Scrutinizing Relationships between Submarine Groundwater Discharge and Upstream Areas Using Thermal Remote Sensing: A Case Study in the Northern Persian Gulf
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Methodology
- Formation of sea surface temperature (SST) and standardized temperature anomaly (STA) maps from TIR imagery.
- Identification of thermal anomalies as potential sites of SGD.
- Selection of geo-environmental variables
- Spatial analysis and using three different buffer zones
- Modeling the relationships between SGD and geo-environmental characteristics of upstream zones.
- Assessing the accuracy of the model and undertaking a sensitivity analysis.
2.2.1. Landsat Thermal Data Acquisition
2.2.2. Thermal Infrared Image Processing
2.2.3. Assessment of Thermal Anomalies
2.2.4. Statistical Modeling
Dependent and Independent Variables
Logistic Regression Analysis
Validation and Sensitivity Analysis
3. Results
3.1. Temperature and Thermal Anomaly Mapping
3.2. Statistical Comparison of SGD and Non-SGD Locations
3.3. Relationships between SGD and Geo-Environmental Variables
3.4. Accuracy Assessment and Sensitivity Analysis
4. Discussion
4.1. Anomaly Mapping Using Thermal Remote Sensing
4.2. Relationships between SGD and Geo-Environmental Variables
5. Conclusions
- The application of thermal images of Landsat in this study not only saved significant time and resources, but also was extremely effective. In addition, the study demonstrated that logistic regression showed an excellent performance in modeling the relations between the SGD occurrence and geo-environmental characteristics of the upstream area. According to field surveys and validation results, the approach used has allowed the accurate detection of coastal springs. The results will assist in understanding SGD formation and its spatiotemporal variation; as well as promote the development of strategies for the sustainable management of coastal and marine ecosystems. According to the results, evidently discernible cold-water plumes emanate from nearshore waters along Naiband, Asaloye, Dopalango, Dahane Tahmadan, Khorkhan, and Bandar Busher coastlines. In addition to the findings specific to the study area, the methodology may be transferable to other coastal regions with similar geological conditions.
- The sensitivity analysis indicated that the SGD is most sensitive to the PKA and TWI variables of the upstream area. Variables such as stream density, NDVI and TPI were the least important variables in the modelling SGD. Furthermore, the findings of this study could be useful for others such as ecologists, planners, and water resources managers in understanding how different aspects of geo-environmental variables and the physicochemical mechanisms involved in groundwater recharge impact on SGD sources.
- The methodology can be applied to other similar regions as a rapid assessment of SGD occurrence. Future work should try to effectively manage upstream watersheds of this region because of their direct and indirect impacts on quantity and quality of SGDs. More research is needed and could usefully explore temporal variations of SGD as well as quantitative flux assessment.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burnett, W.; Aggarwal, P.; Aureli, A.; Bokuniewicz, H.; Cable, J.; Charette, M.; Kontar, E.; Krupa, S.; Kulkarni, K.; Loveless, A. Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Sci. Total Environ. 2006, 367, 498–543. [Google Scholar] [CrossRef] [PubMed]
