Accuracy of a Model-Free Algorithm for Temporal InSAR Tropospheric Correction
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Correction Algorithm
- Geocode and phase compensate single-look complex (SLC) images;
- Form interferogram pairs as desired and unwrap;
- Choose reference point(s) to remove artifacts due to unwrapping zero phase point;
- Remove troposphere using height regression;
- Compute time series using the SBAS method (small baseline subset analysis [27]).
3.2. Reference Point Selection
3.3. Troposphere Height Regression
3.4. Validation Using GPS as Reference
4. Discussion
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Massonnet, D.; Feigl, K.L. Discrimination of geophysical phenomena in satellite radar interferograms. Geophys. Res. Lett. 1995, 22, 1537–1540. [Google Scholar] [CrossRef]
- Massonnet, D.; Briole, P.; Arnaud, A. Deflation of Mount Etna monitored by spaceborne radar interferometry. Nature 1995, 375, 567–570. [Google Scholar] [CrossRef]
- Goldstein, R. Atmospheric limitations to repeat-track radar interferometry. Geophys. Res. Lett. 1995, 22, 2517–2520. [Google Scholar] [CrossRef] [Green Version]
- Rosen, P.A.; Hensley, S.; Zebker, H.A.; Webb, F.H.; Fielding, E. Surface deformation and coherence measurements of Kilauea Volcano, Hawaii from SIR-C radar interferometry. J. Geophys. Res. Planets 1996, 101, 23109–23125. [Google Scholar] [CrossRef]
- Zebker, H.A.; Rosen, P.A.; Hensley, S. Atmospheric Artifacts in Interferometric SAR Surface Deformation and Topographic Maps. J. Geophys. Res. 1997, 102, 7547–7563. [Google Scholar] [CrossRef]
- Hanssen, R. Atmospheric Heterogeneities in ERS Tandem SAR Interferometry; Delft University Press: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Hanssen, R.F.; Weckwerth, T.M.; Zebker, H.A.; Klees, R. High-resolution water vapor mapping from interferometric radar measurements. Science 1999, 283, 1297–1299. [Google Scholar] [CrossRef] [Green Version]
- Emardson, T.R.; Simons, M.; Webb, F.H. Neutral atmospheric delay in interferometric synthetic aperture radar applications: Statistical description and mitigation. J. Geophys. Res. 2003, 108, 2231. [Google Scholar] [CrossRef]
- Wadge, G.; Webley, P.; James, I.; Bingley, R.; Dodson, A.; Waugh, S.; Clarke, P. Atmospheric models, GPS and InSAR measurements of the tropospheric water vapour field over Mount Etna. Geophys. Res. Lett. 2002, 29, 1905. [Google Scholar] [CrossRef] [Green Version]
- Doin, M.; Lasserre, C.; Peltzer, G.; Cavalié, O.; Doubre, C. Corrections of stratified tropospheric delays in SAR interferometry: Validation with global atmospheric models. J. Appl. Geophys. 2009, 69, 35–50. [Google Scholar] [CrossRef]
- Jolivet, R.; Agram, P.S.; Lin, N.; Simons, M.; Doin, M.; Peltzer, G.; Li, Z. Improving InSAR geodesy using Global Atmospheric Models. J. Geophys. Res. 2014, 119, 2324–2341. [Google Scholar] [CrossRef]
- Bekaert, D.; Hooper, A.; Wright, T. A spatially variable power law tropospheric correction technique for InSAR data. J. Geophys. Res. 2015, 120, 1345–1356. [Google Scholar] [CrossRef]
- Bekaert, D.P.S.; Walters, R.J.; Wright, T.J.; Hooper, A.J.; Parker, D.J. Statistical comparison of InSAR tropospheric correction techniques. Remote Sens. Environ. 2015, 170, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Onn, F.; Zebker, H. Correction for interferometric synthetic aperture radar atmospheric phase artifacts using time series of zenith wet delay observations from a GPS network. J. Geophys. Res. 2006, 111, B9. [Google Scholar] [CrossRef]
- Onn, F. Modeling Water Vapor Using GPS with Application to Mitigating InSAR Atmospheric Distortions. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 2006. [Google Scholar]
- Li, Z.; Fielding, E.J.; Cross, P.; Muller, J.-P. Interferometric synthetic aperture radar atmospheric correction:gps topography-dependent turbulence model. J. Geophys. Res. 2006, 111, B02404. [Google Scholar]
