Assessing Remote Sensing Vegetation Index Sensitivities for Tall Fescue (Schedonorus arundinaceus) Plant Health with Varying Endophyte and Fertilizer Types: A Case for Improving Poultry Manuresheds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Experimental Design
2.2. Climate Data
2.3. Stocking Rate
2.4. Vegetation Indices Derived from Landsat 7 ETM+
2.5. Relative Sensitivity Analysis
2.6. Time Series Analyses of Tall Fescue Plant Health
2.7. Boxplot Comparison of Fertilizer Type with Endophyte Association
2.8. Analysis of Variance (ANOVA)
3. Results
3.1. Stocking Rate
3.2. Landsat Vegetation Index Collection
3.3. Sensitivities Analysis of NDVI, EVI, and LSWI Indices
3.4. Time Series of LSWI Values Across Paddocks
3.5. Boxplot Comparison of Fertilizer Type with Endophyte Association
3.6. Statistical Significance of Fertilizer Type and Endophyte Association on LSWI
4. Discussion
4.1. Satellite Options
4.2. Vegetation Index Sensitivities
4.3. Tall Fescue Grassland Performance
4.4. Manuresheds
4.5. Climate Trends
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Spiegal, S.; Kleinman, P.J.; Endale, D.M.; Bryant, R.B.; Dell, C.; Goslee, S.; Meinen, R.J.; Flynn, K.C.; Baker, J.M.; Browning, D.M.; et al. Manuresheds: Advancing Nutrient Recycling in US Agriculture. Agric. Syst. 2020, 182, 102813. [Google Scholar] [CrossRef]
- Davidson, E.A. The Contribution of Manure and Fertilizer Nitrogen to Atmospheric Nitrous Oxide since 1860. Nat. Geosci. 2009, 2, 659–662. [Google Scholar] [CrossRef]
- Raudsepp-Hearne, C.; Peterson, G.D.; Bennett, E.M. Ecosystem Service Bundles for Analyzing Tradeoffs in Diverse Landscapes. Proc. Natl. Acad. Sci. USA 2010, 107, 5242–5247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chadwick, D.; Sommer, S.; Thorman, R.; Fanguerio, D.; Cardenas, L.; Amon, B.; Misslebrook, T. Manure Management: Implications for Greenhouse Gas Emissions. Anim. Feed Sci. Technol. 2011, 166, 514–531. [Google Scholar] [CrossRef]
- Russelle, M.P.; Entz, M.H.; Franzluebbers, A.J. Reconsidering Integrated Crop-Livestock Systems in North America. Agron. J. 2007, 99, 325–334. [Google Scholar] [CrossRef] [Green Version]
- Kleinman, P.J.A.; Sharpley, A.N.; McDowell, R.W.; Flaten, D.N.; Buda, A.R.; Tao, L.; Bergstrom, L.; Zhu, Q. Managing Agricultural Phosphorus for Water Quality Protection: Principles for Progress. Plant Soil 2011, 349, 169–182. [Google Scholar] [CrossRef]
- Larney, F.J.; Hao, X.; Topp, E. Manure Management. In Soil Management: Building a Stable Base for Agriculture; Hatfield, J.L., Sauer, T.J., Eds.; Soil Science Society of America: Madison, WI, USA, 2015; pp. 245–263. [Google Scholar]
- Powers, S.M.; Chowdhury, R.B.; Macdonald, G.K.; Metson, G.S.; Beusen, A.H.W.; Bouwman, A.F.; Hampton, S.E.; Mayer, B.K.; McCrackin, M.L.; Vaccari, D.A. Global Opportunities to Increase Agricultural Independence through Phosphorus Recycling. Earth Future 2019, 7, 370–383. [Google Scholar] [CrossRef] [Green Version]
- Paudel, K.P.; Bhattarai, K.; Gauthier, W.M.; Hall, L.M. Geographic Information Systems (GIS) Based Model of Dairy Manure Transportation and Application with Environmental Quality Consideration. Waste Manag. 2009, 29, 1634–1643. [Google Scholar] [CrossRef]
- Stavast, L.J.; Baker, T.T.; Ulery, A.L.; Flynn, R.P.; Wood, M.K.; Cram, D.S. New Mexico Blue Grama Rangeland Response to Dairy Manure Application. Rangel. Ecol. Manag. 2005, 58, 423–429. [Google Scholar] [CrossRef]
- Nasim, W. Effect of Organic and Inorganic Fertilizer on Maize Hybrids under Agro-Environmental Conditions of Faisalabad-Pakistan. Afr. J. Agric. Res. 2012, 7, 2713–2719. [Google Scholar] [CrossRef]