- Slomp, C.P.; Van Cappellen, P. Nutrient inputs to the coastal ocean through submarine groundwater discharge: Controls and potential impact. J. Hydrol. 2004, 295, 64–86. [Google Scholar] [CrossRef] [Green Version]
- Lecher, A.L.; Kessler, J.; Sparrow, K.; Garcia-Tigreros Kodovska, F.; Dimova, N.; Murray, J.; Tulaczyk, S.; Paytan, A. Methane transport through submarine groundwater discharge to the North Pacific and Arctic Ocean at two A laskan sites. Limnol. Oceanogr. 2016, 61, S344–S355. [Google Scholar] [CrossRef]
- Moosdorf, N.; Oehler, T. Societal use of fresh submarine groundwater discharge: An overlooked water resource. Earth Sci. Rev. 2017, 171, 338–348. [Google Scholar] [CrossRef]
- Petermann, E.; Knöller, K.; Rocha, C.; Scholten, J.; Stollberg, R.; Weiß, H.; Schubert, M. Coupling End-Member Mixing Analysis and Isotope Mass Balancing (222-Rn) for Differentiation of Fresh and Recirculated Submarine Groundwater Discharge Into Knysna Estuary, South Africa. J. Geophys. Res. Oceans 2018, 123, 952–970. [Google Scholar] [CrossRef]
- Robinson, C.E.; Xin, P.; Santos, I.R.; Charette, M.A.; Li, L.; Barry, D.A. Groundwater dynamics in subterranean estuaries of coastal unconfined aquifers: Controls on submarine groundwater discharge and chemical inputs to the ocean. Adv. Water Resour. 2018, 115, 315–331. [Google Scholar] [CrossRef]
- Anderson, D.M.; Glibert, P.M.; Burkholder, J.M. Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences. Estuaries 2002, 25, 704–726. [Google Scholar]
- Dimova, N.T.; Burnett, W.C.; Speer, K. A natural tracer investigation of the hydrological regime of Spring Creek Springs, the largest submarine spring system in Florida. Cont. Shelf Res. 2011, 31, 731–738. [Google Scholar] [CrossRef]
- Baudron, P.; Cockenpot, S.; Lopez-Castejon, F.; Radakovitch, O.; Gilabert, J.; Mayer, A.; Garcia-Arostegui, J.L.; Martinez-Vicente, D.; Leduc, C.; Claude, C. Combining radon, short-lived radium isotopes and hydrodynamic modeling to assess submarine groundwater discharge from an anthropized semiarid watershed to a Mediterranean lagoon (Mar Menor, SE Spain). J. Hydrol. 2015, 525, 55–71. [Google Scholar] [CrossRef]
- Bishop, J.M.; Glenn, C.R.; Amato, D.W.; Dulai, H. Effect of land use and groundwater flow path on submarine groundwater discharge nutrient flux. J. Hydrol. Reg. Stud. 2017, 11, 194–218. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Orellana, J.; Rodellas, V.; Casacuberta, N.; Lopez-Castillo, E.; Vilarrasa, M.; Moreno, V.; Garcia-Solsona, E.; Masqué, P. Submarine groundwater discharge: Natural radioactivity accumulation in a wetland ecosystem. Mar. Chem. 2013, 156, 61–72. [Google Scholar] [CrossRef]
- Burnett, W.C.; Peterson, R.; Moore, W.S.; de Oliveira, J. Radon and radium isotopes as tracers of submarine groundwater discharge—Results from the Ubatuba, Brazil SGD assessment intercomparison. Estuar. Coast. Shelf Sc. 2008, 76, 501–511. [Google Scholar] [CrossRef]
- Kwon, E.Y.; Kim, G.; Primeau, F.; Moore, W.S.; Cho, H.M.; DeVries, T.; Sarmiento, J.L.; Charette, M.A.; Cho, Y.K. Global estimate of submarine groundwater discharge based on an observationally constrained radium isotope model. Geophys. Res. Lett. 2014, 41, 8438–8444. [Google Scholar] [CrossRef]
