What Drives Crop Land Use Change during Multi-Year Droughts in California’s Central Valley? Prices or Concern for Water?
Abstract
:1. Introduction
2. Methodology
2.1. Central Valley, California
2.2. Datasets
2.3. Approach
3. Results and Discussion
3.1. Trends in Crop Acreage at Central Valley Level
3.2. County Level Analyses
3.3. Synthesis and Discussion
3.3.1. Crop Acreage Changes
3.3.2. The Role of Crop Prices
3.3.3. Impact on Water Resources
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Diffenbaugh, N.S.; Swain, D.L.; Touma, D. Anthropogenic warming has increased drought risk in California. Proc. Natl. Acad. Sci. USA 2015, 112, 3931–3936. [Google Scholar] [CrossRef] [Green Version]
- Wegren, S.K. Food security and Russia’s 2010 drought. Eurasian Geogr. Econ. 2011, 52, 140–156. [Google Scholar] [CrossRef]
- De Châtel, F. The role of drought and climate change in the Syrian uprising: Untangling the triggers of the revolution. Middle East. Stud. 2014, 50, 521–535. [Google Scholar] [CrossRef]
- Maxwell, D.; Fitzpatrick, M. The 2011 Somalia famine: Context, causes, and complications. Glob. Food Secur. 2012, 1, 5–12. [Google Scholar] [CrossRef]
- Mallya, G.; Zhao, L.; Song, X.C.; Niyogi, D.; Govindaraju, R.S. 2012 Midwest drought in the United States. J. Hydrol. Eng. 2013, 18, 737–745. [Google Scholar] [CrossRef]
- Wang, S.; Yuan, X.; Li, Y. Does a strong El Niño imply a higher predictability of extreme drought? Sci. Rep. 2017, 7, 40741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solander, K.C.; Wilson, C.J. The Cape Town Drought: What is Happening and Will It Happen Again? (No. LA-UR-18-21239); Los Alamos National Lab. (LANL): Los Alamos, NM, USA, 2018. [Google Scholar]
- Medellín-Azuara, J.; MacEwan, D.; Howitt, R.E.; Sumner, D.A.; Lund, J.R.; Scheer, J.; Gailey, R.; Hart, Q.; Alexander, N.D.; Arnold, B.; et al. Economic Analysis of the 2016. California Drought on Agriculture; Center for Watershed Sciences: Davis, CA, USA, 2016. [Google Scholar]
- Griffin, D.; Anchukaitis, K.J. How unusual is the 2012–2014 California drought? Geophys. Res. Lett. 2014, 41, 9017–9023. [Google Scholar] [CrossRef] [Green Version]
- Belmecheri, S.; Babst, F.; Wahl, E.R.; Stahle, D.W.; Trouet, V. Multi-century evaluation of Sierra Nevada snowpack. Nat. Clim. Chang. 2016, 6, 2–3. [Google Scholar] [CrossRef]
- Swain, D.L.; Tsiang, M.; Haugen, M.; Singh, D.; Charland, A.; Rajaratnam, B.; Diffenbaugh, N.S. The extraordinary California drought of 2013/2014: Character, context, and the role of climate change. Bull. Am. Meteorol. Soc. 2014, 95, S3–S7. [Google Scholar]
- USDM. US Drought Monitor. 2018. Available online: https://droughtmonitor.unl.edu/ (accessed on 10 February 2021).
- Reilly, T.E. Ground-Water Availability in the United States; U.S. Geological Survey Circular 1323: Denver, CO, USA, 2008; p. 84. ISBN 978-1-4113-2183-0. [Google Scholar]
- Faunt, C.C. (Ed.) Groundwater Availability of the Central Valley Aquifer, California; U.S. Geological Survey Professional Paper 1766: Denver, CO, USA, 2009; p. 173. [Google Scholar]
- Hanak, E.; Escriva-Bou, A.; Gray, B.; Green, S.; Harter, T.; Jezdimirovic, J.; Lund, J.; Medellin-Azuara, J.; Moyle, P.; Seavy, N. Water and the Future of the San Joaquin Valley. 2019. Available online: https://www.ppic.org/publication/water-and-the-future-of-the-san-joaquin-valley/ (accessed on 30 June 2020).