- Knoll, J.E.; Anderson, W.F.; Malik, R.; Hubbard, R.K.; Strickland, T.C. Production of Napiergrass as a Bioenergy Feedstock under Organic Versus Inorganic Fertilization in the Southeast USA. BioEnergy Res. 2013, 6, 974–983. [Google Scholar] [CrossRef] [Green Version]
- Cabrera, V.E.; Stavast, L.; Baker, T.; Wood, M.; Cram, D.; Flynn, R.; Ulery, A. Soil and Runoff Response to Dairy Manure Application on New Mexico Rangeland. Agric. Ecosyst. Environ. 2009, 131, 255–262. [Google Scholar] [CrossRef]
- Caturegli, L.; Grossi, N.; Saltari, M.; Gaetani, M.; Magni, S.; Nikolopoulou, A.E.; Bonari, E.; Volterrani, M. Spectral Reflectance of Tall Fescue (Festuca Arundinacea Schreb) Under Different Irrigation and Nitrogen Conditions. Agric. Agric. Sci. Procedia 2015, 4, 59–67. [Google Scholar] [CrossRef]
- Trenholm, L.E.; Carrow, R.N.; Duncan, R.R. Relationship of multispectral radiometry data to qualitative data in turfgrass research. Crop Sci. 1999, 39, 763–769. [Google Scholar] [CrossRef]
- Jiang, Y.; Carrow, R.N. Broadband Spectral Reflectance Models of Turfgrass Species and Cultivars to Drought Stress. Crop Sci. 2007, 47, 1611–1618. [Google Scholar] [CrossRef]
- Hashemi, S.A.; Chenani, S.K. Investigation of NDVI Index in Relation to Chlorophyll Content Change and Phenological Event. In Recent Advances in Environment, Energy Systems and Naval Science, Proceedings of the 4th International Conference on Environmental and Geological Science and Engineering, Barcelona, Spain, 15–17 September 2011; WSEAS: Kos Island, Greece, 2011; pp. 22–28. [Google Scholar]
- Myneni, R.B.; Hall, F.G.; Sellers, P.J.; Marshak, A.L. The Interpretation of Spectral Vegetation Indexes. IEEE Trans. Geosci. Remote Sens. 1995, 33, 6. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekar, K.; Sesha Sai, M.V.R.; Roy, P.S.; Dwevedi, R.S. Land Surface Water Index (LSWI) Response to Rainfall and NDVI Using the MODIS Vegetation Index Product. Int. J. Remote Sens. 2010, 31, 3987–4005. [Google Scholar] [CrossRef]
- Prasetyo, Y.; Sukmono, A.; Aziz, K.W.; Aji, B.J.P.S. Rice productivity prediction model design based on linear regression of spectral value using NDVI and LSWI combination on Landsat-8 imagery. IOP Conf. Ser. Earth Environ. Sci. 2018, 165, 012002. [Google Scholar] [CrossRef] [Green Version]
- Yildirim, T.; Zhou, Y.; Flynn, K.C.; Gowda, P.H.; Ma, S.; Moriasi, D.N. Evaluating the sensitivity of vegetation and water indices to monitor drought For Three Mediterranean Crops. Agron. J. 2020, 2021, 1–12. [Google Scholar] [CrossRef]
- Franzluebbers, A.J.; Seman, D.H.; Stuedemann, J.A. Tall Fescue Persists and Cattle Perform Well on a Novel-Endophyte Association in the Southern Piedmont USA. Forage Grazinglands 2009, 7, 1–8. [Google Scholar] [CrossRef]
- Endale, D.M.; Franzluebbers, A.J.; Stuedemann, J.A.; Seman, D.S.; Franklin, D.H.; Schomberg, H.H. Runoff under Natural Rainfall from Small Tall Fescue Catchments in the Georgia Piedmont, United States. J. Soil Water Conserv. 2013, 68, 474–486. [Google Scholar] [CrossRef]
- Endale, D.; Schomberg, H.; Franzluebbers, A.; Seman, D.; Franklin, D.; Stuedemann, J. Runoff nutrient losses from tall fescue pastures varying in endophyte association, fertilization, and harvest management. J. Soil Water Conserv. 2021, 76, 25–38. [Google Scholar] [CrossRef]
- USDA NASS (National Agriculture Statistics Service). 2017 Census of Agriculture; USDA National Agriculture Statistics Service: Washington, DC, USA, 2020.
