Global Harmonization of Urbanization Measures: Proceed with Care
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Three Study Countries
The resulting sprawl of Mexican cities is different from suburbanization in the United States during the 1960s and 1970s, where middle-class households moved to suburbs for more space with better amenities and schools. Instead, urban growth in Mexico has been connected to the fissure between new, peri-urban developments and more central neighborhoods in terms of the provision of infrastructure and services (including health and education), connectivity, access to sources of employment and urban amenities.
2.2. Official Data Sources
2.2.1. Indian Settlements and Within-Town Wards
2.2.2. Mexican Basic Geographic Areas
2.2.3. United States Census Blocks
2.3. Data Sources Derived from Remote Sensing
2.3.1. Global Human Settlement Layer
2.3.2. Gridded Population of the World and Global Human Settlement Population Layer
2.3.3. The Degree of Urbanization Model
2.3.4. Data-Processing
2.4. Comparing Official Urban–Rural Classes with GHS-BUILT and the DoU
Official Urban–Rural Classifications and the DoU
3. Results
3.1. Classifications of Land
3.1.1. Built-Up Density by Urban–Rural Category
3.1.2. Official Urban Designations by DoU Class
3.2. Population Shares and Densities
3.3. A Combined Perspective
4. Discussion
5. Conclusions
The post-2015 agenda must be relevant for urban dwellers. Cities are where the battle for sustainable development will be won or lost. Yet the Panel also believes that it is critical to pay attention to rural areas, where three billion near-poor will still be living in 2030. The most pressing issue is not urban versus rural, but how to foster a local, geographic approach to the post-2015 agenda.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. A Grid-Cell-Specific Diagnostic Test for Urban and Rural Land
References
- United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision; Technical Report; ST/ESA/SER.A/420; United Nations: New York, NY, USA, 2019. [Google Scholar]
- Rakodi, C. Economic development, urbanization, and poverty. In Urban Livelihoods: A People-Centred Approach to Reducing Poverty; Rakodi, C., Lloyd-Jones, T., Eds.; Earthscan: London, UK, 2014; Chapter 2. [Google Scholar]
- Pandey, B.; Seto, K.C. Urbanization and agricultural land loss in India: Comparing satellite estimates with census data. J. Environ. Manag. 2015, 148, 53–66. [Google Scholar] [CrossRef] [PubMed]
- Bren d’Amour, C.; Reitsma, F.; Baiocchi, G.; Barthel, S.; Güneralp, B.; Erb, K.H.; Haberl, H.; Creutzig, F.; Seto, K.C. Future urban land expansion and implications for global croplands. Proc. Natl. Acad. Sci. USA 2017, 114, 8939–8944. [Google Scholar] [CrossRef] [PubMed]
- Bakker, V.; Verburg, P.H.; van Vliet, J. Trade-offs between prosperity and urban land per capita in major world cities. Geogr. Sustain. 2021, 2, 134–138. [Google Scholar] [CrossRef]
- Forget, Y.; Shimoni, M.; Gilbert, M.; Linard, C. Mapping 20 Years of Urban Expansion in 45 Urban Areas of Sub-Saharan Africa. Remote Sens. 2021, 13, 525. [Google Scholar] [CrossRef]
- Mitlin, D.; Satterthwaite, D. Urban Poverty in the Global South; Routledge: London, UK, 2013. [Google Scholar]
- Fan, P.; Ouyang, Z.; Nguyen, D.D.; Nguyen, T.T.H.; Park, H.; Chen, J. Urbanization, economic development, environmental and social changes in transitional economies: Vietnam after Doimoi. Landsc. Urban Plan. 2019, 187, 145–155. [Google Scholar] [CrossRef]