- Loveless, A.M.; Oldham, C.E.; Hancock, G.J. Radium isotopes reveal seasonal groundwater inputs to Cockburn Sound, a marine embayment in Western Australia. J. Hydrol. 2008, 351, 203–217. [Google Scholar] [CrossRef]
- Torres, A.I.; Andrade, C.F.; Moore, W.S.; Faleschini, M.; Esteves, J.L.; Niencheski, L.F.; Depetris, P.J. Ra and Rn isotopes as natural tracers of submarine groundwater discharge in the patagonian coastal zone (Argentina): An initial assessment. Environ. Earth Sci. 2018, 77, 145. [Google Scholar] [CrossRef]
- Burnett, W.C.; Cable, J.E.; Corbett, D.R. Radon tracing of submarine groundwater discharge in coastal environments. In Land and Marine Hydrogeology; Taniguchi, M., Wang, K., Gamo, T., Eds.; Elsevier Publications: Amsterdam, The Netherlands, 2003; pp. 25–43. [Google Scholar]
- Stieglitz, T.; Rapaglia, J.; Bokuniewicz, H. Estimation of submarine groundwater discharge from bulk ground electrical conductivity measurements. J. Geophys. Res. Oceans 2008, 113. [Google Scholar] [CrossRef]
- Tamborski, J.J.; Rogers, A.D.; Bokuniewicz, H.J.; Cochran, J.K.; Young, C.R. Identification and quantification of diffuse fresh submarine groundwater discharge via airborne thermal infrared remote sensing. Remote Sens. Environ. 2015, 171, 202–217. [Google Scholar] [CrossRef] [Green Version]
- Anderson, M.P. Heat as a ground water tracer. Groundwater 2005, 43, 951–968. [Google Scholar] [CrossRef]
- Kelly, J.L.; Glenn, C.R.; Lucey, P.G. High-resolution aerial infrared mapping of groundwater discharge to the coastal ocean. Limnol. Oceanogr. Methods 2013, 11, 262–277. [Google Scholar] [CrossRef]
- Mejías, M.; Ballesteros, B.J.; Antón-Pacheco, C.; Domínguez, J.A.; Garcia-Orellana, J.; Garcia-Solsona, E.; Masqué, P. Methodological study of submarine groundwater discharge from a karstic aquifer in the Western Mediterranean Sea. J. Hydrol. 2012, 464, 27–40. [Google Scholar] [CrossRef]
- Haider, K.; Engesgaard, P.; Sonnenborg, T.O.; Kirkegaard, C. Numerical modeling of salinity distribution and submarine groundwater discharge to a coastal lagoon in Denmark based on airborne electromagnetic data. Hydrogeol. J. 2015, 23, 217–233. [Google Scholar] [CrossRef]
- Lee, E.; Kang, K.M.; Hyun, S.P.; Lee, K.Y.; Yoon, H.; Kim, S.H.; Kim, Y.; Xu, Z.; Kim, D.J.; Koh, D.C. Submarine groundwater discharge revealed by aerial thermal infrared imagery: A case study on Jeju Island, Korea. Hydrol. Process. 2016, 30, 3494–3506. [Google Scholar] [CrossRef]
- Wilson, J.; Rocha, C. Regional scale assessment of Submarine Groundwater Discharge in Ireland combining medium resolution satellite imagery and geochemical tracing techniques. Remote Sens. Environ. 2012, 119, 21–34. [Google Scholar] [CrossRef]
- Sass, G.; Creed, I.; Riddell, J.; Bayley, S. Regional-scale mapping of groundwater discharge zones using thermal satellite imagery. Hydrol. Process. 2014, 28, 5662–5673. [Google Scholar] [CrossRef]
- Arricibita, A.I.M.; Dugdale, S.J.; Krause, S.; Hannah, D.M.; Lewandowski, J. Thermal infrared imaging for the detection of relatively warm lacustrine groundwater discharge at the surface of freshwater bodies. J. Hydrol. 2018, 562, 281–289. [Google Scholar] [CrossRef]
- Farzin, M.; Samani, A.N.; Feiznia, S.; Kazemi, G.A.; Golzar, I. Comparison of SGD rate between northern-southern coastlines of the Persian Gulf using RS. Eur. Water Resour. Assoc. 2017, 57, 497–503. [Google Scholar]
