Evaluation of Ecological Stability in Semi-Arid Open-Pit Coal Mining Area Based on Structure and Function Coupling during 2002–2017
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Pre-Processing
2.3. Methods
2.3.1. Ecological Stability Evaluation
2.3.2. Ecological Structure and Function Correlation under the SFSTM
2.3.3. Pearson Correlation Analysis
3. Results
3.1. Ecological Stability Spatio–Temporal Change
3.2. Ecological Structure–Function Interrelation in Coal Mining Area
3.3. Analysis of Influencing Factors of Ecological Stability
4. Discussion
4.1. The Rationality of Indicators Selection and Evaluation Results
4.2. Explanation for Spatio–Temporal Changes of Ecological Stability
4.3. Structural and Functional Variables under State Transitions
4.4. Partition for Ecological Stability Improvements and Management
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yuan, Y.; Zhao, Z.; Niu, S.; Li, X.; Wang, Y.; Bai, Z. Reclamation promotes the succession of the soil and vegetation in opencast coal mine: A case study from Robinia pseudoacacia reclaimed forests, Pingshuo mine, China. Catena 2018, 165, 72–79. [Google Scholar] [CrossRef]
- López, D.R.; Brizuela, M.A.; Willems, P.; Aguiar, M.R.; Siffredi, G.; Bran, D. Linking ecosystem resistance, resilience, and stability in steppes of North Patagonia. Ecol. Indic. 2013, 24, 1–11. [Google Scholar] [CrossRef]
- Bian, Z.F.; Lei, S.G.; Jin, D.; Wang, L. Several basic scientific issues related to mined land remediation. J. China Coal Soc. 2018, 43, 190–197. [Google Scholar]
- Li, X.; Lei, S.; Cheng, W.; Liu, F.; Wang, W. Spatio-temporal dynamics of vegetation in Jungar Banner of China during 2000–2017. J. Arid Land. 2019, 11, 837–854. [Google Scholar] [CrossRef] [Green Version]
- Gong, C.; Lei, S.; Bian, Z.; Liu, Y.; Zhang, Z.; Cheng, W. Analysis of the Development of an Erosion Gully in an Open-Pit Coal Mine Dump during a Winter Freeze-Thaw Cycle by Using Low-Cost UAVs. Remote Sens. 2019, 11, 1356. [Google Scholar] [CrossRef] [Green Version]
- Ying, L.; Shaogang, L.; Xiaoyang, C. Assessment of heavy metal pollution and human health risk in urban soils of a coal mining city in East China. Hum. Ecol. Risk Assess. An. Int. J. 2016, 22, 1359–1374. [Google Scholar] [CrossRef]
- Dong, S.; Samsonov, S.; Yin, H.; Yao, S.; Xu, C.; Song, Y.; Sun, Y.; Lei, K.; Kolditz, O.; Liu, R.; et al. Spatio-temporal analysis of ground subsidence due to underground coal mining in Huainan coalfield, China. Environ. Earth Sci. 2015, 73, 5523–5534. [Google Scholar] [CrossRef]
- MacArthur, R. Fluctuations of Animal Populations and a Measure of Community Stability. Ecology 1955, 36, 533–536. [Google Scholar] [CrossRef]
- Li, X.; Lei, S.; Liu, F.; Wang, W. Analysis of Plant and Soil Restoration Process and Degree of Refuse Dumps in Open-Pit Coal Mining Areas. Int. J. Environ. Res. Public Health 2020, 17, 1975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López, D.R.; Cavallero, L.; Brizuela, M.A.; Aguiar, M.R. Ecosystemic structural-functional approach of the state and transition model. Appl. Veg. Sci. 2011, 14, 6–16. [Google Scholar] [CrossRef]
- May, M.R. Will a large complex system be stable? Nature 1972, 238, 413–414. [Google Scholar] [CrossRef]
- Harrison, G.W. Stability under environmental stress: Resistance, resilience, persistence, and variability. Am. Nat. 1979, 113, 659–669. [Google Scholar] [CrossRef]
- Yue, T.X.; Ma, S.J. Eosystem stability and its analysing model. Acta Ecol. Sin. 1991, 4, 361–366. [Google Scholar]