- Cooley, H.; Donnelly, K.; Phurisamban, R.; Subramanian, M. Impacts of California’s ongoing Drought: Agriculture; Pacific Institute: Oakland, CA, USA, 2015; p. 24. [Google Scholar]
- Medellin-Azuara, J.; MacEwan, D.; Howitt, R.E.; Koruakos, G.; Dogrul, E.C.; Brush, C.F.; Kadir, T.N.; Harter, T.; Melton, F.; Lund, J.R. Hydro-economic analysis of groundwater pumping for irrigated agriculture in California’s Central Valley, USA. Hydrogeol. J. 2015, 23, 1205–1216. [Google Scholar] [CrossRef]
- Christian-Smith, J.; Levy, M.C.; Gleick, P.H. Impacts of the California Drought from 2007 to 2009; Pacific Institute: Oakland, CA, USA, 2011; p. 105. [Google Scholar]
- Schauer, M.; Senay, G.B. Characterizing Crop Water Use Dynamics in the Central Valley of California Using Landsat-Derived Evapotranspiration. Remote Sens. 2019, 11, 1782. [Google Scholar] [CrossRef] [Green Version]
- Mall, N.K.; Herman, J.D. Water shortages risks from perennial crop expansion in California’s Central Valley. Environ. Res. Lett. 2019, 14, 1–9. [Google Scholar] [CrossRef]
- Johnson, R.; Cody, B.A. California Agricultural Production and Irrigated Water Use; Congressional Research Service: Washington, DC, USA, 2015. [Google Scholar]
- Goldhamer, D.A.; Fereres, E. Establishing an almond water production function for California using long-term yield response to variable irrigation. Irrig. Sci. 2017, 35, 169–179. [Google Scholar] [CrossRef]
- Fulton, J.; Norton, M.; Shilling, F. Water-indexed benefits and impacts of California almonds. Ecol. Indic. 2018, 96. [Google Scholar] [CrossRef]
- Kang, M.; Ayars, J.E.; Jackson, R.B. Deep groundwater quality in the southwestern United States. Environ. Res. Lett. 2019, 14, 034004. [Google Scholar] [CrossRef] [Green Version]
- Konikow, L.F.; Kendy, E. Groundwater depletion: A global problem. Hydrogeol. J. 2005, 13, 317–320. [Google Scholar] [CrossRef]
- Jeanne, P.; Farr, T.G.; Rutqvist, J.; Vasco, D.W. Role of agricultural activity on land subsidence in the San Joaquin Valley, California. J. Hydrol. 2019, 569, 462–469. [Google Scholar] [CrossRef] [Green Version]
- Alam, S.; Gebremichael, M.; Li, R.; Dozier, J.; Lettenmaier, D.P. Climate change impacts on groundwater storage in the Central Valley, California. Clim. Chang. 2019, 157, 387–406. [Google Scholar]
- Barnett, T.; Pierce, D.W. Sustainable water deliveries from the Colorado River in a changing climate. Proc. Natl. Acad. Sci. USA 2009, 106, 7334–7338. [Google Scholar] [CrossRef] [Green Version]
- Cayan, D.R.; Das, T.; Pierce, D.W.; Barnett, T.P.; Tyree, M.; Gershunov, A. Future dryness in the southwest US and the hydrology of the early 21st century drought. Proc. Natl. Acad. Sci. USA 2010, 107, 21271–21276. [Google Scholar] [CrossRef] [Green Version]
- Lo, M.H.; Famiglietti, J.S. Irrigation in California’s Central Valley strengthens the southwestern US water cycle. Geophys. Res. Lett. 2013, 40, 301–306. [Google Scholar] [CrossRef] [Green Version]
- Conrad, E.; Moran, T.; DuPraw, M.E.; Ceppos, D.; Martinez, J.; Blomquist, W. Diverse stakeholders create collaborative, multilevel basin governance for groundwater sustainability. Calif. Agric. 2018, 72, 44–53. [Google Scholar] [CrossRef]
- Lund, J.R.; Medellin-Azuara, J.; Durand, J.; Stone, K. Lessons from California’s 2012–2016 drought. J. Water Resour. Plan. Manag. 2018, 144. [Google Scholar] [CrossRef] [Green Version]
- Scanlon, B.R.; Faunt, C.C.; Longuevergne, L.; Reedy, R.C.; Alley, W.M.; McGuire, V.L.; McMahon, P.B. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Natl. Acad. Sci. USA 2012, 109, 9320–9325. [Google Scholar] [CrossRef] [Green Version]
- National Academy of Sciences. Assessing Risks to Endangered and Threatened Species for Pesticides; National Academic Press: Washington, DC, USA, 2013. [Google Scholar]
- USDA. National Agricultural Statistics Service. QuickStats Dataset. 2017. Available online: https://quickstats.nass.usda.gov/ (accessed on 10 February 2021).
