A Practical Satellite-Derived Vegetation Drought Index for Arid and Semi-Arid Grassland Drought Monitoring
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
3. Methodology
3.1. Single Drought Indices
3.2. Vegetation Drought Index (VDI)
3.3. Pearson Correlation Coefficient
3.4. Spatial Consistency
4. Results
4.1. Drought Distribution Maps for Typical Years
4.2. Validation by RDA at the County Level
4.3. Validation by Field Soil Moisture
4.4. Validation by Normalized Fenced Biomass (NFB)
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.M.; Yang, W.F.; Yang, X.L.; Li, Y.L. Sensitivity analysis of drought indices used in Shaanxi Province. J. Desert Res. 2009, 29, 342–347. [Google Scholar]
- Guo, S.J. The meteorological disaster risk assessment based on the diffusion mechanism. J. Risk Analy. Crisis Res. 2012, 2, 124–130. [Google Scholar] [CrossRef] [Green Version]
- Dai, A. Drought under global warming: A review. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 45–65. [Google Scholar] [CrossRef] [Green Version]
- Giannakopoulos, C.; Sager, P.L.; Bindi, M.; Moriondo, M.; Kostopoulou, E.; Goodess, C.M. Climatic changes and associated impacts in the Mediterranean resulting from a 2 °C global warming. Glob. Planet. Chang. 2009, 68, 209–224. [Google Scholar] [CrossRef]
- Available online: https://www.huanbao-world.com/zrzy/lyky/161100.html (accessed on 10 December 2020).
- Carlson, T.N.; Gillies, R.R.; Perry, E.M. A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote Sens. Rev. 1994, 9, 161–173. [Google Scholar] [CrossRef]
- Tao, Y.; Guoliang, T. Studying the surface soil moisture change by thermal inertia method. J. Remote Sens. 1997, 1, 24–31. [Google Scholar]
- Njoku, E.G.; Entekhabi, D. Passive microwave remote sensing of soil moisture. J. Hydrol. 1996, 184, 101–129. [Google Scholar] [CrossRef]
- Shi, J.; Wang, J.; Hsu, A.Y.; O’Neill, P.E.; Engman, E.T. Estimation of bare surface soil moisture and surface roughness parameters using L-band SAR image data. IEEE Trans. Geosci. Remote Sens. 1997, 35, 1254–1266. [Google Scholar]
- Romshoo, S.A. Geo statistical analysis of soil moisture measurements and remotely sensed data at different spatial scales. Environ. Geol. 2004, 45, 339–349. [Google Scholar] [CrossRef]
- Naumann, G.; Barbosa, P.; Carrao, H.; Singleton, A.; Vogt, J. Monitoring drought conditions and their uncertainties in Africa using TRMM data. J. Appl. Meteorol. Climatol. 2012, 51, 1867–1874. [Google Scholar] [CrossRef] [Green Version]
- De Jesús, A.; Breña-Naranjo, J.A.; Pedrozo-Acuña, A.; Yamanaka, V.H.A. The Use of TRMM 3B42 Product for Drought Monitoring in Mexico. Water 2016, 8, 325. [Google Scholar] [CrossRef]
- Kogan, F.N. Application of Vegetation Index and Brightness Temperature for Drought Detection. Adv. Space Res. 1995, 15, 91–100. [Google Scholar] [CrossRef]
- Ji, L.; Peters, A. Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote Sens. Environ. 2003, 87, 85–98. [Google Scholar] [CrossRef]
