Business Circle Identification and Spatiotemporal Characteristics in the Main Urban Area of Yiwu City Based on POI and Night-Time Light Data
Abstract
:1. Introduction
2. Data Sources and Research Methodology
2.1. Study Area Selection
2.2. Data Sources
2.2.1. Basic Geographic Data
2.2.2. Points of Interest (POI) Data
2.2.3. Nighttime Light Remote Sensing Data
3. Research Methods
3.1. Two-Factor Mapping
3.2. Kernel Density Analysis Method
3.3. DBSCAN Clustering Method
3.4. Local Contour Tree Method
4. Results
4.1. Obtain the Local Contour Tree
4.2. Dividing the Spatial Agglomeration Levels of Business Circle Elements
5. Discussion
Timing Changes of Brightness Values in Business Circles
6. Conclusions and Policy Recommendations
6.1. Main Conclusions
6.2. Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Montgomery, J. The evening economy of cities. Town Ctry. Plan. 1994, 63, 302–307. [Google Scholar]
- Brabazon, T.; Mallinder, S. Into the night-time economy: Work, leisure, urbanity and the creative industries. Nebula 2007, 4, 161–178. [Google Scholar]
- Fan, Z.; Liu, J. The “night-time economy”: Occurrence, evolution and governance. Masses 2019, 26, 47–49. (In Chinese) [Google Scholar]
- Lovatt, A.; O’Connor, J. Cities and the night-time economy. Plan. Pract. Res. 1995, 10, 127–135. [Google Scholar] [CrossRef]
- Bianchini, F. Night cultures, night economies. Plan. Pract. Res. 1995, 10, 121–126. [Google Scholar] [CrossRef]
- Ye, D. Night-time Economics. Harbin: North Literature and Art Publishing House; Shandong Literature and Art Publishing House Co., Ltd.: Jinan, China, 2019. (In Chinese) [Google Scholar]
- Shaw, R. Beyond night-time economy: Affective atmospheres of the urban night. Geoforum 2014, 51, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Jayne, M. Regulating the night: Race, culture and exclusion in the making of the night-time economy. Crime Media Cult. 2008, 4, 434–436. [Google Scholar] [CrossRef]
- Zuo, Y. Nighttime economy: A new windfall for urban development under the lights. New Ind. Econ. 2019, 8, 79–81. (In Chinese) [Google Scholar]
- Chatterton, P.; Hollands, R. Theorising urban playscapes: Producing, regulating and consuming youthful nightlife city spaces. Urban. Stud. 2002, 39, 95–116. [Google Scholar] [CrossRef]
- Bromley, R.; Thomas, C.; Millie, A. Exploring safety concerns in the night-time city: Revitalising the evening economy. Town Plan. Rev. 2000, 71, 71–96. [Google Scholar] [CrossRef]
- Tomsen, S. Bouncers: Violence and Governance in the Night-Time Economy; University of Sydney, Institute of Criminology: Sydney, Australia, 2003. [Google Scholar]
- Hadfield, P.; Lister, S.; Traynor, P. ‘This town’s a different town today’ policing and regulating the night-time economy. Criminol. Crim. Justice 2010, 9, 465–485. [Google Scholar] [CrossRef]
- Zou, T. China’s nighttime economy development status, problems and countermeasures. China Tourism News, 16 April 2019. (In Chinese) [Google Scholar]
- Liu, L. UK: Innovative planning to support the night-time economy. Urban. Plan. Int. 2018, 40, 146. (In Chinese) [Google Scholar]
- Wang, C. The night market in ancient times. Price Mon. 2003, 24, 46. (In Chinese) [Google Scholar]
- Whysall, P. Commercial change in a central area: A case study. Int. J. Retail. 1989, 4, 45–61. [Google Scholar] [CrossRef]