- Johnson, D.M.; Mueller, R. The 2009 Cropland Data Layer. Photogramm. Eng. Remote Sens. 2010, 76, 1201–1205. [Google Scholar]
- Fisher, R.A. On the probable error of a coefficient of correlation deduced from a small sample. Metron 1921, 1, 3–32. [Google Scholar]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975. [Google Scholar]
- Khambhammettu, P. Mann-Kendall Analysis for the Fort Ord Site; OU-1 2004 Annual Groundwater Monitoring Report—Former Fort Ord, California; HydroGeoLogic, Inc.: Reston, VA, USA, 2005. [Google Scholar]
- Carlisle, E.A.; Steenwerth, K.L.; Smart, D.R. Effects of land use on soil respiration: Conversion of oak woodlands to vineyards. J. Environ. Qual. 2006, 35, 1396–1404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soulard, C.E.; Wilson, T.S. Recent land-use/land-cover change in the Central California Valley. J. Land Use Sci. 2015, 10, 59–80. [Google Scholar]
- Lobell, D.B.; Field, C.B. Historical effects of temperature and precipitation on California crop yields. Clim. Chang. 2007, 81, 187–203. [Google Scholar] [CrossRef]
- Boriss, H.; Brunke, H. Commodity Profile: Almonds; University of California: Oakland, CA, USA, 2005. [Google Scholar]
- Hopes Widespread for ‘Normal’ California Pistachio Crop. Available online: https://www.farmprogress.com/tree-nuts/hopes-widespread-normal-california-pistachio-crop (accessed on 4 December 2020).
- California Agricultural Statistics Review. 2017. Available online: https://www.cdfa.ca.gov/statistics/PDFs/2017-18AgReport.pdf (accessed on 10 September 2010).
- Matthews, W.A.; Sumner, D.A. Contributions of the California Dairy Industry to the California Economy in 2018. A Report to the California Milk Advisory Board; University of California, Agricultural Issues Center: Oakland, CA, USA, 2019. [Google Scholar]
- Dumas, C. Landscape Shifting for Export Hay, Analyst Says; Capital Press: Salem, OR, USA, 2018. [Google Scholar]
- Medellin-Azuara, J.; Howitt, J.R.; MacEwan, D.; Lund, J. Economic impacts of climate-related changes to California agriculture. Clim. Chang. 2011, 109, S387–S405. [Google Scholar] [CrossRef]
- Geisseler, D.; Horwath, W.R. Cotton Production in California. Assessment of Plant Fertility and Fertilizer Requirements for Agricultural Crops in California. 2013. Available online: http://apps.cdfa.ca.gov/frep/docs/Cotton_Production_CA.pdf (accessed on 12 July 2020).
- Farmprogress. Central Valley: Permanent Crops, Dairy Increase; Major Cotton Reduction. 2019. Available online: https://www.farmprogress.com/central-valley-permanent-crops-dairy-increase-major-cotton-reduction (accessed on 13 July 2020).
- Holthaus, E. The Thirsty West: 10 Percent of California’s Water Goes to Almond Farming. Slate. 2014. Available online: http://www.slate.com/articles/technology/future_tense/2014/05/_10_percent_of_california_s_water_goes_to_almond_farming.html (accessed on 9 February 2021).
