional Embedding Networks for Hyperspectral Images Dimensionality Reduction. Remote Sensing. 2021; 13(4):706. https://doi.org/10.3390/rs13040706
Chicago/Turabian StyleLi, Na, Deyun Zhou, Jiao Shi, Mingyang Zhang, Tao Wu, and Maoguo Gong. 2021. "Deep Fully Convolutional Embedding Networks for Hyperspectral Images Dimensionality Reduction" Remote Sensing 13, no. 4: 706. https://doi.org/10.3390/rs13040706
APA StyleLi, N., Zhou, D., Shi, J., Zhang, M., Wu, T., & Gong, M. (2021). Deep Fully Convolutional Embedding Networks for Hyperspectral Images Dimensionality Reduction. Remote Sensing, 13(4), 706. https://doi.org/10.3390/rs13040706