- Kawanabe, M.; Kawashima, K. A study on rambling activities of visitor by tram in central commercial district: Focusing on behavioral characteristics of visitor and spatial composition in Hiroshima city. J. City Plan. Inst. Jpn. 2012, 47, 539–550. [Google Scholar] [CrossRef]
- Yu, W.; Ai, T.; Shao, S. The analysis and delimitation of central business district using network kernel density estimation. J. Transport. Geogr. 2015, 45, 32–47. [Google Scholar] [CrossRef]
- Hu, Q.; Wang, M.; Li, Q. Urban hotspot and commercial area exploration with check-in data. Acta Geod. Cartogr. Sin. 2014, 43, 314–321. [Google Scholar]
- Alperovich, G. Density gradients and the identification of the central business district. Urban. Stud. 1982, 19, 313–320. [Google Scholar] [CrossRef]
- Ning, Y.; Huang, S. The hierarchy of commercial centres in Shanghai and their changing characteristics. Reg. Res. Dev. 2005, 24, 15–19. (In Chinese) [Google Scholar]
- Wu, K.; Zhang, H.; Wang, Y.; Wu, Q.; Ye, Y. Identification and spatial patterns of multiple types of commercial centres in Guangzhou City. Prog. Geogr. 2016, 35, 963–974. (In Chinese) [Google Scholar]
- Chen, W.; Liu, L.; Liang, Y. Analysis of hotspot identification and industry clustering characteristics of retail commercial centres in Guangzhou based on POI data. Geogr. Res. 2016, 35, 703–716. (In Chinese) [Google Scholar]
- Yin, X.; Wang, J. Study on spatial pattern and agglomeration of retail industry—Take the main urban area of Shijiazhuang as an example. J. Commer. Econ. 2018, 37, 158–161. (In Chinese) [Google Scholar]
- Huo, G.; Chen, L. Regional commercial center identification based on POI big data in China. Arab. J. Geosci. 2021, 14, 1360. [Google Scholar]
- Hao, F.; Wang, S.; Xie, D.; Yu, T.; Feng, Z. Analysis of the accessibility of Changchun’s commercial centres based on Internet map services. Econ. Geogr. 2017, 37, 68–75. (In Chinese) [Google Scholar]
- Cui, T.; Liu, J.; Li, W.; Xu, S.; Luo, A. Research on extraction of multiple commerce center based on contour tree method. Sci. Surv. Mapp. 2020, 45, 150–155. (In Chinese) [Google Scholar]
- Shi, Y.; Wu, J.; Wang, S. Spatio-temporal features and the dynamic mechanism of shopping center expansion in Shanghai. Appl. Geogr. 2015, 65, 93–108. [Google Scholar] [CrossRef]
- Shi, Y.; Tao, T.; Cao, X.; Pei, X. The association between spatial attributes and neighborhood characteristics based on Meituan take-out data: Evidence from Shanghai business circles. J. Retail. Consum. Serv. 2021, 58, 102302. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, B.; Wei, S.; Liu, H. A new approach for detecting urban centers and their spatial structure with nighttime light remote sensing. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6305–6319. [Google Scholar] [CrossRef]
- Gao, S.; Janowicz, K.; Montello, D.R.; Hu, Y.; Yang, J.; Kenzie, G.; Ju, Y.; Gong, L.; Adams, B.; Yan, B. A data-synthesis-driven method for detecting and extracting vague cognitive regions. Int. J. Geogr. Inf. Sci. 2017, 31, 1245–1271. [Google Scholar] [CrossRef]
- Lei, Y.; Tian, J.; Lin, G.; Reng, C. A method of urban centre extraction by combining road network and interest points. Acta Geod. Cartogr. Sin. 2015, 44, 42–48. (In Chinese) [Google Scholar]
