Simulation of Lake Water Volume in Ungauged Terminal Lake Basin Based on Multi-Source Remote Sensing
Abstract
:1. Introduction
2. Study Area and Materials
2.1. Study Area
2.2. UAV and Section Measurement Data for Establishing a Digital River Model
2.3. Satellite Data
2.4. Statistical Data
3. Methods
3.1. Calculating River Flow
3.2. Extraction of Water Surface Width
3.3. Performance Metrics
3.4. Lake Water Volume Simulation
4. Results
4.1. Estimation of River Inflow Based on the Remote Sensing Flow Method
4.2. Simulation of Lake Water Volume Changes in a Terminal Lake Basin
5. Discussion
5.1. Influence of Precipitation on Lake Water Volume
5.2. Comparison and Discussion of Lake Water Volume Simulation Method and Remote Sensing Flow Estimation Method with Existing Methods
5.2.1. Simulation Method of Lake Water Volume
5.2.2. Remote Sensing Flow Estimation Method
5.3. Accounting for Changing River Bottom Topography
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zuo, Q.T.; Cui, G.T. Study on theoretical system and framework of interconnected river system network. Water Resour. Power 2012, 30, 1–5. (In Chinese) [Google Scholar]
- Cheng, W.M.; Zhou, C.H.; Liu, H.J.; Zhang, Y. The Oasis expansion and eco-environment change over the last 50years in Manas River Valley, Xinjiang. Sci. China Ser. D Earth Sci. 2005, 11, 1074–1086. [Google Scholar] [CrossRef]
- Williams, W.D. What future for saline lakes? Environ. Sci. Policy Sustain. Dev. 1996, 38, 12–39. [Google Scholar] [CrossRef]
- Ariztegui, D.; Anselmetti, F.S.; Robbiani, J.M.; Bernasconi, S.M.; Brati, E.; Gilli, A.; Lehmann, M.F. Natural and human-induced environmental change in southern Albania for the last 300 years—Constraints from the Lake Butrint sedimentary record. Glob. Planet. Chang. 2010, 71, 183–192. [Google Scholar] [CrossRef] [Green Version]
- Russell, J.M.; McCoy, S.J.; Verschuren, D.; Bessems, I.; Huang, Y. Human impacts, climate change, and aquatic ecosystem response during the past 2000 yr at Lake Wandakara, Uganda. Quat. Res. 2009, 72, 315–324. [Google Scholar] [CrossRef]
- Bartolai, A.M.; He, L.; Hurst, A.E.; Mortsch, L.; Paehlke, R.; Scavia, D. Climate change as a driver of change in the Great Lakes St. Lawrence River basin. J. Great Lakes Res. 2015, 41, 45–58. [Google Scholar] [CrossRef]
- Yan, L.; Zheng, M. The response of lake variations to climate change in the past forty years: A case study of the northeastern Tibetan Plateau and adjacent areas, China. Quat. Int. 2015, 371, 31–48. [Google Scholar] [CrossRef]
- Wang, J.; Song, C.; Reager, J.T.; Yao, F.; Famiglietti, J.S.; Sheng, Y.; MacDonald, G.M.; Brun, F.; Schmied, H.M.; Marston, R.A.; et al. Recent global decline in endorheic basin water storages. Nat. Geosci. 2018, 11, 926–932. [Google Scholar] [CrossRef] [Green Version]
- Rodell, M.; Famiglietti, J.S.; Wiese, D.N.; Reager, J.T.; Beaudoing, H.K.; Landerer, F.W.; Lo, M.H. Emerging trends in global freshwater availability. Nature 2018, 557, 651–659. [Google Scholar] [CrossRef]
- Hammer, U.T. Saline Lake Ecosystems of the World; Springer Science & Business Media: Berlin, Germany, 1986. [Google Scholar]
- Pavelsky, T.M. World′s landlocked basins drying. Nat. Geosci. 2018, 11, 892–893. [Google Scholar] [CrossRef]