- Vefue, L. The Penguin Directionary of Physics; Foreign Language Press: Beijing, China, 1996. [Google Scholar]
- Yang, S. Urban Ecology; Science Press: Beijing, China, 2003. [Google Scholar]
- Yuan, J.; Bian, Z.; Yan, Q.; Pan, Y. Spatio-Temporal Distributions of the Land Use Efficiency Coupling Coordination Degree in Mining Cities of Western China. Sustainability 2019, 11, 5288. [Google Scholar] [CrossRef] [Green Version]
- Westoby, M.; Brian, W.; Imanuel, N.M. Opportunistic management for rangelands not at equilibrium. J. Rangel. Manag. 1989, 42, 266–274. [Google Scholar] [CrossRef]
- Briske, D.D.; Smeins, S. Vegetation dynamics on rangelands: A critique of the current paradigms. J. Appl. Ecol. 2003, 40, 601–614. [Google Scholar] [CrossRef]
- Briske, D.D.; Fuhlendorf, S.D.; Smeins, F.E. State-and-Transition Models, Thresholds, and Rangeland Health: A Synthesis of Ecological Concepts and Perspectives. Rangel. Ecol. Manag. 2005, 58, 1–10. [Google Scholar] [CrossRef]
- Briske, D.D.; Bestelmeyer, B.T.; Stringham, T.K.; Shaver, P.L. Recommendations for Development of Resilience-Based State-and-Transition Models. Rangel. Ecol. Manag. 2008, 61, 359–367. [Google Scholar] [CrossRef]
- Bestelmeyer, B.T.; Tugel, A.J.; Peacock, G.L.; Robinett, D.G.; Shaver, P.L.; Brown, J.R.; Herrick, J.E.; Sanchez, H.; Havstad, K.M. State-and-Transition Models for Heterogeneous Landscapes: A Strategy for Development and Application. Rangel. Ecol. Manag. 2009, 62, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Bagchi, S.; Briske, D.D.; Bestelmeyer, B.T.; Wu, X.B. Assessing resilience and state-transition models with historical records of cheatgrass Bromus tectorum invasion in North American sagebrush-steppe. J. Appl. Ecol. 2013, 50, 1131–1141. [Google Scholar] [CrossRef] [Green Version]
- Young, D.; Perotto-Baldivieso, H.L.; Brewer, T.; Homer, R.; Santos, S.A. Monitoring british upland ecosystems with the use of landscape structure as an indicator for state-and-transition models. Rangel. Ecol. Manag. 2014, 67, 380–388. [Google Scholar] [CrossRef]
- Hein, L. The impacts of grazing and rainfall variability on the dynamics of a Sahelian rangeland. J. Arid Environ. 2006, 64, 488–504. [Google Scholar] [CrossRef]
- Cavallero, L.; López, D.R.; Raffaele, E.; Aizen, M.A. Structural–functional approach to identify post-disturbance recovery indicators in forests from northwestern Patagonia: A tool to prevent state transitions. Ecol. Indic. 2015, 52, 85–95. [Google Scholar] [CrossRef]
- Peri, P.L.; López, D.R.; Rusch, V.; Rusch, G.; Rosas, Y.M.; Martínez Pastur, G. State and transition model approach in native forests of Southern Patagonia (Argentina): Linking ecosystem services, thresholds and resilience. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2017, 13, 105–118. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Yan, C.Z.; Xie, J.L. Remote sensing monitoring recent rapid increase of coal mining activity of an important energy base in northern China, a case study of Mu Us Sandy Land. Resour. Conserv. Recycl. 2015, 94, 129–135. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, J.; Li, S.; Feng, D.; Cao, E. Dynamic changes in landscape pattern in a large-scale opencast coal mine area from 1986 to 2015: A complex network approach. Catena 2020, 194, 104738. [Google Scholar] [CrossRef]
- Wang, Y.C.; Bian, Z.F.; Lei, S.; Zhang, Y. Investigating spatial and temporal variations of soil moisture content in an arid mining area using an improved thermal inertia model. J. Arid Land. 2017, 9, 712–726. [Google Scholar] [CrossRef]