- Small, C.; Pozzi, F.; Elvidge, C.D. Spatial analysis of global urban extent from DMSP-OLS night lights. Remote. Sens. Environ. 2005, 96, 277–291. [Google Scholar] [CrossRef]
- Yu, B.; Shu, S.; Liu, H. Object-based spatial cluster analysis of urban landscape pattern using nighttime light satellite images: A case study of China. Int. J. Geogr. Inf. Sci. 2014, 28, 2328–2355. [Google Scholar] [CrossRef]
- Sutton, P.C. A scale-adjusted measure of “urban sprawl” using nighttime satellite imagery. Remote Sens. Environ. 2003, 86, 353–369. [Google Scholar] [CrossRef]
- Bennett, M.M.; Smith, L.C. Advances in using multitemporal night-time lights satellite imagery to detect, estimate, and monitor socioeconomic dynamics. Remote Sens. Environ. 2017, 192, 176–197. [Google Scholar] [CrossRef]
- Shi, K.; Huang, C.; Yu, B.; Yin, B.; Huang, Y.; Wu, J. Evaluation of NPP-VIIRS night-time light composite data for extracting built-up urban areas. Remote Sens. Lett. 2014, 5, 358–366. [Google Scholar] [CrossRef]
- Yu, B.; Shi, K.; Hu, Y.; Huang, C.; Chen, Z.; Wu, J. Poverty evaluation using NPP-VIIRS nighttime light composite data at the county level in China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 8, 1217–1229. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, B.; Hu, Y.; Huang, C.; Shi, K.; Wu, J. Estimating house vacancy rate in metropolitan areas using NPP-VIIRS nighttime light composite data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2188–2197. [Google Scholar] [CrossRef]
- Zhang, X.; Du, S.; Wang, Q. Hierarchical semantic cognition for urban functional zones with VHR satellite images and POI data. ISPRS J. Photogramm. Remote Sens. 2017, 132, 170–184. [Google Scholar] [CrossRef]
- Deng, Y.; Liu, J.; Liu, Y.; Lou, A. Detecting urban polycentric structure from POI Data. Int. J. Geo-Inf. 2019, 8, 283. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Deng, Y.; Wang, Y.; Huang, H.; Du, Q.; Ren, F. Urban nighttime leisure space mapping with nighttime light images and POI data. Remote. Sens. 2020, 12, 541. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Lin, J.; Guo, L.; Cai, N.; Tong, X.; Meng, X.; Zhang, Y.; Jiang, W. Performance analysis and case validation of anti-differential state estimation based on adaptive kernel density estimation theory. Chin. J. Electr. Eng. 2016, 36, 3845–3856. (In Chinese) [Google Scholar]
- Han, C.; Liu, H.; Zhang, Y.; Wang, J. Spatial distribution analysis of multi-scale leisure agriculture in Beijing based on kernel density function. Trans. Chin. Soc. Agric. Eng. 2019, 35, 271–278. (In Chinese) [Google Scholar]
- Rong, Q.; Yan, J.; Guo, G. Research and implementation of DBSCAN-based clustering algorithm. Comput. Appl. 2004, 24, 45–46. (In Chinese) [Google Scholar]
- Yang, F.; Xu, J.; Zhou, L. Identification and spatial characteristics analysis of restaurant clusters in Guangzhou based on DBSCAN spatial clustering. Econ. Geogr. 2016, 36, 110–116. (In Chinese) [Google Scholar]
- Ma, X.; Hou, G.; Li, L.; Yang, Y. Identification, distribution pattern and influencing factors of B&B clusters based on DBSCAN algorithm—An example of Nanjing city. Hum. Geogr. 2021, 36, 84–93. (In Chinese) [Google Scholar]