- González-Alonso, F.; Cuevas, J.M.; Calle, A.; Casanova, J.L.; Romo, A. Drought monitoring in Spain during the period 1987-2001, using NOAA-AVHRR images. In Proceedings of the 22nd Symposium of the European Association of Remote Sensing Laboratories, Prague, Czech Republic, 4–6 June 2002. [Google Scholar]
- Gao, B.C. NDWI-A Normalized Difference Water Index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Lyon, B.; Bell, M.A.; Tippett, M.K.; Kumar, A.; Hoerling, M.P.; Quan, X.-W.; Wang, H. Baseline probabilities for the seasonal prediction of meteorological drought. J. Appl. Meteorol. Climatol. 2012, 51, 1222–1237. [Google Scholar] [CrossRef]
- Ghulam, A.; Qin, Q.; Teyip, T.; Li, Z. Modified perpendicular drought index (MPDI): A real-time drought monitoring method. ISPRS J. Photogramm. Remote Sens. 2007, 62, 150–164. [Google Scholar] [CrossRef]
- Rhee, J.; Im, J.; Carbone, G.J. Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data. Remote Sens. Environ. 2010, 114, 2875–2887. [Google Scholar] [CrossRef]
- Hao, Z.; AghaKouchak, A. Multivariate standardized drought index: A parametric multi-index model. Adv. Water Resour. 2013, 57, 12–18. [Google Scholar] [CrossRef] [Green Version]
- Jianjun, W.; Lei, Z.; Ming, L.; Zhang, J.; Leng, S.; Diao, C. Establishing and assessing the Integrated Surface Drought Index (ISDI) for agricultural drought monitoring in mid-eastern China. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 397–410. [Google Scholar]
- Sánchez, N.; González-Zamora, Á.; Piles, M.; Martínez-Fernández, J. New Soil Moisture Agricultural Drought Index (SMADI) Integrating MODIS and SMOS Products: A Case of Study over the Iberian Peninsula. Remote Sens. 2016, 8, 287. [Google Scholar] [CrossRef] [Green Version]
- Jiao, W.; Tian, C.; Chang, Q.; Novick, K.A.; Wang, L. A new multi-sensor integrated index for drought monitoring. Agric. For. Meteorol. 2019, 268, 74–85. [Google Scholar] [CrossRef] [Green Version]
- Sepulcre-Canto, G.; Vogt, J.; Arboleda, A.; Antofie, T. Assessment of the EUMETSAT LSA-SAF evapotranspiration product for drought monitoring in Europe. Int. J. Appl. Earth Obs. Geoinf. 2014, 20, 190–202. [Google Scholar] [CrossRef]
- Zhang, L.; Jiao, W.; Zhang, H.; Huang, C.; Tong, Q. Studying drought phenomena in the Continental United States in 2011 and 2012 using various drought indices. Remote Sens. Environ. 2017, 190, 96–106. [Google Scholar] [CrossRef]
- Kogan, F.N.; Stark, R.; Gitelson, A.; Jargalsaikhan, L.; Dugrajav, C.; Tsooj, S. Derivation of pasture biomass in Mongolia from AVHRR-based vegetation health indices. Int. J. Remote Sens. 2004, 25, 2889–2896. [Google Scholar] [CrossRef]
- Unganai, L.S.; Kogan, F.N. Drought monitoring and corn yield estimation in Southern Africa from AVHRR data. Remote Sens. Environ. 1998, 63, 219–232. [Google Scholar] [CrossRef]
- Yan, N. Research on Agricultural Drought Monitoring with Multi-sources Data. Inst. Remote Sens. Appl. Chin. Acad. Sci. 2012. (In Chinese) [Google Scholar]