- Ozdemir, A. GIS-based groundwater spring potential mapping in the Sultan Mountains (Konya, Turkey) using frequency ratio, weights of evidence and logistic regression methods and their comparison. J. Hydrol. 2011, 411, 290–308. [Google Scholar] [CrossRef]
- Ozdemir, A. Using a binary logistic regression method and GIS for evaluating and mapping the groundwater spring potential in the Sultan Mountains (Aksehir, Turkey). J. Hydrol. 2011, 405, 123–136. [Google Scholar] [CrossRef]
- Chen, W.; Li, H.; Hou, E.; Wang, S.; Wang, G.; Panahi, M.; Li, T.; Peng, T.; Guo, C.; Niu, C. GIS-based groundwater potential analysis using novel ensemble weights-of-evidence with logistic regression and functional tree models. Sci. Total Environ. 2018, 634, 853–867. [Google Scholar] [CrossRef] [Green Version]
- Felicísimo, Á.M.; Cuartero, A.; Remondo, J.; Quirós, E. Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: A comparative study. Landslides 2013, 10, 175–189. [Google Scholar] [CrossRef]
- Conoscenti, C.; Ciaccio, M.; Caraballo-Arias, N.A.; Gómez-Gutiérrez, Á.; Rotigliano, E.; Agnesi, V. Assessment of susceptibility to earth-flow landslide using logistic regression and multivariate adaptive regression splines: A case of the Belice River basin (western Sicily, Italy). Geomorphology 2015, 242, 49–64. [Google Scholar] [CrossRef]
- Nadim, F.; Bagtzoglou, A.C.; Iranmahboob, J. Coastal management in the Persian Gulf region within the framework of the ROPME programme of action. Ocean Coast. Manag. 2008, 51, 556–565. [Google Scholar] [CrossRef]
- Agah, H.; Leermakers, M.; Elskens, M.; Fatemi, S.M.R.; Baeyens, W. Accumulation of trace metals in the muscle and liver tissues of five fish species from the Persian Gulf. Environ. Monit. Assess. 2009, 157, 499. [Google Scholar] [CrossRef] [PubMed]
- Sale, P.F.; Feary, D.A.; Burt, J.A.; Bauman, A.G.; Cavalcante, G.H.; Drouillard, K.G.; Kjerfve, B.; Marquis, E.; Trick, C.G.; Usseglio, P. The growing need for sustainable ecological management of marine communities of the Persian Gulf. Ambio 2011, 40, 4–17. [Google Scholar] [CrossRef] [Green Version]
- Lewandowski, J.; Meinikmann, K.; Ruhtz, T.; Pöschke, F.; Kirillin, G. Localization of lacustrine groundwater discharge (LGD) by airborne measurement of thermal infrared radiation. Remote Sens. Environ. 2013, 138, 119–125. [Google Scholar] [CrossRef]
- Schuetz, T.; Weiler, M. Quantification of localized groundwater inflow into streams using ground-based infrared thermography. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Schroeder, W.; Oliva, P.; Giglio, L.; Quayle, B.; Lorenz, E.; Morelli, F. Active fire detection using Landsat-8/OLI data. Remote Sens. Environ. 2016, 185, 210–220. [Google Scholar] [CrossRef] [Green Version]
- Blackett, M. Early analysis of Landsat-8 thermal infrared sensor imagery of volcanic activity. Remote Sens. 2014, 6, 2282–2295. [Google Scholar] [CrossRef] [Green Version]
- USGS. Using the USGS Landsat 8 Product. 2013. Available online: https://landsat.usgs.gov/Landsat8_Using_Product.php (accessed on 20 July 2017).
- Srivastava, P.K.; Majumdar, T.; Bhattacharya, A.K. Surface temperature estimation in Singhbhum Shear Zone of India using Landsat-7 ETM+ thermal infrared data. Adv. Space Res. 2009, 43, 1563–1574. [Google Scholar] [CrossRef]
- Landsat Project Science Office. Landsat 7 Science Data User’s Handbook; Goddard Space Flight Centre, NASA: Washington, DC, USA, 2003.