- Yang, Z.; Li, W.; Li, X.; He, J. Quantitative analysis of the relationship between vegetation and groundwater buried depth: A case study of a coal mine district in Western China. Ecol. Indic. 2019, 102, 770–782. [Google Scholar] [CrossRef]
- Bao, N.; Wu, L.; Liu, S.; Li, N. Scale parameter optimization through high-resolution imagery to support mine rehabilitated vegetation classification. Ecol. Eng. 2016, 97, 130–137. [Google Scholar] [CrossRef]
- Wu, Z.; Lei, S.; He, B.; Bian, Z.; Wang, Y.; Lu, Q.; Peng, S.; Duo, L. Assessment of Landscape Ecological Health: A CaseStudy of a Mining City in a Semi-Arid Steppe. Int. J. Environ. Res. Public Health 2019, 16, 752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, X.; Xiao, W.; Zhao, Y.; Zhang, W.; Li, S.; Sun, H. Drivers of spatio-temporal ecological vulnerability in an arid, coal mining region in Western China. Ecol. Indic. 2019, 106, 105475. [Google Scholar] [CrossRef]
- Kandziora, M.; Burkhard, B.; Müller, F. Interactions of ecosystem properties, ecosystem integrity and ecosystem service indicators—A theoretical matrix exercise. Ecol. Indic. 2013, 28, 54–78. [Google Scholar] [CrossRef]
- Vidal-Macua, J.J.; Nicolau, J.M.; Vicente, E.; Moreno-de Las Heras, M. Assessing vegetation recovery in reclaimed opencast mines of the Teruel coalfield (Spain) using Landsat time series and boosted regression trees. Sci. Total Environ. 2020, 717, 137250. [Google Scholar] [CrossRef]
- Jiao, Z.; Li, X.; Wang, J.; Zhang, H. Assessment of MODIS BRDF shape indicators. J. Remote Sens. 2011, 15, 432–456. [Google Scholar]
- Yang, Y.J. Study on the Resilience of Land Ecosystem in Mining Area and Its Measurement and Regulation; China University of Mining and Technology: Xuzhou, China, 2017. [Google Scholar]
- Xie, G.D.; Zhang, Y.L.; Lu, C.X. Study on valuation of rangeland ecosystem services of China. J. Nat. Resour. 2001, 16, 47–53. [Google Scholar]
- Lei, J.; Chen, Z.Z.; Wu, T.T.; Li, Y.L.; Yang, Q.; Chen, X.H. Spatial autocorrelation pattern analysis of land use and the value of ecosystem services in northeast Hainan island. Acta Ecol. Sin. 2019, 39, 2366–2377. [Google Scholar]
- Zhuang, H.; Wang, Y.; Liu, H.; Wang, S.; Zhang, W.; Zhang, S.; Dai, Q. Large-Scale Soil Erosion Estimation Considering Vegetation Growth Cycle. Land 2021, 10, 473. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Y.; Chen, F.; Zhang, S.; Hou, H. Regime shift and redevelopment of a mining area’s socio-ecological system under resilience thinking: A case study in Shanxi Province, China. Environ. Dev. Sustain. A Multidiscip. Approach Theory Pract. Sustain. Dev. 2018, 21, 2577–2598. [Google Scholar] [CrossRef]
- Du, L.; Mikle, N.; Zou, Z.; Huang, Y.; Shi, Z.; Jiang, L.; McCarthy, H.R.; Liang, J.; Luo, Y. Global patterns of extreme drought-induced loss in land primary production: Identifying ecological extremes from rain-use efficiency. Sci. Total Environ. 2018, 628–629, 611–620. [Google Scholar] [CrossRef]
- Ma, F. Research Advances on Ecosystem Stability. J. Desert Res. 2002, 22, 401–407. [Google Scholar]
- Wu, Z.; Lei, S.; Lu, Q.; Bian, Z. Impacts of Large-Scale Open-Pit Coal Base on the Landscape Ecological Health of Semi-Arid Grasslands. Remote Sens. 2019, 11, 1820. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Huang, P.T.; Wang, K. Assessment of the ecosystem stability of Shapotou Arid Desert Nature Reserve in Ningxia, China. Acta Ecol. Sin. 2019, 39, 6381–6392. [Google Scholar]