- Chen, M.; Sui, Y.; Liu, W.; Liu, H.; Huang, Y. Urbanization patterns and poverty reduction: A new perspective to explore the countries along the Belt and Road. Habitat. Int. 2019, 84, 1–14. [Google Scholar] [CrossRef]
- Rajashekar, A.; Bower, J. Densification without Contagion? Overcrowding and Pandemic Risk Hotspots in Rwanda; Technical Report C19-20082-RWA-1; International Growth Center: London, UK, 2020. [Google Scholar]
- Tian, H.; Hu, S.; Cazelles, B.; Chowell, G.; Gao, L.; Laine, M.; Li, Y.; Yang, H.; Li, Y.; Yang, Q.; et al. Urbanization prolongs hantavirus epidemics in cities. Proc. Natl. Acad. Sci. USA 2018, 115, 4707–4712. [Google Scholar] [CrossRef]
- Montgomery, M.R. Urban Health in Low- and Middle-Income Countries. In Oxford Textbook of Public Health, 5th ed.; Detels, R., Beaglehole, R., Lansang, M.A., Gulliford, M., Eds.; Oxford University Press: Oxford, UK, 2009; Chapter 10.7; pp. 1376–1394. [Google Scholar]
- Pinchoff, J.; Mills, C.W.; Balk, D. Urbanization and health: The effects of the built environment on chronic disease risk factors among women in Tanzania. PLoS ONE 2020, 15, e0241810. [Google Scholar] [CrossRef]
- Moran, D.; Kanemoto, K.; Jiborn, M.; Wood, R.; Többen, J.; Seto, K.C. Carbon footprints of 13,000 cities. Environ. Res. Lett. 2018, 13, 064041. [Google Scholar] [CrossRef]
- Creutzig, F.; Baiocchi, G.; Bierkandt, R.; Pichler, P.P.; Seto, K.C. Global typology of urban energy use and potentials for an urbanization mitigation wedge. Proc. Natl. Acad. Sci. USA 2015, 112, 6283–6288. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Revi, A.; Satterthwaite, D.E.; Aragón-Durand, F.; Corfee-Morlot, J.; Kiunsi, R.B.; Pelling, M.; Roberts, D.C.; Solecki, W. Urban Areas. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C., Barros, V., Dokken, D., Mach, K., Mastrandrea, M., Bilir, T., Chatterjee, M., Ebi, K., Estrada, Y., Genova, R., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 535–612. [Google Scholar]
- Solecki, W.; Seto, K.C.; Balk, D.; Bigio, A.; Boone, C.G.; Creutzig, F.; Fragkias, M.; Lwasa, S.; Marcotullio, P.; Romero-Lankao, P.; et al. A conceptual framework for an urban areas typology to integrate climate change mitigation and adaptation. Urban Clim. 2015, 14, 116–137. [Google Scholar] [CrossRef]
- Demuzere, M.; Bechtel, B.; Middel, A.; Mills, G. Mapping Europe into local climate zones. PLoS ONE 2019, 14, e0214474. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; O’Neill, B.C. Mapping global urban land for the 21st century with data-driven simulations and Shared Socioeconomic Pathways. Nat. Commun. 2020, 11, 2302. [Google Scholar] [CrossRef] [PubMed]
- Buettner, T. Urban Estimates and Projections at the United Nations: The Strengths, Weaknesses, and Underpinnings of the World Urbanization Prospects. Spat. Demogr. 2015, 3, 91–108. [Google Scholar] [CrossRef]
- Uchiyama, Y.; Mori, K. Methods for specifying spatial boundaries of cities in the world: The impacts of delineation methods on city sustainability indices. Sci. Total Environ. 2017, 592, 345–356. [Google Scholar] [CrossRef]
- Ehrlich, D.; Freire, S.; Melchiorri, M.; Kemper, T. Open and Consistent Geospatial Data on Population Density, Built-Up and Settlements to Analyse Human Presence, Societal Impact and Sustainability: A Review of GHSL Applications. Sustainability 2021, 13, 7851. [Google Scholar] [CrossRef]
- Henderson, J.V.; Liu, V.; Peng, C.; Storeyguard, A. Demographic and Health Outcomes by Degree of Urbanisation: Perspectives from a New Classification of Urban Areas; Paper Prepared for European Commission, Directorate-General for Regional and Urban Policy; London School of Economics and Public Policy: London, UK, 2019. [Google Scholar]