- Qin, Q.; Zhang, N.; Nan, P.; Chai, L. Geothermal area detection using Landsat ETM+ thermal infrared data and its mechanistic analysis—A case study in Tengchong, China. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 552–559. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Yu, F.-C. Morphometric analysis of debris flows and their source areas using GIS. Geomorphology 2011, 129, 387–397. [Google Scholar] [CrossRef]
- Li, A.-D.; Guo, P.-T.; Wu, W.; Liu, H.-B. Impacts of terrain attributes and human activities on soil texture class variations in hilly areas, south-west China. Environ. Monit. Assess. 2017, 189, 281. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.-B.; Wang, J.; Lü, G.-N.; Zhou, P.-G.; Hou, S.-S.; Xu, S.-N. GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China. Geomorphology 2010, 115, 23–31. [Google Scholar] [CrossRef]
- Harrell, F.E. Ordinal logistic regression. In Regression Modeling Strategies; Springer: New York, NY, USA, 2015; pp. 311–325. [Google Scholar]
- Silva, J.S.; Tenreyro, S. On the existence of the maximum likelihood estimates in Poisson regression. Econ. Lett. 2010, 107, 310–312. [Google Scholar] [CrossRef] [Green Version]
- Hosmer, D.W., Jr.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression; John Wiley & Sons: Hoboken, NJ, USA, 2013; Volume 398. [Google Scholar]
- Kleinbaum, D.G.; Klein, M. Analysis of matched data using logistic regression. In Logistic Regression: A Self-Learning Text; Springer: New York, NY, USA, 2002; pp. 227–265. [Google Scholar]
- Ayalew, L.; Yamagishi, H. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 2005, 65, 15–31. [Google Scholar] [CrossRef]
- Frattini, P.; Crosta, G.; Carrara, A. Techniques for evaluating the performance of landslide susceptibility models. Eng. Geol. 2010, 111, 62–72. [Google Scholar] [CrossRef]
- Nandi, A.; Shakoor, A. A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Eng. Geol. 2010, 110, 11–20. [Google Scholar] [CrossRef]
- Park, N.-W. Using maximum entropy modeling for landslide susceptibility mapping with multiple geoenvironmental data sets. Environ. Earth Sci. 2015, 73, 937–949. [Google Scholar] [CrossRef]
- Yesilnacar, E.K. The Application of Computational Intelligence to Landslide Susceptibility Mapping in Turkey. Ph.D. Thesis, Department of Geomatics, University of Melbourne, Melbourne, VIC, Australia, 2005. [Google Scholar]
- Dreiseitl, S.; Ohno-Machado, L. Logistic regression and artificial neural network classification models: A methodology review. J. Biomed. Inform. 2002, 35, 352–359. [Google Scholar] [CrossRef] [Green Version]
- Wilson, J.; Rocha, C. A combined remote sensing and multi-tracer approach for localising and assessing groundwater-lake interactions. Int. J. Appl. Earth Obs. Geoinf. 2016, 44, 195–204. [Google Scholar] [CrossRef]
- Rahmati, O.; Pourghasemi, H.R.; Melesse, A.M. Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: A case study at Mehran Region, Iran. Catena 2016, 137, 360–372. [Google Scholar] [CrossRef]
- Vanhellemont, Q.; Ruddick, K. Advantages of high quality SWIR bands for ocean colour processing: Examples from Landsat-8. Remote Sens. Environ. 2015, 161, 89–106. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Hu, B.X.; Tong, J. Numerical study on tide-driven submarine groundwater discharge and seawater recirculation in heterogeneous aquifers. Stoch. Environ. Res. Risk Assess. 2016, 30, 1741–1755. [Google Scholar] [CrossRef]