- Du, Y.; Xue, H.P.; Wu, S.J.; Ling, F.; Xiao, F.; Wei, X.H. Lake area changes in the middle Yangtze region of China over the 20th century. J. Environ. Manag. 2011, 92, 1248–1255. [Google Scholar] [CrossRef]
- Abbott, B.W.; Bishop, K.; Zarnetske, J.P.; Hannah, D.M.; Frei, R.J.; Minaudo, C.; Chapin, F.S., III; Krause, S.; Conner, L.; Ellison, D.; et al. A water cycle for the Anthropocene. Hydrol. Process. 2019, 33, 3046–3052. [Google Scholar] [CrossRef]
- Chaudhari, S.; Felfelani, F.; Shin, S.; Pokhrel, Y. Climate and anthropogenic contributions to the desiccation of the second largest saline lake in the twentieth century. J. Hydrol. 2018, 560, 342–353. [Google Scholar] [CrossRef]
- Wine, M.L.; Rimmer, A.; Laronne, J.B. Agriculture, diversions, and drought shrinking Galilee Sea. Sci. Total Environ. 2019, 651, 70–83. [Google Scholar] [CrossRef]
- Zhang, G.; Yao, T.; Chen, W.; Zheng, G.; Shum, C.K.; Yang, K.; Piao, S.; Sheng, Y.; Yi, S.; Li, J.; et al. Regional differences of lake evolution across China during 1960s–2015 and its natural and anthropogenic causes. Remote Sens. Environ. 2019, 221, 386–404. [Google Scholar] [CrossRef]
- Case, H.L., III; Boles, J.; Delgado, A.; Nguyen, T.; Osugi, D.; Barnum, D.A.; Decker, D.; Steinberg, S.; Steinberg, S.; Keene, C.; et al. Salton Sea Ecosystem Monitoring and Assessment Plan: U.S. Geological Survey Open-File Report 2013-1133. p. 220. Available online: https://pubs.usgs.gov/of/2013/1133/ (accessed on 13 February 2021).
- Assessment, M.E. Ecosystems and Human Well-Being: Wetlands and Water; World Resources Institute: Washington, DC, USA, 2005. [Google Scholar]
- Indoitu, R.; Kozhoridze, G.; Batyrbaeva, M.; Vitkovskaya, I.; Orlovsky, N.; Blumberg, D.; Orlovsky, L. Dust emission and environmental changes in the dried bottom of the Aral Sea. Aeolian Res. 2015, 17, 101–115. [Google Scholar] [CrossRef]
- Sellinger, C.E.; Stow, C.A.; Lamon, E.C.; Qian, S.S. Recent water level declines in the Lake Michigan−Huron System. Environ. Sci. Technol. 2008, 42, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Ramboll Environ, U.S. Corporation. Great Basin Unified Air Pollution Control District: 2016 Owens Valley Planning Area PM10 State Implementation Plan; Great Basin Unified Air Pollution Control District: Bishop, CA, USA, 2016; p. 1494. [Google Scholar]
- Bai, J.; Chen, X.; Yang, L.; Fang, H. Monitoring variations of inland lakes in the arid region of Central Asia. Front. Earth. Sci. 2012, 6, 147–156. [Google Scholar] [CrossRef]
- Senner, N.R.; Moore, J.N.; Seager, S.T.; Dougill, S.; Kreuz, K.; Senner, S.E. A salt lake under stress: Relationships among birds, water levels, and invertebrates at a Great Basin saline lake. Biol. Conserv. 2018, 220, 320–329. [Google Scholar] [CrossRef]
- Wik, M.; Varner, R.K.; Anthony, K.W.; MacIntyre, S.; Bastviken, D. Climate-sensitive northern lakes and ponds are critical components of methane release. Nat. Geosci. 2016, 9, 99–105. [Google Scholar] [CrossRef]
- Kelly-Quinn, M.; Biggs, J.; von Fumetti, S. Preface: The importance of small waterbodies. Hydrobiologia 2017, 793, 1–2. [Google Scholar] [CrossRef]
- Dessie, M.; Verhoest, N.E.; Pauwels, V.R.; Adgo, E.; Deckers, J.; Poesen, J.; Nyssen, J. Water balance of a lake with floodplain buffering: Lake Tana, Blue Nile Basin, Ethiopia. J. Hydrol. 2015, 522, 174–186. [Google Scholar] [CrossRef]