- Zhang, Z.; Wang, J.; Feng, Y. Linking the reclaimed soils and rehabilitated vegetation in an opencast coal mining area: A complex network approach. Environ. Sci. Pollut. Res. 2019, 26, 19365–19378. [Google Scholar] [CrossRef] [PubMed]
- Fang, A.; Bao, M.; Chen, W.; Dong, J. Assessment of Surface Ecological Quality of Grassland Mining Area and Identification of Its Impact Range. Nat. Resour. Res. 2021, 30, 3819–3837. [Google Scholar] [CrossRef]
- Hendrychová, M.; Kabrna, M. An analysis of 200-year-long changes in a landscape affected by large-scale surface coal mining: History, present and future. Appl. Geogr. 2016, 74, 151–159. [Google Scholar] [CrossRef]
- Xu, W.; Wang, J.; Zhang, M.; Li, S. Construction of landscape ecological network based on landscape ecological risk assessment in a large-scale opencast coal mine area. J. Clean. Prod. 2021, 286, 125523. [Google Scholar] [CrossRef]
- Barbosa, J.M.; Asner, G.P. Effects of long-term rainfall decline on the structure and functioning of Hawaiian forests. Environ. Res. Lett. 2016, 12, 94002. [Google Scholar] [CrossRef] [Green Version]
- Ma, Q.; Liu, X.; Li, Y.; Li, L.; Yu, H.; Qi, M.; Zhou, G.; Xu, Z. Nitrogen deposition magnifies the sensitivity of desert steppe plant communities to large changes in precipitation. J. Ecol. 2020, 108, 598–610. [Google Scholar] [CrossRef]
- Dai, A. Drought under global warming: A review. Wiley Interdiscip. Rev. Clim. Chang. 2010, 2, 45–65. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Lei, S.; Lu, Q.; Bian, Z.; Ge, S. Spatial distribution of the impact of surface mining on the landscape ecological health of semi-arid grasslands. Ecol. Indic. 2020, 111, 105996. [Google Scholar] [CrossRef]
- Fan, X.; Song, Y.; Zhu, C.; Balzter, H.; Bai, Z. Estimating Ecological Responses to Climatic Variability on Reclaimed and Unmined Lands Using Enhanced Vegetation Index. Remote Sens. 2021, 13, 1100. [Google Scholar] [CrossRef]
- Liu, Y.; Lei, S.G.; Gong, C.G.; Bian, Z.F. Effects of soil water content change on the chlorophyll fluorescence response of Caragana korshinskii leaves under the influence of coal mining subsidence cracks. Acta Ecol. Sin. 2019, 39, 3267–3276. [Google Scholar]
- Lu, J. Monitoring of Vegetation and Soil Erosion in Dump Slope Based on UAV Remote Sensing Technology; China University of Mining and Technology: Xuzhou, China, 2018. [Google Scholar]
- Xu, W.; Jin, X.; Liu, J.; Zhou, Y. Analysis of influencing factors of cultivated land fragmentation based on hierarchical linear model: A case study of Jiangsu Province, China. Land Use Policy 2020, 101, 105119. [Google Scholar] [CrossRef]
- Bestelmeyer, B.T.; Williamson, J.C.; Talbot, C.J.; Cates, G.W.; Duniway, M.C.; Brown, J.R. Improving the Effectiveness of Ecological Site Descriptions: General State-and-Transition Models and the Ecosystem Dynamics Interpretive Tool (EDIT). Rangelands 2016, 38, 329–335. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.M.; Guo, L.L.; Bai, Z.K.; Yang, R.X.; Zhang, M. Succession law of reclaimed soil and vegetation on opencast coal mine dump of loess area. Trans. Chin. Soc. Agric. Eng. 2013, 29, 223–232. [Google Scholar]
- Ludwig, J.A.; Tongway, D.J.; Bastin, G.N.; James, C.D. Monitoring ecological indicators of rangeland functional integrity and their relation to biodiversity at local to regional scales. Austral. Ecol. 2004, 29, 108–120. [Google Scholar] [CrossRef]
- Bruno Rocha Martins, W.; Douglas Roque Lima, M.; de Oliveira Barros Junior, U.; Sousa Villas-Boas Amorim, L.; de Assis Oliveira, F.; Schwartz, G. Ecological methods and indicators for recovering and monitoring ecosystems after mining: A global literature review. Ecol. Eng. 2020, 145, 105707. [Google Scholar] [CrossRef]