- Balk, D.; Montgomery, M.R.; Engin, H.; Lin, N.; Major, E.; Jones, B. Urbanization in India: Population and Urban Classification Grids for 2011. Data 2019, 4, 35. [Google Scholar] [CrossRef]
- Leyk, S.; Uhl, J.H.; Connor, D.S.; Braswell, A.E.; Mietkiewicz, N.; Balch, J.K.; Gutmann, M. Two centuries of settlement and urban development in the United States. Sci. Adv. 2020, 6, aba2937. [Google Scholar] [CrossRef]
- Balk, D.; Leyk, S.; Jones, B.; Montgomery, M.R.; Clark, A. Understanding Urbanization: A Study of Census and Satellite-derived Urban Classes in the United States, 1990–2010. PLoS ONE 2018, 13, e0208487. [Google Scholar] [CrossRef]
- Leyk, S.; Balk, D.; Jones, B.; Montgomery, M.R.; Engin, H. The heterogeneity and change in the urban structure of metropolitan areas in the United States, 1990–2010. Sci. Data 2019, 6, 321. [Google Scholar] [CrossRef]
- Dijkstra, L.; Poelman, H. A Harmonised Definition of Cities and Rural Areas: The New Degree of Urbanisation; Regional Working Paper, Directorate-General for Regional and Urban Policy; European Commission: Brussels, Belgium, 2014. [Google Scholar]
- Freire, S.; Kemper, T.; Pesaresi, M.; Florczyk, A.J.; Syrris, V. Combining GHSL and GPW to Improve Global Population Mapping; Conference Paper; EC JRC Global Security and Crisis Management Unit, Joint Research Commission: Ispra, Italy, 2015. [Google Scholar]
- Maffenini, L.; Schiavina, M.; Melchiorri, M.; Pesaresi, M.; Kemper, T. GHS-DUG User Guide; Technical Report; Joint Research Commission, Publications Office of the European Union: Luxembourg, 2020. [Google Scholar] [CrossRef]
- Dijkstra, L.; Florczyk, A.J.; Freire, S.; Kemper, T.; Melchiorri, M.; Pesaresi, M.; Schiavina, M. Applying the Degree of Urbanisation to the globe: A new harmonised definition reveals a different picture of global urbanisation. J. Urban Econ. 2020, 125, 103312. [Google Scholar] [CrossRef]
- United Nations Statistical Commission. Report on the Fifty-First Session (3–6 March 2020); Supplement No. 4, E/2020/24-E/CN.3/2020/37; Economic and Social Council Official Records; United Nations Statistical Commission: New York, NY, USA, 2020. [Google Scholar]
- Statham, T.; Fox, S.; Wolf, L.J. Identifying urban areas: A new approach and comparison of national urban metrics with gridded population data. Comput. Environ. Urban Syst. 2021. [Google Scholar] [CrossRef]
- OECD; European Commission. Cities in the World; OECD and European Commission: Brussels, Belgium, 2020; p. 160. [Google Scholar] [CrossRef]
- Coalition for Urban Transitions. Climate Emergency/ Urban Opportunity; Coalition for Urban Transitions c/o World Resources Institute: Washington, DC, USA, 2019. [Google Scholar]
- Corbane, C.; Pesaresi, M.; Kemper, T.; Politis, P.; Florczyk, A.J.; Syrris, V.; Melchiorri, M.; Sabo, F.; Soille, P. Automated Global Delineation of Human Settlements from 40 Years of Landsat Satellite Data Archives. Big Earth Data 2019, 3, 140–169. [Google Scholar] [CrossRef]
- Ratcliffe, M. A Century of Delineating a Changing Landscape: The Census Bureau’s Urban and Rural Classification, 1910 to 2010. In Proceedings of the Annual Meeting of the Social Science History Association, Baltimore, MD, USA, 14 November 2015. [Google Scholar] [CrossRef]
- Redding, S.J. Suburbanization in the United States 1970–2010; Working Paper 28841; National Bureau of Economic Research (NBER): Cambridge, MA, USA, 2021. [Google Scholar] [CrossRef]