- Li, Z.; Fielding, E.; Cross, P.; Preusker, R. Advanced InSAR atmospheric correction: MERIS/MODIS combination and stacked water vapour models. Int. J. Remote Sens. 2009, 30, 3343–3363. [Google Scholar] [CrossRef]
- Fournier, T.; Pritchard, M.; Finnegan, N. Accounting for atmospheric delays in InSAR data in a search for long-wavelength deformation in South America. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3856–3867. [Google Scholar] [CrossRef]
- Elósegui, P.; Ruis, A.; Davis, J.L.; Ruffini, G.; Keihm, S.J.; Bürki, B.; Kruse, L.P. An experiment for estimation of the spatial and temporal variations of water vapor using GPS data. Phys. Chem. Earth 1998, 23, 125–130. [Google Scholar] [CrossRef]
- Williams, S.; Bock, Y.; Fang, P. Integrated satellite interferometry: Tropospheric noise, GPS estimates and implications for interferometric synthetic aperture radar products. J. Geophys. Res. Solid Earth 1998, 103, 27051–27067. [Google Scholar] [CrossRef]
- Fornaro, G.; D’Agostino, N.; Giuliani, R.; Noviello, C.; Reale, D.; Verde, S. Assimilation of GPS-Derived Atmospheric Propagation Delay in DInSAR Data Processing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 784–799. [Google Scholar] [CrossRef]
- Lin, Y.N.; Simons, M.; Hetland, E.A.; Muse, P.; DiCaprio, C. A multiscale approach to estimating topographically correlated propagation delays in radar interferograms. Geochem. Geophys. Geosyst. 2010, 11, Q09002. [Google Scholar] [CrossRef]
- Parker, A.L.; Biggs, J.; Walters, R.J.; Ebmeier, S.K.; Wright, T.J.; Teanby, N.A.; Lu, Z. Systematic assessment of atmospheric uncertainties for InSAR data at volcanic arcs using large-scale atmospheric models: Application to the Cascade volcanoes, United States. Remote Sens. Environ. 2015, 170, 102–114. [Google Scholar] [CrossRef] [Green Version]
- Perissin, D.; Rocca, F.; Pierdicca, M.; Pichelli, E.; Cimini, D.; Venuti, G.; Rommen, B. Mitigation of atmospheric delay in InSAR: The ESA Metawave project. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011; pp. 2558–2561. [Google Scholar] [CrossRef]
- Goldhirsh, J.; Rowland, J.R. A tutorial assessment of atmospheric height uncertainties for high-precision satellite altimeter missions to monitor ocean currents. IEEE Trans. Geosci. Remote Sens. 1982, 20, 418–433. [Google Scholar] [CrossRef]
- Smith, E.K.; Weintraub, S. The constants in the equation for atmospheric refractive indexat radio frequencies. Proc. IRE 1953, 41, 1035–1037. [Google Scholar] [CrossRef] [Green Version]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Nevada Geodetic Laboratory. Available online: https://geodesy.unr.edu/ (accessed on 11 October 2020).
RMS Errors (cm) | 12 Day | 30 Day | 100 Day | ||||
---|---|---|---|---|---|---|---|
GPS Site | Height (m) | with | without | with | without | with | without |
MOKP | 4133 | 1.7 | 8 | 1.8 | 6.9 | 1.5 | 6.3 |
PAT3 | 3831 | 1.3 | 7 | 1.4 | 6.1 | 1.2 | 5.6 |
MLES | 3841 | 1.3 | 7.7 | 1.4 | 6.6 | 1.2 | 5.9 |
OUTL | 1105 | 1.8 | 5.1 | 4 | 3.5 | 7.2 | 5.4 |
AHUP | 1105 | 2.7 | 8.1 | 1.5 | 5 | 3.4 | 2.5 |
MLSP | 4078 | 1.7 | 7.9 | 1.7 | 6.9 | 1.5 | 6.2 |
PUOC | 893 | 4.8 | 2.7 | 2.4 | 3.4 | 2.9 | 1.9 |
KOSM | 990 | 1.4 | 5.7 | 1.3 | 4.6 | 1.4 | 3.6 |
UWEV | 1257 | 1.6 | 5.2 | 1.4 | 3.9 | 1.4 | 3.0 |
CNPK | 1124 | 2.9 | 4.3 | 2 | 3.6 | 1.6 | 2.9 |
KAMO | 781 | 2.9 | 8 | 3.1 | 6.6 | 3.3 | 5.9 |
Mean | 2.2 | 6.3 | 2 | 5.2 | 2.4 | 4.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zebker, H. Accuracy of a Model-Free Algorithm for Temporal InSAR Tropospheric Correction. Remote Sens. 2021, 13, 409. https://doi.org/10.3390/rs13030409
Zebker H. Accuracy of a Model-Free Algorithm for Temporal InSAR Tropospheric Correction. Remote Sensing. 2021; 13(3):409. https://doi.org/10.3390/rs13030409
Chicago/Turabian StyleZebker, Howard. 2021. "Accuracy of a Model-Free Algorithm for Temporal InSAR Tropospheric Correction" Remote Sensing 13, no. 3: 409. https://doi.org/10.3390/rs13030409
APA StyleZebker, H. (2021). Accuracy of a Model-Free Algorithm for Temporal InSAR Tropospheric Correction. Remote Sensing, 13(3), 409. https://doi.org/10.3390/rs13030409