- Ford, D.; Williams, P.D. Karst Hydrogeology and Geomorphology; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Einsiedl, F.; Radke, M.; Maloszewski, P. Occurrence and transport of pharmaceuticals in a karst groundwater system affected by domestic wastewater treatment plants. J. Contam. Hydrol. 2010, 117, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Argamasilla, M.; Barberá, J.; Andreo, B. Factors controlling groundwater salinization and hydrogeochemical processes in coastal aquifers from southern Spain. Sci. Total Environ. 2017, 580, 50–68. [Google Scholar] [CrossRef]
- Garcia-Solsona, E.; Garcia-Orellana, J.; Masqué, P.; Rodellas, V.; Mejías, M.; Ballesteros, B.; Domínguez, J. Groundwater and nutrient discharge through karstic coastal springs (Castelló, Spain). Biogeosciences 2010, 7, 2625–2638. [Google Scholar] [CrossRef] [Green Version]
- Coxon, C. Agriculture and karst. In Karst Management; Springer: New York, NY, USA, 2011; pp. 103–138. [Google Scholar]
- Bakalowicz, M.; El Hakim, M.; El-Hajj, A. Karst groundwater resources in the countries of eastern Mediterranean: The example of Lebanon. Environ. Geol. 2008, 54, 597–604. [Google Scholar] [CrossRef]
- Fleury, P.; Bakalowicz, M.; de Marsily, G. Submarine springs and coastal karst aquifers: A review. J. Hydrol. 2007, 339, 79–92. [Google Scholar] [CrossRef]
- Charette, M.A.; Henderson, P.B.; Breier, C.F.; Liu, Q. Submarine groundwater discharge in a river-dominated Florida estuary. Mar. Chem. 2013, 156, 3–17. [Google Scholar] [CrossRef]
- Wang, S.L.; Chen, C.T.A.; Huang, T.H.; Tseng, H.C.; Lui, H.K.; Peng, T.R.; Kandasamy, S.; Zhang, J.; Yang, L.; Gao, X.; et al. Submarine Groundwater Discharge helps making nearshore waters heterotrophic. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Encarnação, J.; Leitão, F.; Range, P.; Piló, D.; Chícharo, M.A.; Chícharo, L. The influence of submarine groundwater discharges on subtidal meiofauna assemblages in south Portugal (Algarve). Estuar. Coast. Shelf Sci. 2013, 130, 202–208. [Google Scholar] [CrossRef] [Green Version]
- Saleh, A.; Samiei, J.V.; Amini-Yekta, F.; Hashtroudi, M.S.; Chen, C.T.A.; Fumani, N.S. The carbonate system on the coral patches and rocky intertidal habitats of the northern Persian Gulf: Implications for ocean acidification studies. Mar. Pollut. Bull. 2020, 151, 110834. [Google Scholar] [CrossRef] [PubMed]
- Bui, D.T.; Tuan, T.A.; Klempe, H.; Pradhan, B.; Revhaug, I. Spatial prediction models for shallow landslide hazards: A comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides 2016, 13, 361–378. [Google Scholar]
- Gevrey, M.; Dimopoulos, I.; Lek, S. Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecol. Model. 2003, 160, 249–264. [Google Scholar] [CrossRef]
Row/Pass | Area of Thermal Anomaly in 2015 (ha) | Area of Thermal Anomaly in 2016 (ha) | Overlapping Surface Area in 2015 and 2016 (ha) |
---|---|---|---|
162/41 | 2993 | 4566 | 2823 |
163/40 | 19,062 | 6956 | 6159 |
163/41 | 17,508 | 6916 | 4165 |
164/39 | 13,026 | 8518 | 4445 |
164/40 | 7752 | 5429 | 4725 |
Total | 60,341 | 32,385 | 22,317 |