- Allard, S.W.; Paisner, S.C. The Rise of Suburban Poverty. In Oxford Handbooks Online; Oxford University Press: Oxford, UK, 2016. [Google Scholar] [CrossRef]
- Kim, Y.; Zangerling, B. (Eds.) Mexico Urbanization Review: Managing Spatial Growth for Productive and Livable Cities in Mexico; Directions in Development; World Bank: Washington, DC, USA, 2016. [Google Scholar] [CrossRef]
- Khan, S. The Other Jawaharlal Nehru National Urban Renewal Mission: What Does It Mean for Small Town India? In Subaltern Urbanisation In India: An Introduction to the Dynamics of Ordinary Towns; Denis, E., Zérah, M.H., Eds.; Springer: New Delhi, India, 2017; Chapter 13; pp. 337–370. [Google Scholar] [CrossRef]
- Mathur, O.P.; Naqvi, A.H.; Laroiya, A.; Sayukta, V.S.; Verma, H. State of the Cities: India; Institute of Social Sciences: New Delhi, India, 2021. [Google Scholar]
- Dasgupta, S.; Roy, S.N.; Bhol, A.; Raj, D. Towards a New Research and Policy Paradigm: An Analysis of the Sanitation Situation in Large Dense Villages; CPR Research Report; Centre for Policy Research: New Delhi, India, 2017. [Google Scholar] [CrossRef]
- Bhol, A.; Dasguta, S.; Mukherjee, A.; Jain, A. Sanitation in Large and Dense Villages of India: The Last Mile and Beyond; Technical Report, CPR White Paper; Centre for Policy Research: New Delhi, India, 2019. [Google Scholar]
- Denis, E.; Zérah, M.H. (Eds.) Subaltern Urbanisation in India: An Introduction to the Dynamics of Ordinary Towns; Exploring Urban Change in South Asia; Springer: New Delhi, India, 2017. [Google Scholar]
- Onda, K.; Sinha, P.; Gaughan, A.E.; Stevens, F.R.; Kaza, N. Missing millions: Undercounting urbanization in India. Popul. Environ. 2019, 41, 126–150. [Google Scholar] [CrossRef]
- Pesaresi, M.; Huadong, G.; Blaes, X.; Ehrlich, D.; Ferri, S.; Gueguen, L.; Halkia, M.; Kauffmann, M.; Kemper, T.; Lu, L.; et al. A Global Human Settlement Layer from Optical HR/VHR RS Data: Concept and First Results. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2102–2131. [Google Scholar] [CrossRef]
- Pesaresi, M.; Syrris, V.; Julea, A. A New Method for Earth Observation Data Analytics based on Symbolic Machine Learning. Remote Sens. 2016, 8, 399. [Google Scholar] [CrossRef]
- Corbane, C.; Florczyk, A.; Pesaresi, M.; Politis, P.; Syrris, V. GHS-BUILT R2018A—GHS Built-Up Grid, Derived from Landsat, Multitemporal (1975–1990–2000–2014); European Commission, Joint Research Centre (JRC): Ispra, Italy, 2018. [Google Scholar] [CrossRef]
- Leyk, S.; Uhl, J.H.; Balk, D.; Jones, B. Assessing the accuracy of multi-temporal built-up land layers across rural-urban trajectories in the United States. Remote Sens. Environ. 2018, 204, 898–917. [Google Scholar] [CrossRef]
- Liu, C.; Huang, X.; Zhu, Z.; Chen, H.; Tang, X.; Gong, J. Automatic extraction of built-up area from ZY3 multi-view satellite imagery: Analysis of 45 global cities. Remote Sens. Environ. 2019, 226, 51–73. [Google Scholar] [CrossRef]
- Milesi, C.; Churkina, G. Measuring and Monitoring Urban Impacts on Climate Change from Space. Remote Sens. 2020, 12, 3494. [Google Scholar] [CrossRef]
- Uhl, J.H.; Connor, D.S.; Leyk, S.; Braswell, A.E. A century of decoupling size and structure of urban spaces in the United States. Communications Earth & Environment 2021, 2, 20. [Google Scholar] [CrossRef]
- CIESIN. Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11; Center for International Earth Science Information Network (CIESIN), Columbia University: Palisades, NY, USA, 2018. [Google Scholar]