- NRCS SCAN. Soil Climate Analysis Network (SCAN) Data & Products; United States Department of Agriculture—Natural Resources Conservation Service: Washington, DC, USA, 2020.
- Storey, J.; Scaramuzza, P.; Schmidt, G.; Barsi, J. Landsat 7 scan line corrector-off gap filled product development. In Proceedings of the PECORA 16 Conference Proceedings, Sioux Falls, SD, USA, 23–27 October 2005; pp. 23–27. [Google Scholar]
- Ji, L.; Peters, A.J. Performance Evaluation of Spectral Vegetation Indices Using a Statistical Sensitivity Function. Remote Sens. Environ. 2007, 106, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Schabenberger, O.; Pierce, F. Contemporary Statistical Models for the Plant and Soil Sciences. Available online: https://books.google.com.hk/books?hl=en&lr=&id=OyLNBQAAQBAJ&oi=fnd&pg=PP1&dq=Contemporary+Statistical+Models+for+the+Plant+and+Soil+Sciences&ots=sOd_Fqbj8X&sig=on8IcuWF1r85QkCApNnpWXGJq9g&redir_esc=y#v=onepage&q=Contemporary%20Statistical%20Models%20for%20the%20Plant%20and%20Soil%20Sciences&f=false (accessed on 30 December 2020). [CrossRef]
- Krzywinski, M.; Altman, N. Visualizing Samples with Box Plots. Nat. Methods 2014, 11, 119–120. [Google Scholar] [CrossRef]
- Konapala, G.; Mishra, A.K.; Wada, Y.; Mann, M.E. Climate Change Will Affect Global Water Availability through Compounding Changes in Seasonal Precipitation and Evaporation. Nat. Commun. 2020, 11, 1–10. [Google Scholar] [CrossRef]
Grazing Period | # of Days | Stocking Rate (Animal Number/Day/Ha) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BN1 | IW2 | IF3 | BW4 | BF5 | IN6 | IF7 | IW8 | BN9 | BW10 | IN11 | BF12 | ||
Area (ha) | 1.01 | 0.95 | 0.95 | 1.02 | 0.93 | 0.96 | 0.97 | 1.09 | 0.98 | 0.99 | 0.95 | 0.93 | |
4/7/05–10/21/05 | 198 | 3.25 | 3.91 | 3.31 | 4.34 | 3.83 | 3.28 | 3.24 | 5.64 | 3.35 | 4.76 | 3.26 | 3.68 |
11/10/05–1/5/06 | 57 | 2.97 | 4.21 | 3.16 | 2.94 | 3.23 | 4.17 | 4.12 | 4.15 | 3.06 | 3.03 | 3.71 | 3.23 |
3/23/06–6/22/06 | 92 | 3.67 | 5.34 | 3.33 | 4.50 | 4.48 | 4.10 | 4.57 | 7.17 | 4.40 | 5.82 | 4.14 | 4.23 |
10/5/06–2/2/07 | 121 | 4.12 | 4.57 | 3.77 | 4.25 | 3.85 | 3.92 | 4.12 | 4.37 | 4.08 | 4.62 | 3.77 | 3.85 |
4/3/07–6/14/07 | 73 | 2.75 | 3.56 | 2.93 | 3.16 | 2.99 | 2.90 | 3.09 | 5.45 | 3.63 | 4.61 | 2.93 | 2.99 |
10/16/07–12/11/07 | 57 | 2.97 | 3.71 | 3.16 | 2.94 | 3.79 | 3.13 | 3.09 | 3.24 | 3.06 | 3.03 | 3.16 | 3.23 |
3/23/08–8/14/08 | 141 | 2.97 | 3.03 | 2.11 | 3.32 | 3.01 | 3.13 | 3.09 | 4.59 | 3.23 | 4.25 | 2.11 | 3.23 |