- Li, X.; Yao, J.; Li, Y.; Zhang, Q.; Xu, C.Y. A modeling study of the influences of Yangtze River and local catchment on the development of floods in Poyang Lake, China. Hydrol. Res. 2016, 47, 102–119. [Google Scholar] [CrossRef] [Green Version]
- Ye, X.; Li, X.; Xu, C.Y.; Zhang, Q. Similarity, difference and correlation of meteorological and hydrological drought indices in a humid climate region–the Poyang Lake catchment in China. Hydrol. Res. 2016, 47, 1211–1223. [Google Scholar] [CrossRef]
- Sun, W.C.; Ishidaira, H.; Bastola, S. Towards improving river discharge estimation in ungauged basins: Calibration of rainfall-runoff models based on satellite observations of river flow width at basin outlet. Hydrol. Earth. Syst. Sci. 2010, 14, 2011. [Google Scholar] [CrossRef] [Green Version]
- Temimi, M.; Leconte, R.; Brissette, F.; Chaouch, N. Flood and soil wetness monitoring over the Mackenzie River Basin using AMSR-E 37 GHz brightness temperature. J. Hydrol. 2007, 333, 317–328. [Google Scholar] [CrossRef]
- Habib, M.K.; Baudoin, Y.; Nagata, F. Robotics for rescue and risky intervention. In Proceedings of the IECON 2011: 37th Annual Conference of the IEEE Industrial Electronics Society, Melbourne, Australia, 7–10 November 2011. [Google Scholar]
- Qiao, M.; Zhou, S.B.; Lu, L. Trends in runoff variations of the Ebinur Lake Basin during the last 48 years. J. Soil Water Conserv. 2010, 24, 236–239. (In Chinese) [Google Scholar] [CrossRef]
- Pan, X.L.; Wang, X.C.; Lei, J.Q. Some consideration on evolution and control of ecological environment of arid regions in western china. Adv. Earth Sci. 2001, 1, 24–27. (In Chinese) [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Diaz-Varela, R.; Angileri, V.; Loudjani, P. Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. Eur. J. Agron. 2014, 55, 89–99. [Google Scholar] [CrossRef]
- Neugirg, F.; Stark, M.; Kaiser, A.; Vlacilova, M.; Della Seta, M.; Vergari, F.; Schmidt, J.; Becht, M.; Haas, F. Erosion processes in calanchi in the Upper Orcia Valley, Southern Tuscany, Italy based on multitemporal high-resolution terrestrial LiDAR and UAV surveys. Geomorphology 2016, 269, 8–22. [Google Scholar] [CrossRef]
- Xie, R. Water Information Technology; Water Resources and Hydropower Press: Beijing, China, 2009. [Google Scholar]
- Hakim, S.S.; Azimi, A.H. Hydraulics of submerged triangular weirs and weirs of finite-crest length with upstream and downstream ramps. J. Irrig. Drain. Eng. 2017, 143, 06017008. [Google Scholar] [CrossRef]
- Riggs, H. A simplified slope-area method for estimating flood discharges in natural channels. J. Res. US Geol. Surv. 1976, 4, 285–291. [Google Scholar]
- Stewart, A.M.; Callegary, J.B.; Smith, C.F.; Gupta, H.V.; Leenhouts, J.M.; Fritzinger, R.A. Use of the continuous slope-area method to estimate runoff in a network of ephemeral channels, southeast Arizona, USA. J. Hydrol. 2012, 472, 148–158. [Google Scholar] [CrossRef]
- Sikder, M.S.; Hossain, F. Understanding the Geophysical Sources of Uncertainty for Satellite Interferometric (SRTM)-Based Discharge Estimation in River Deltas: The Case for Bangladesh. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 523–538. [Google Scholar] [CrossRef]
- Zhao, C.S.; Zhang, C.B.; Yang, S.T.; Liu, C.M.; Xiang, H.; Sun, Y.; Yang, Z.Y.; Zhang, Y.; Yu, X.Y.; Shao, N.F.; et al. Calculating e-flow using UAV and ground monitoring. J. Hydrol. 2017, 552, 351–365. [Google Scholar] [CrossRef]