- Archila Bustos, M.F.; Hall, O.; Niedomysl, T.; Ernstson, U. A pixel level evaluation of five multitemporal global gridded population datasets: A case study in Sweden, 1990–2015. Popul. Environ. 2020, 42, 255–277. [Google Scholar] [CrossRef]
- Reed, F.J.; Gaughan, A.E.; Stevens, F.R.; Yetman, G.; Sorichetta, A.; Tatem, A.J. Gridded Population Maps Informed by Different Built Settlement Products. Data 2018, 3, 33. [Google Scholar] [CrossRef] [PubMed]
- Stevens, F.R.; Gaughan, A.E.; Nieves, J.J.; King, A.; Sorichetta, A.; Linard, C.; Tatem, A.J. Comparisons of two global built area land cover datasets in methods to disaggregate human population in eleven countries from the global South. Int. J. Digit. Earth 2020, 13, 78–100. [Google Scholar] [CrossRef]
- Leyk, S.; Gaughan, A.E.; Adamo, S.B.; de Sherbinin, A.; Balk, D.; Freire, S.; Rose, A.; Stevens, F.R.; Blankespoor, B.; Frye, C.; et al. The spatial allocation of population: A review of large-scale gridded population data products and their fitness for use. Earth Syst. Sci. Data 2019, 11, 1385–1409. [Google Scholar] [CrossRef]
- Calka, B.; Bielecka, E. GHS-POP Accuracy Assessment: Poland and Portugal Case Study. Remote Sens. 2020, 12, 1105. [Google Scholar] [CrossRef]
- Florczyk, A.; Corbane, C.; Ehrlich, D.; Freire, S.; Kemper, T.; Maffenini, L.; Melchiorri, M.; Pesaresi, M.; Politis, P.; Schiavina, M.; et al. GHSL Data Package 2019; Technical Report, EUR 29788EN; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar] [CrossRef]
- Markoff, J.; Shapiro, G. The Linkage of Data Describing Overlapping Geographical Units. Hist. Methods Newsl. 1973, 7, 34–46. [Google Scholar] [CrossRef]
- Goodchild, M.F.; Lam, N.S.N. Areal Interpolation: A Variant of the Traditional Spatial Problem. Geo-Processing 1980, 1, 297–312. [Google Scholar]
- Liu, Z.; He, C.; Zhou, Y.; Wu, J. How much of the world’s land has been urbanized, really? A hierarchical framework for avoiding confusion. Landsc. Ecol. 2014, 29, 763–771. [Google Scholar] [CrossRef]
- Mudau, N.; Mwaniki, D.; Tsoeleng, L.; Mashalane, M.; Beguy, D.; Ndugwa, R. Assessment of SDG Indicator 11.3.1 and Urban Growth Trends of Major and Small Cities in South Africa. Sustainability 2020, 12, 7063. [Google Scholar] [CrossRef]
- Schiavina, M.; Melchiorri, M.; Corbane, C.; Florczyk, A.J.; Freire, S.; Pesaresi, M.; Kemper, T. Multi-Scale Estimation of Land Use Efficiency (SDG 11.3.1) across 25 Years Using Global Open and Free Data. Sustainability 2019, 11, 5674. [Google Scholar] [CrossRef]
- Mennis, J. Dasymetric Mapping for Estimating Population in Small Areas. Geogr. Compass 2009, 3, 727–745. [Google Scholar] [CrossRef]
- Zandbergen, P.A.; Ignizio, D.A. Comparison of Dasymetric Mapping Techniques for Small-Area Population Estimates. Cartogr. Geogr. Inf. Sci. 2010, 37, 199–214. [Google Scholar] [CrossRef]
- Min, B. Power and the Vote: Elections and Electricity in the Developing World; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar] [CrossRef]
- Wang, P.; Huang, C.; Brown de Colstoun, E.C. Mapping 2000–2010 Impervious Surface Change in India Using Global Land Survey Landsat Data. Remote Sens. 2017, 9, 366. [Google Scholar] [CrossRef]
- Koren, O.; Sarbahi, A.K. State Capacity, Insurgency, and Civil War: A Disaggregated Analysis. Int. Stud. Q. 2018, 62, 274–288. [Google Scholar] [CrossRef]
- Hu, Y.; Yao, J. Illuminating Economic Growth; Technical Report, International Monetary Fund, Working Paper No. 19/77; IMF: Washington, DC, USA, 2019. [Google Scholar]
- Small, C. International Earth Science Information Network (CIESIN). VIIRS Plus DMSP Change in Lights; Columbia University, Center for International Earth Sciences Information Network (CIESIN): Palisades, NY, USA, 2020. [Google Scholar]