10/28/08–1/7/09 | 72 | 2.94 | 2.73 | 2.34 | 3.72 | 2.39 | 2.71 | 3.48 | 4.22 | 3.87 | 4.24 | 2.73 | 2.79 |
4/2/097–7/7/09 | 97 | 2.97 | 4.08 | 3.16 | 4.33 | 3.23 | 3.87 | 4.12 | 4.59 | 3.06 | 5.05 | 3.16 | 3.23 |
Year | 2005 | 2006 | 2007 | 2008 | 2009 |
---|---|---|---|---|---|
Total # of images | 94 | 149 | 94 | 63 | 130 |
BF12 | 7 | 11 | 8 | 5 | 10 |
BF5 | 8 | 14 | 9 | 5 | 12 |
BN1 | 7 | 14 | 8 | 6 | 11 |
BN9 | 7 | 10 | 7 | 6 | 12 |
BW10 | 7 | 11 | 7 | 5 | 12 |
BW4 | 8 | 14 | 9 | 5 | 11 |
IF3 | 8 | 14 | 9 | 5 | 11 |
IF7 | 9 | 11 | 6 | 5 | 10 |
IN11 | 7 | 11 | 8 | 5 | 10 |
IN6 | 8 | 13 | 8 | 5 | 11 |
IW2 | 9 | 14 | 9 | 5 | 11 |
IW8 | 9 | 12 | 6 | 6 | 9 |
Mean Annual NDVI Values | ||||||
Paddock Type | BF | BN | BW | IF | IN | IW |
2005 | 0.5852 | 0.6378 | 0.6170 | 0.5771 | 0.6154 | 0.5582 |
2006 | 0.5208 | 0.5394 | 0.5594 | 0.5641 | 0.5582 | 0.5670 |
2007 | 0.3879 | 0.4409 | 0.4408 | 0.4220 | 0.4114 | 0.4292 |
2008 | 0.6311 | 0.6164 | 0.6835 | 0.6938 | 0.6880 | 0.6846 |
2009 | 0.5753 | 0.5817 | 0.6032 | 0.6131 | 0.5662 | 0.6061 |
Mean Annual EVI Values | ||||||
Paddock Type | BF | BN | BW | IF | IN | IW |
2005 | 0.4498 | 0.4891 | 0.4679 | 0.4431 | 0.4850 | 0.4370 |
2006 | 0.3849 | 0.3938 | 0.4179 | 0.4182 | 0.4159 | 0.4215 |
2007 | 0.2645 | 0.3022 | 0.3020 | 0.2850 | 0.2754 | 0.2882 |
2008 | 0.4687 | 0.4582 | 0.5149 | 0.5280 | 0.2754 | 0.5175 |
2009 | 0.4645 | 0.4469 | 0.4745 | 0.4826 | 0.4450 | 0.4785 |
Mean Annual LSWI Values | ||||||
Paddock Type | BF | BN | BW | IF | IN | IW |
2005 | 0.1349 | 0.1708 | 0.1720 | 0.1673 | 0.1752 | 0.1521 |
2006 | 0.0772 | 0.1154 | 0.1321 | 0.1188 | 0.1184 | 0.1323 |
2007 | −0.0472 | −0.0186 | −0.0393 | −0.0661 | −0.0622 | −0.0515 |
2008 | 0.1690 | 0.1892 | 0.2251 | 0.1755 | 0.2173 | 0.2205 |
2009 | 0.1799 | 0.1594 | 0.1749 | 0.1755 | 0.1660 | 0.1758 |
Normal | |||||
Two-way LSWI~FERTILIZER + EA | |||||
Df | Sum sq | Mean sq | F value | Pr (>F) | |
FERTILIZER | 1 | 0.0161 | 0.01611 | 0.977 | 0.324 |
EA | 2 | 0.0094 | 0.004692 | 0.285 | 0.753 |
Residuals | 161 | 2.6538 | 0.016483 | ||
Wet | |||||
Two-way LSWI~FERTILIZER + EA | |||||
Df | Sum sq | Mean sq | F value | Pr (>F) | |
FERTILIZER | 1 | 0.000256 | 2.56 × 10−4 | 1.103 | 0.324 |
EA | 2 | 9.11 × 10−5 | 4.56 × 10−5 | 0.196 | 0.826 |
Residuals | 8 | 0.001858 | 2.32 × 10−4 | ||
Dry | |||||
Two-way LSWI~FERTILIZER + EA | |||||
Df | Sum sq | Mean sq | F value | Pr (>F) | |
FERTILIZER | 1 | 0.000938 | 0.000938 | 3.181 | 0.112 |