- Yan, N.; Wen, A. Analysis of mobile big data shopping area based on R+ Hadoop. Inf. Technol. 2018, 25, 95–99. (In Chinese) [Google Scholar]
- Gong, Y. Yiwu Makes Every Effort to Build A Famous Night Economy City in China. Yiwu Business News. Available online: http://www.yw.gov.cn/art/2020/12/14/art_1229187636_59213647.html (accessed on 14 December 2020). (In Chinese)
Category | POI Subclass | Number (pcs) |
---|---|---|
Shopping | Shopping malls, department stores, characteristic commercial streets, speciality stores, supermarkets, convenience stores, shops, night markets | 61,745 |
Catering Services | Chinese restaurants, western restaurants, snacks and fast-food restaurants, cold drinks shops, coffee shops, cafes, dessert shops | 20,939 |
Entertainment | Cinema, KTV, foot bath and leisure, fitness club, beauty care, sports venues, game hall | 1761 |
Category | Shopping | Catering Services | Entertainment | |
---|---|---|---|---|
Total | 61,745 | 20,939 | 1761 | |
Noise points | 27,424 | 13,300 | 938 | |
Cluster | I | 22,075 | 1622 | 313 |
II | 2129 | 1666 | 175 | |
III | 3573 | 2058 | 109 | |
IV | 1239 | 593 | 79 | |
V | 1527 | 714 | 48 | |
VI | 2663 | 461 | 60 | |
VII | 1115 | 525 | 39 |
Business Circle | Business Type | Total | Area (m2) | Density (Units/km2) | Brightness of Night Lighting (NanoWatts/cm2/sr) | Level | ||
---|---|---|---|---|---|---|---|---|
Shopping | Catering Services | Entertainment | ||||||
Binwang | 2989 | 1369 | 128 | 4486 | 476,034.97 | 9424 | 85.75 | I |
Futian Financial Town | 1794 | 962 | 49 | 2805 | 710,884.60 | 3946 | 84.69 | I |
Xiuhu and the Heart of Yiwu | 1151 | 436 | 98 | 1685 | 864,314.38 | 1950 | 79.11 | II |
Huangyuan | 384 | 96 | 5 | 485 | 310,061.53 | 1564 | 73.99 | III |
Beicun Tongdian Community | 401 | 157 | 6 | 564 | 282,923.75 | 1993 | 72.47 | III |
Beiyuan | 189 | 167 | 25 | 381 | 246,926.89 | 1543 | 67.28 | III |
Wanda Plaza | 323 | 271 | 44 | 638 | 164,814.78 | 3871 | 62.26 | III |
Meihu | 341 | 225 | 37 | 603 | 313,826.49 | 1921 | 57.96 | III |
Beixiazhu Community | 1313 | 191 | 9 | 1513 | 565,426.51 | 2676 | 55.86 | IV |
Longhui Community | 1451 | 331 | 10 | 1792 | 786,808.35 | 2278 | 50.55 | IV |
Jiulian Community | 271 | 99 | 10 | 380 | 380,219.59 | 999 | 43.02 | IV |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, L.; Shi, Y.; Zheng, J. Business Circle Identification and Spatiotemporal Characteristics in the Main Urban Area of Yiwu City Based on POI and Night-Time Light Data. Remote Sens. 2021, 13, 5153. https://doi.org/10.3390/rs13245153
Zhou L, Shi Y, Zheng J. Business Circle Identification and Spatiotemporal Characteristics in the Main Urban Area of Yiwu City Based on POI and Night-Time Light Data. Remote Sensing. 2021; 13(24):5153. https://doi.org/10.3390/rs13245153
Chicago/Turabian StyleZhou, Liangliang, Yishao Shi, and Jianwen Zheng. 2021. "Business Circle Identification and Spatiotemporal Characteristics in the Main Urban Area of Yiwu City Based on POI and Night-Time Light Data" Remote Sensing 13, no. 24: 5153. https://doi.org/10.3390/rs13245153
APA StyleZhou, L., Shi, Y., & Zheng, J. (2021). Business Circle Identification and Spatiotemporal Characteristics in the Main Urban Area of Yiwu City Based on POI and Night-Time Light Data. Remote Sensing, 13(24), 5153. https://doi.org/10.3390/rs13245153