- Villacís, J.; Armas, C.; Hang, S.; Casanoves, F. Selection of Adequate Species for Degraded Areas by Oil-Exploitation Industry as a Key Factor for Recovery Forest in the Ecuadorian Amazon. Land Degrad. Dev. 2016, 27, 1771–1780. [Google Scholar] [CrossRef] [Green Version]
Characteristic | Variables | Data | Implication |
---|---|---|---|
Structure | Structural scattering index (SSI) | MODIS BRDF 43A1 (2002/2005/208/2011/2014/2017) | Reflects the growth status and composition of vegetation communities through the three-dimensional structure of the canopy |
Division Index (DIV) | Landsat TM/OLI (2002/2005/2008/2011/2014/2017) | The degree of separation of individual distribution of different patch numbers in a certain landscape type, the greater the degree of separation, the higher the index | |
Shannon index (SHDI) | Landsat TM/OLI (2002/2005/2008/2011/2014/2017) | Reflects the heterogeneity of the landscape, that is, the complexity of the spatial structure of the landscape. The greater the heterogeneity, the lower the degree of order | |
Cohesion index (COH) | Landsat TM/OLI (2002/2005/2008/2011/2014/2017) | Reflects the aggregation and dispersion of patches in the landscape, the greater the degree of connection, the higher the index | |
Function | Ecosystem service (ESF) | Landsat TM/OLI (2002/2005/2008/2011/2014/2017) | Static indicator, include supply, regulation, support and cultural service. |
Soil erosion (RUSLE) | Landsat TM/OLI (2002/2005/2008/2011/2014/2017) | Dynamic indicator, represents the key role of vegetation elements in the process of ecological activities in the mining area. | |
Gross primary productivity (GPP) | MODIS 17A2H (2002/2005/2008/2011/2014/2017) |
Category | Description |
---|---|
Extremely stable | Natural areas, basically unmanned disturbance |
Stable | Natural areas, but with little human disturbance, Reclamation areas, with a longer reclamation period |
Sub-stable | Natural areas, but with higher human disturbance, Reclamation areas, with shorter reclamation period; |
Unstable | Newly reclaimed areas, Non-reclaimed areas, artificial areas (farmland, orchard, etc.) |
Extremely unstable | Coal mine areas, Cities, Desert |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Lei, S.; Liu, Y.; Chen, H.; Zhao, Y.; Gong, C.; Bian, Z.; Lu, X. Evaluation of Ecological Stability in Semi-Arid Open-Pit Coal Mining Area Based on Structure and Function Coupling during 2002–2017. Remote Sens. 2021, 13, 5040. https://doi.org/10.3390/rs13245040
Li X, Lei S, Liu Y, Chen H, Zhao Y, Gong C, Bian Z, Lu X. Evaluation of Ecological Stability in Semi-Arid Open-Pit Coal Mining Area Based on Structure and Function Coupling during 2002–2017. Remote Sensing. 2021; 13(24):5040. https://doi.org/10.3390/rs13245040
Chicago/Turabian StyleLi, Xinhui, Shaogang Lei, Ying Liu, Hang Chen, Yibo Zhao, Chuangang Gong, Zhengfu Bian, and Xiaoguang Lu. 2021. "Evaluation of Ecological Stability in Semi-Arid Open-Pit Coal Mining Area Based on Structure and Function Coupling during 2002–2017" Remote Sensing 13, no. 24: 5040. https://doi.org/10.3390/rs13245040
APA StyleLi, X., Lei, S., Liu, Y., Chen, H., Zhao, Y., Gong, C., Bian, Z., & Lu, X. (2021). Evaluation of Ecological Stability in Semi-Arid Open-Pit Coal Mining Area Based on Structure and Function Coupling during 2002–2017. Remote Sensing, 13(24), 5040. https://doi.org/10.3390/rs13245040