- Yang, S.; Wang, P.; Lou, H.; Wang, J.; Zhao, C.; Gong, T. Estimating River Discharges in Ungauged Catchments Using the Slope–Area Method and Unmanned Aerial Vehicle. Water 2019, 11, 2361. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Wang, J.; Wang, P.; Gong, T.; Liu, H. Low Altitude Unmanned Aerial Vehicles (UAVs) and Satellite Remote Sensing Are Used to Calculated River Discharge Attenuation Coefficients of Ungauged Catchments in Arid Desert. Water 2019, 11, 2633. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Long, D.; Du, M.; Zeng, C.; Li, X.; Hou, A.; Hong, Y. An improved approach to monitoring Brahmaputra River water levels using retracked altimetry data. Remote Sens. Environ. 2018, 211, 112–128. [Google Scholar] [CrossRef]
- Smith, L.C.; Isacks, B.L.; Bloom, A.L.; Murray, A.B. Estimation of discharge from three braided rivers using synthetic aperture radar satellite imagery: Potential application to ungaged basins. Water Resour. Res. 1996, 32, 2021–2034. [Google Scholar] [CrossRef]
- Birkinshaw, S.J.; Moore, P.; Kilsby, C.G.; O′donnell, G.M.; Hardy, A.J.; Berry, P.A.M. Daily discharge estimation at ungauged river sites using remote sensing. Hydrol. Process. 2014, 28, 1043–1054. [Google Scholar] [CrossRef]
- Sichangi, A.W.; Wang, L.; Yang, K.; Chen, D.; Wang, Z.; Li, X.; Zhou, J.; Liu, W.; Kuria, D. Estimating continental river basin discharges using multiple remote sensing data sets. Remote Sens. Environ. 2016, 179, 36–53. [Google Scholar] [CrossRef] [Green Version]
- Riahi, K.; Rao, S.; Krey, V.; Cho, C.; Chirkov, V.; Fischer, G.; Kindermann, G.; Nakicenovic, N.; Rafaj, P. RCP 8.5-A scenario of comparatively high greenhouse gas emissions. Clim. Chang. 2011, 109, 33–57. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.Y. Study on Bottom Topography of Ebinur Based on Remote Sensing Technology. Master’s Thesis, Xinjiang Normal University, Urumqi, China, 2010. (In Chinese). [Google Scholar]
- Arsen, A.; Crétaux, J.F.; Berge-Nguyen, M.; Del Rio, R.A. Remote sensing-derived bathymetry of lake Poopó. Remote Sens. 2014, 6, 407–420. [Google Scholar] [CrossRef] [Green Version]
- Chipman, J.W. A multisensor approach to satellite monitoring of trends in lake area, water level, and volume. Remote Sens. 2019, 11, 158. [Google Scholar] [CrossRef] [Green Version]
- Lei, Y.; Yao, T.; Yang, K.; Sheng, Y.; Kleinherenbrink, M.; Yi, S.; Bird, B.W.; Zhang, X.; Zhu, L.; Zhang, G. Lake seasonality across the Tibetan Plateau and their varying relationship with regional mass changes and local hydrology. Geophys. Res. Lett. 2017, 44, 892–900. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Yan, J.; Jia, S. Monitoring recent fluctuations of the southern Pool of Lake Chad using multiple remote sensing data: Implications for water balance analysis. Remote Sens. 2017, 9, 1032. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Chen, W.; Xie, H. Tibetan Plateau′s lake level and volume changes from NASA′s ICESat/ICESat-2 and Landsat Missions. Geophys. Res. Lett. 2019, 46, 13107–13118. [Google Scholar] [CrossRef]
- Kite, G.W.; Pietroniro, A. Remote sensing applications in hydrological modelling. Hydrol. Sci. J. 1996, 41, 563–591. [Google Scholar] [CrossRef]