Sampling Areas | Temperature (in °C) | |||||||
---|---|---|---|---|---|---|---|---|
Sample 1 | Sample 2 | Sample 3 | Sample 4 | |||||
SGD | Non-SGD | SGD | Non-SGD | SGD | Non-SGD | SGD | Non-SGD | |
Naiband #1 | 32 | 34.5 | 32.5 | 34.5 | 31 | 34.3 | 31.5 | 34.3 |
Naiband #2 | 35 | 38.5 | 35 | 37.3 | 35.2 | 36.9 | 34.9 | 37.9 |
Dopalango-Khorkhan | 28.5 | 30.5 | 28.6 | 30.2 | 28.8 | 29.5 | 27.5 | 30.6 |
Bandargah | 28.6 | 29.7 | 28.4 | 29.7 | 27.5 | 29.8 | 26.8 | 29.8 |
Shif- Hendijan | 23.5 | 25.5 | 23.5 | 25.5 | 23.5 | 25.5 | 23.5 | 25.5 |
Parameter | Sampling Areas | ||||
---|---|---|---|---|---|
Naiband #1 | Naiband #2 | Dopalango-Khorkhan | Bandargah | Shif- Hendijan | |
Temperature | 0.032 * | 0.023 ** | 0.735 ns | 0.006 ** | 0.01 ** |
Variable | B 1 | S.E. 2 | Wald 3 | Sig. 4 |
---|---|---|---|---|
Pc2 | 1.544 | 6.72 | 0.052 | 0.021 |
TPI3 | 1.435 | 0.752 | 3.65 | 0.04 |
TWI1 | 3.927 | 1.658 | 5.61 | 0.018 |
TWI2 | 11.389 | 2.432 | 23.65 | 0.0 |
SD1 | −18.793 | 5.99 | 9.84 | 0.002 |
SD3 | −13.637 | 6.104 | 4.99 | 0.025 |
PKA2 | 21.2 | 2.523 | 70.60 | 0.009 |
PKA3 | 43.2 | 5.125 | 71.05 | 0.0 |
NDVI3 | 1.29 | 30.245 | 0.0018 | 0.0 |
Aa1 | 0.034 | 0.013 | 7.19 | 0.007 |
Constant | 97.182 | 21.248 | 20.919 | 0.0 |
Model | AUC Value | S.E. 1 | 95.0% C.I. for EXP(B) 2 | |
---|---|---|---|---|
Lower | Higher | |||
Logistic regression | 0.966 | 0.02 | 0.926 | 1 |
Excepted Factor | AUC Value | Accuracy (%) | 95.0% C.I. for EXP(B) 1 | |
---|---|---|---|---|
Lower | Higher | |||
Pc2 | 0.934 | 93.4 | 0.870 | 0.999 |
TPI3 | 0.964 | 96.4 | 0.927 | 0.999 |
TWI1 | 0.931 | 93.1 | 0.868 | 0.994 |
TWI2 | 0.822 | 82.2 | 0.717 | 0.927 |
SD1 | 0.933 | 93.3 | 0.876 | 0.991 |
SD3 | 0.961 | 96.1 | 0.919 | 0.998 |
PKA2 | 0.911 | 91.1 | 0.839 | 0.983 |
PKA3 | 0.794 | 79.4 | 0.682 | 0.907 |
NDVI3 | 0.950 | 95.0 | 0.899 | 0.994 |
Aa1 | 0.941 | 94.1 | 0.883 | 0.999 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samani, A.N.; Farzin, M.; Rahmati, O.; Feiznia, S.; Kazemi, G.A.; Foody, G.; Melesse, A.M. Scrutinizing Relationships between Submarine Groundwater Discharge and Upstream Areas Using Thermal Remote Sensing: A Case Study in the Northern Persian Gulf. Remote Sens. 2021, 13, 358. https://doi.org/10.3390/rs13030358
Samani AN, Farzin M, Rahmati O, Feiznia S, Kazemi GA, Foody G, Melesse AM. Scrutinizing Relationships between Submarine Groundwater Discharge and Upstream Areas Using Thermal Remote Sensing: A Case Study in the Northern Persian Gulf. Remote Sensing. 2021; 13(3):358. https://doi.org/10.3390/rs13030358
Chicago/Turabian StyleSamani, Aliakbar Nazari, Mohsen Farzin, Omid Rahmati, Sadat Feiznia, Gholam Abbas Kazemi, Giles Foody, and Assefa M. Melesse. 2021. "Scrutinizing Relationships between Submarine Groundwater Discharge and Upstream Areas Using Thermal Remote Sensing: A Case Study in the Northern Persian Gulf" Remote Sensing 13, no. 3: 358. https://doi.org/10.3390/rs13030358
APA StyleSamani, A. N., Farzin, M., Rahmati, O., Feiznia, S., Kazemi, G. A., Foody, G., & Melesse, A. M. (2021). Scrutinizing Relationships between Submarine Groundwater Discharge and Upstream Areas Using Thermal Remote Sensing: A Case Study in the Northern Persian Gulf. Remote Sensing, 13(3), 358. https://doi.org/10.3390/rs13030358