- Shen, Z.; Zhang, Q.; Singh, V.P.; Sun, P.; Song, C.; Yu, H. Agricultural drought monitoring across Inner Mongolia, China: Model development, spatiotemporal patterns and impacts. J. Hydrol. 2019, 571, 793–804. [Google Scholar] [CrossRef]
- Karnieli, A.; Agam, N.; Pinker, R.T.; Anderson, M.; Imhoff, M.L.; Gutman, G.G.; Panov, N.; Goldberg, A. Use of NDVI and Land Surface Temperature for Drought Assessment: Merits and Limitations. J. Clim. 2010, 23, 618–633. [Google Scholar] [CrossRef]
- Karnieli, A.M.; Bayasgalan, Y.; Bayarjargal, N.; Agam, S.; Khudulmur, C.; Tucker, J. Comments on the use of the vegetation health index over Mongolia. Int. J. Remote Sens. 2006, 27, 2017–2024. [Google Scholar] [CrossRef]
- Olthof, I.; Latifovic, R. Short-term response of arctic vegetation NDVI to temperature anomalies. Int. J. Remote Sens. 2007, 28, 4823–4840. [Google Scholar] [CrossRef]
- Joiner, J.; Yoshida, Y.; Anderson, M.; Holmes, T.; Hain, C.; Reichle, R.; Koster, R.; Middleton, E.; Zeng, F. Global relationships among traditional reflectance vegetation indices (NDVI and NDII), evapotranspiration (ET), and soil moisture variability on weekly timescales. Remote Sens. Environ. 2018, 219, 339–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rundquist, B.C.; Harrington, J.A., Jr. The effects of climatic factors on vegetation dynamics of tallgrass and shortgrass cover. Geo Cart. Int. 2000, 15, 31–36. [Google Scholar] [CrossRef]
- Farrar, T.J.; Nicholson, S.E.; Lare, A.R. The influence of soil type on the relationships between NDVI, rainfall and soil moisture in semiarid Botswana. II. NDVI response to soil moisture. Remote Sens. Environ. 1994, 50, 121–133. [Google Scholar] [CrossRef]
- Chang, S.; Wu, B.; Yan, N.; Davdai, B.; Nasanbat, E. Suitability assessment of satellite-derived drought indices for mongolian grassland. Remote Sens. 2017, 9, 650. [Google Scholar] [CrossRef] [Green Version]
- Khudulmur, S.; Elbegjargal, N.; Tsogtbaatar, J.; Dash, D.; Mandakh, N. Desertification Atlas of Mongolia; Institute of Geoecology, Mongolian Academy of Sciences: Ulaanbaatar, Mongolia, 2014; pp. 38–41. [Google Scholar]
- National Remote Sensing Center & Environmental Information Center of IRIMHE in Mongolia. Available online: http://www.icc.mn/index.php?content=58 (accessed on 14 February 2017).
- Zhou, Y.; Xiao, X.; Zhang, G.; Wagle, P.; Bajgain, R.; Dong, J.; Jin, C.; Basara, J.B.; Anderson, M.C.; Hain, C.; et al. Quantifying agricultural drought in tallgrass prairie region in the U.S. Southern Great Plains through analysis of a water-related vegetation index from MODIS images. Agric. For. Meteorol. 2017, 246, 111–122. [Google Scholar] [CrossRef]
- Gu, Y.; Brown, J.F.; Verdin, J.P.; Wardlow, B. A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophys. Res. Lett. 2007, 34, L06407. [Google Scholar] [CrossRef] [Green Version]
- Correlation Coefficient. Available online: https://blog.csdn.net/coderjiang/article/details/8699650 (accessed on 5 October 2020).
- Correlation Coefficient Calculation Formula. Available online: https://www.docin.com/p-1974288713.html (accessed on 5 October 2020).