- Alsdorf, D.E.; Lettenmaier, D.P. Tracking fresh water from space. Science 2003, 301, 1491–1494. [Google Scholar] [CrossRef] [Green Version]
- Garambois, P.A.; Monnier, J. Inference of effective river properties from remotely sensed observations of water surface. Adv. Water Resour. 2015, 79, 103–120. [Google Scholar] [CrossRef]
- Kerr, J.M.; Purkis, S. An algorithm for optically-deriving water depth from multispectral imagery in coral reef landscapes in the absence of ground-truth data. Remote Sens. Environ. 2018, 210, 307–324. [Google Scholar] [CrossRef]
- Li, J.; Guo, X.; Gong, T.; Wang, J.; Wang, T.; Li, H. A method estimating natural runoff in regions with none or less data. J. Hydraul. Eng. 2018, 49, 1420–1428. (In Chinese) [Google Scholar] [CrossRef]
- Liu, C.; Men, B.; Song, J. Ecological hydraulic radius method for estimating ecological water demand in river course. Prog. Nat. Sci. 2007, 1, 42–48. (In Chinese) [Google Scholar] [CrossRef]
Camera Model | FC300X | Field of View | 94° |
---|---|---|---|
Image sensor | Sony Exmor R CMOS | Maximum flight altitude | 500 m |
Camera pixels | 12 million (4000 × 3000) | Takeoff weight | 1280 g |
Maximum Aperture | f/2.8 | Maximum level flight speed | 16 m/s |
Camera focal length | 20 mm | Working temperature | 0~40 °C |
Site | Location | River |
---|---|---|
B1 | 44°55′45.17″, 81°52′37.99″ | Bortala river |
B2 | 44°42′34.80″,82°3′32.44″ | Bortala river |
B3 | 44°45′56.97″,82°39′23.39″ | Bortala river |
J1 | 44°51′15.68″, 81°13′31.66″ | Jing river |
J2 | 44°45′12.57″, 82°51′8.82″ | Jing river |
River-Course Cross-Sections | Hydraulic Slope (%) | Qc (m3/s) | Qm (m3/s) | Precision (%) |
---|---|---|---|---|
B1 | 0.8 | 16.94 | 18.56 | 91.3 |
B2 | 0.8 | 1.244 | 1.12 | 90.3 |
B3 | 0.6 | 0.025 | / | / |
J1 | 2.3 | 21.759 | 21.76 | 93.5 |
J2 | 1.2 | 4.67 | / | / |
River Sections | B1 | B2 | B3 | J1 | J3 |
---|---|---|---|---|---|
Mesured velocity (m/s) | 1.40 | 0.70 | 0.20 | 2.00 | 1.00 |
Calculated velocity (m/s) | 1.20 | 0.82 | 0.16 | 2.06 | 0.85 |
Relative accuracy (%) | 14.29 | 17.14 | 20.00 | 3.00 | 15.00 |
Sections | B1 | B2 | J1 |
---|---|---|---|
Nash | 0.98 | 0.95 | 0.97 |
RMSE (m3/s) | 1.05 | 1.28 | 1.30 |
Functional Relationship | Model | R2 | RMSE | Equation |
---|---|---|---|---|
0.99 | 0.07(m) | (11) | ||
0.98 | 3.00(108m3) | (12) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Yang, S.; Liu, H.; Wang, P.; Lou, H.; Gong, T. Simulation of Lake Water Volume in Ungauged Terminal Lake Basin Based on Multi-Source Remote Sensing. Remote Sens. 2021, 13, 697. https://doi.org/10.3390/rs13040697
Wang J, Yang S, Liu H, Wang P, Lou H, Gong T. Simulation of Lake Water Volume in Ungauged Terminal Lake Basin Based on Multi-Source Remote Sensing. Remote Sensing. 2021; 13(4):697. https://doi.org/10.3390/rs13040697
Chicago/Turabian StyleWang, Juan, Shengtian Yang, Huiping Liu, Pengfei Wang, Hezhen Lou, and Tongliang Gong. 2021. "Simulation of Lake Water Volume in Ungauged Terminal Lake Basin Based on Multi-Source Remote Sensing" Remote Sensing 13, no. 4: 697. https://doi.org/10.3390/rs13040697
APA StyleWang, J., Yang, S., Liu, H., Wang, P., Lou, H., & Gong, T. (2021). Simulation of Lake Water Volume in Ungauged Terminal Lake Basin Based on Multi-Source Remote Sensing. Remote Sensing, 13(4), 697. https://doi.org/10.3390/rs13040697