EA | 2 | 0.001269 | 0.000635 | 2.152 | 0.179 |
Residuals | 8 | 0.002359 | 0.000295 |
Normal | |||||
Interaction LSWI~FERTILIZER * EA | |||||
Df | Sum sq | Mean sq | F value | Pr (>F) | |
FERTILIZER | 1 | 0.0161 | 0.01611 | 0.973 | 0.326 |
EA | 2 | 0.0094 | 0.004692 | 0.283 | 0.754 |
FERTILIZER:EA | 2 | 0.0203 | 0.010134 | 0.612 | 0.544 |
Residuals | 159 | 2.6335 | 0.016563 | ||
Wet | |||||
Interaction LSWI~FERTILIZER * EA | |||||
Df | Sum sq | Mean sq | F value | Pr (>F) | |
FERTILIZER | 1 | 0.000256 | 2.56 × 10−4 | 1.089 | 0.337 |
EA | 2 | 9.11 × 10−5 | 4.56 × 10−5 | 0.193 | 0.829 |
FERTILIZER:EA | 2 | 0.000446 | 2.23 × 10−4 | 0.947 | 0.439 |
Residuals | 6 | 0.001412 | 2.35 × 10−4 | ||
Dry | |||||
Interaction LSWI~FERTILIZER * EA | |||||
Df | Sum sq | Mean sq | F value | Pr (>F) | |
FERTILIZER | 1 | 0.000938 | 0.000938 | 5.737 | 0.0536 |
EA | 2 | 0.001269 | 0.000635 | 3.881 | 0.0829 |
FERTILIZER:EA | 2 | 0.001378 | 0.000689 | 4.214 | 0.0719 |
Residuals | 6 | 0.000981 | 0.000164 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flynn, K.C.; Lee, T.; Endale, D.; Franzluebbers, A.; Ma, S.; Zhou, Y. Assessing Remote Sensing Vegetation Index Sensitivities for Tall Fescue (Schedonorus arundinaceus) Plant Health with Varying Endophyte and Fertilizer Types: A Case for Improving Poultry Manuresheds. Remote Sens. 2021, 13, 521. https://doi.org/10.3390/rs13030521
Flynn KC, Lee T, Endale D, Franzluebbers A, Ma S, Zhou Y. Assessing Remote Sensing Vegetation Index Sensitivities for Tall Fescue (Schedonorus arundinaceus) Plant Health with Varying Endophyte and Fertilizer Types: A Case for Improving Poultry Manuresheds. Remote Sensing. 2021; 13(3):521. https://doi.org/10.3390/rs13030521
Chicago/Turabian StyleFlynn, K. Colton, Trey Lee, Dinku Endale, Alan Franzluebbers, Shengfang Ma, and Yuting Zhou. 2021. "Assessing Remote Sensing Vegetation Index Sensitivities for Tall Fescue (Schedonorus arundinaceus) Plant Health with Varying Endophyte and Fertilizer Types: A Case for Improving Poultry Manuresheds" Remote Sensing 13, no. 3: 521. https://doi.org/10.3390/rs13030521
APA StyleFlynn, K. C., Lee, T., Endale, D., Franzluebbers, A., Ma, S., & Zhou, Y. (2021). Assessing Remote Sensing Vegetation Index Sensitivities for Tall Fescue (Schedonorus arundinaceus) Plant Health with Varying Endophyte and Fertilizer Types: A Case for Improving Poultry Manuresheds. Remote Sensing, 13(3), 521. https://doi.org/10.3390/rs13030521