- Yared, A.; Tadesse, B.T.; Svoboda, M.; Wardlow, B.; Poulsen, C.; Swigart, J.; Jan van Andel, S. Developing a satellite-based combined drought indicator to monitor agricultural drought: A case study for Ethiopia. GIScience Remote Sens. 2018, 56, 718–748. [Google Scholar]
- Du, L.; Tian, Q.; Yu, T.; Meng, Q.; Jancso, T.; Udvardy, P.; Huang, Y. A comprehensive drought monitoring method integrating MODIS and TRMM data. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 245–253. [Google Scholar] [CrossRef]
- Zhu, X.; Shao, M.; Zeng, C.; Jia, X.; Huang, L.; Zhang, Y.; Zhu, J. Application of cosmic-ray neutron sensing to monitor soil water content in an alpine meadow ecosystem on the northern Tibetan Plateau. J. Hydrol. 2016, 536, 247–254. [Google Scholar] [CrossRef]
- Wu, K.; Rodriguez, G.A.; Zajc, M.; Jacquemin, E.; Clément, M.; Lambot, A.d.S. A new drone-borne GPR for soil moisture mapping. Remote Sens. Environ. 2019, 235, 111456. [Google Scholar] [CrossRef]
Zone | a | b | c | d | e |
---|---|---|---|---|---|
Forest Steppe | 0.51 | 0.28 | 0.21 | 0.46 | 0.54 |
Steppe | 0.51 | 0.08 | 0.41 | 0.50 | 0.50 |
Desert Steppe | 0.45 | 0.13 | 0.42 | 0.55 | 0.45 |
Level | TCI/VCI/WCI/VHI/VDI | RGB |
---|---|---|
Extreme drought | 0~0.05 | [168,0,0] |
Severe drought | 0.05~0.10 | [255,0,0] |
Moderate drought | 0.10~0.20 | [255,170,0] |
Mild drought | 0.20~0.30 | [255,255,0] |
No drought | 0.30~1.0 | [85,255,0] |
Site (NS) | Land Cover | TCI | VCI | WCI | VHI | VDI |
---|---|---|---|---|---|---|
EL (165) | FS | 0.36 | 0.45 | 0.57 | 0.46 | 0.55 |
BN (147) | FS | 0.13 | 0.41 | 0.36 | 0.30 | 0.45 |
DN (187) | FS | 0.41 | 0.57 | 0.63 | 0.55 | 0.67 |
DR (175) | ST | 0.30 | 0.65 | 0.68 | 0.54 | 0.69 |
BT (162) | ST | 0.32 | 0.71 | 0.72 | 0.59 | 0.74 |
MI (156) | ST | 0.18 | 0.58 | 0.57 | 0.46 | 0.64 |
BD (169) | DS | 0.24 | 0.53 | 0.49 | 0.51 | 0.57 |
DI (157) | DS | 0.17 | 0.25 | 0.27 | 0.27 | 0.27 |
KD(130) | DS | 0.16 | 0.34 | 0.31 | 0.32 | 0.36 |
NDVI Max/Min | NDVI Mean/Variance | NDWI Max/Min | NDWI Mean/Variance | LST Max/Min | LST Mean/Variance | FB Max/Min | FB Mean/Variance | |
---|---|---|---|---|---|---|---|---|
BD | 0.23/0.06 | 0.13/0.04 | 0.20/–0.11 | –0.02/0.05 | 326.1/298.2 | 313.6/6.62 | 5.00/0.01 | 1.14/1.01 |
DI | 0.22/0.07 | 0.11/0.03 | 0.20/–0.10 | –0.03/0.05 | 324.7/297.9 | 313.9/6.06 | 7.30/0.00 | 0.76/0.93 |
KD | 0.17/0.07 | 0.11/0.02 | 0.05/–0.16 | –0.11/0.03 | 325.3/294.5 | 312.4/5.33 | 4.4/0.1 | 0.94/0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, S.; Chen, H.; Wu, B.; Nasanbat, E.; Yan, N.; Davdai, B. A Practical Satellite-Derived Vegetation Drought Index for Arid and Semi-Arid Grassland Drought Monitoring. Remote Sens. 2021, 13, 414. https://doi.org/10.3390/rs13030414
Chang S, Chen H, Wu B, Nasanbat E, Yan N, Davdai B. A Practical Satellite-Derived Vegetation Drought Index for Arid and Semi-Arid Grassland Drought Monitoring. Remote Sensing. 2021; 13(3):414. https://doi.org/10.3390/rs13030414
Chicago/Turabian StyleChang, Sheng, Hong Chen, Bingfang Wu, Elbegjargal Nasanbat, Nana Yan, and Bulgan Davdai. 2021. "A Practical Satellite-Derived Vegetation Drought Index for Arid and Semi-Arid Grassland Drought Monitoring" Remote Sensing 13, no. 3: 414. https://doi.org/10.3390/rs13030414
APA StyleChang, S., Chen, H., Wu, B., Nasanbat, E., Yan, N., & Davdai, B. (2021). A Practical Satellite-Derived Vegetation Drought Index for Arid and Semi-Arid Grassland Drought Monitoring. Remote Sensing, 13(3), 414. https://doi.org/10.3390/rs13030414