- Smidt, S.J.; Haacker, E.M.; Kendall, A.D.; Deines, J.M.; Pei, L.; Cotterman, K.A.; Li, H.; Liu, X.; Basso, B.; Hyndman, D.W. Complex water management in modern agriculture: Trends in the water-energy-food nexus over the High Plains Aquifer. Sci. Total Environ. 2016, 566, 988–1001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alam, S.; Gebremichal, M.; Li, R. Remote Sensing-Based Assessment of the Crop, Energy and Water Nexus in the Central Valley, California. Remote Sens. 2019, 11, 1701. [Google Scholar] [CrossRef] [Green Version]
- Alam, S.; Gebremichal, M.; Li, R.; Dozier, J.; Lettenmaier, D.P. Can Managed Aquifer Recharge Mitigate the Groundwater Overdraft in California’s Central Valley? Water Resour. Res. 2020, 56. [Google Scholar] [CrossRef]
- Schoups, G.; Hopmans, J.W.; Young, C.A.; Vrugt, J.A.; Wallender, W.W.; Tanji, K.K.; Panday, S. Sustainability of irrigated agriculture in the San Joaquin Valley, California. Proc. Natl. Acad. Sci. USA 2005, 102, 15352–15356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Letey, J. Soil salinity poses challenges for sustainable agriculture and wildlife. Calif. Agric. 2000, 54, 43–48. [Google Scholar] [CrossRef]
Crop Type | Annual Crop Yield (Metric Ton Per Hectare) | Crop Price ($ US Per Metric Ton) | Crop Price ($ US Per Hectare) | Crop Price ($ US Per Hectare-m) |
---|---|---|---|---|
Perennial Crops | ||||
Almonds (utilized, shelled) | 2.45 | 5610 | 13,745 | 15,983 |
Walnuts | 4.20 | 2811 | 11,806 | 13,889 |
Pistachios | 3.15 | 5632 | 17,741 | 37,747 |
Grapes (fresh market) | 18.14 | 1431 | 25,958 | 50,898 |
Oranges | 29.30 | 297 | 8702 | 13,185 |
Annual Crops | ||||
Alfalfa | 15.56 | 218 | 3392 | 4463 |
Cotton | 1.65 | 2617 | 4318 | 6643 |
Rice | 9.46 | 418 | 3954 | 3766 |
Winter Wheat | 5.41 | 226 | 1223 | 3058 |
Corn | 11.35 | 215 | 2440 | 3813 |
Oats | 3.13 | 262 | 820 | 1491 |
Tomatoes (processing) | 103.4 | 97 | 10,030 | 12,696 |
County | 2007 Water Use | 2016 Water Use | 2016–2007 Change in Water Use | |
---|---|---|---|---|
(ha-m) | (ha-m) | (ha-m) | (%) | |
Shasta | 3625 | 1748 | −1877 | −52 |
Tehama | 11,546 | 17,735 | 6189 | 54 |
Glenn | 74,070 | 77,844 | 3774 | 5 |
Butte | 67,613 | 79,751 | 12,138 | 18 |
Colusa | 101,124 | 99,849 | −1275 | −1 |
Sutter | 78,963 | 79,469 | 506 | 1 |
Yuba | 26,137 | 26,243 | 106 | 0 |
Yolo | 70,468 | 70,127 | −341 | 0 |
Placer | 11,314 | 7633 | −3681 | −33 |
Sacramento | 30,974 | 27,861 | −3112 | −10 |
Merced | 132,687 | 121,212 | −11,475 | −9 |
San Joaquin | 132,275 | 132,665 | 389 | 0 |
Stanislaus | 82,348 | 89,033 | 6685 | 8 |
Fresno | 243,690 | 249,656 | 5965 | 2 |
Madera | 72,978 | 91,108 | 18,130 | 25 |
Kern | 194,461 | 184,275 | −10,186 | −5 |
Kings | 117,492 | 87,152 | −30,339 | −26 |
Tulare | 148,375 | 158,468 | 10,092 | 7 |
TOTAL | 1,600,141 | 1,601,829 | 1688 | 0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gebremichael, M.; Krishnamurthy, P.K.; Ghebremichael, L.T.; Alam, S. What Drives Crop Land Use Change during Multi-Year Droughts in California’s Central Valley? Prices or Concern for Water? Remote Sens. 2021, 13, 650. https://doi.org/10.3390/rs13040650
Gebremichael M, Krishnamurthy PK, Ghebremichael LT, Alam S. What Drives Crop Land Use Change during Multi-Year Droughts in California’s Central Valley? Prices or Concern for Water? Remote Sensing. 2021; 13(4):650. https://doi.org/10.3390/rs13040650
Chicago/Turabian StyleGebremichael, Mekonnen, P. Krishna Krishnamurthy, Lula T. Ghebremichael, and Sarfaraz Alam. 2021. "What Drives Crop Land Use Change during Multi-Year Droughts in California’s Central Valley? Prices or Concern for Water?" Remote Sensing 13, no. 4: 650. https://doi.org/10.3390/rs13040650