- Ch, R.; Martin, D.A.; Vargas, J.F. Measuring the size and growth of cities using nighttime light. J. Urban Econ. 2020, 125, 103254. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Zhao, M.; Zhao, X. A harmonized global nighttime light dataset 1992–2018. Sci. Data 2020, 7, 168. [Google Scholar] [CrossRef]
- Mahtta, R.; Mahendra, A.; Seto, K.C. Building up or spreading out? Typologies of urban growth across 478 cities of 1 million+. Environ. Res. Lett. 2019, 14, 124077. [Google Scholar] [CrossRef]
- Balk, D.L.; Nghiem, S.V.; Jones, B.R.; Liu, Z.; Dunn, G. Up and out: A multifaceted approach to characterizing urbanization in Greater Saigon, 2000–2009. Landsc. Urban Plan. 2019, 187, 199–209. [Google Scholar] [CrossRef]
- Rowlands, D.W.; Loh, T.H. Reinvesting in Urban Cores Can Revitalize Entire Regions; Metropolitan Policy Program Report; The Brookings Institution: Washington, DC, USA, 2021. [Google Scholar]
- Jones, B.; Balk, D.; Leyk, S. Urban Change in the United States, 1990–2010: A Spatial Assessment of Administrative Reclassification. Sustainability 2020, 12, 1649. [Google Scholar] [CrossRef]
- Arribas-Bel, D.; Garcia-López, M.; Viladecans-Marsal, E. Building(s and) cities: Delineating urban areas with a machine learning algorithm. J. Urban Econ. 2019, 125, 103217. [Google Scholar] [CrossRef]
- de Bellefon, M.P.; Combes, P.P.; Duranton, G.; Gobillon, L.; Gorin, C. Delineating urban areas using building density. J. Urban Econ. 2019, 125, 103226. [Google Scholar] [CrossRef]
- Melchiorri, M.; Florczyk, A.J.; Freire, S.; Schiavina, M.; Pesaresi, M.; Kemper, T. Unveiling 25 Years of Planetary Urbanization with Remote Sensing: Perspectives from the Global Human Settlement Layer. Remote Sens. 2018, 10, 768. [Google Scholar] [CrossRef]
- Yang, F.; Wang, Z.; Yang, X.; Liu, Y.; Liu, B.; Wang, J.; Kang, J. Using Multi-Sensor Satellite Images and Auxiliary Data in Updating and Assessing the Accuracies of Urban Land Products in Different Landscape Patterns. Remote Sens. 2019, 11, 2664. [Google Scholar] [CrossRef]
- Brenner, N.; Schmid, C. The ‘Urban Age’ in Question. Int. J. Urban Reg. Res. 2014, 38, 731–755. [Google Scholar] [CrossRef]
- United Nations. A New Global Partnership: Eradicate Poverty and Transform Economics through Sustainable Development. The Report of the High-Level Panel of Eminent Persons on the Post-2015 Development Agenda; United Nations: New York, NY, USA, 2013. [Google Scholar]
- Balk, D.; Montgomery, M.R.; McGranahan, G.; Todd, M. Understanding the Impacts of Climate Change: Linking Satellite and Other Spatial Data with Population Data. In Population Dynamics and Climate Change; Guzmán, J.M., Martine, G., McGranahan, G., Shensul, D., Tacoli, C., Eds.; United Nations Fund for Population Activities (UNFPA) and International Institute for Environment and Development (IIED): New York, NY, USA, 2009; Chapter 13; pp. 206–217. [Google Scholar]
- Tatem, A.J.; Campiz, N.; Gething, P.W.; Snow, R.W.; Linard, C. The effects of spatial population dataset choice on estimates of population at risk of disease. Popul. Health Metrics 2011, 9, 4. [Google Scholar] [CrossRef] [PubMed]
Minimum Population of the Cluster | No Minimum | ||||
---|---|---|---|---|---|
>50,000 | 5000–50,000 | 500–5000 | |||
Population density () | Dense urban | Rural cluster ⑤ ↕ | |||
>1500 | Urban centre ① | cluster ② | |||
Semi-dense | Suburban or | ||||
300–1500 | urban cluster ③ | peri-urban ④ | |||
Low density | |||||
50–300 | rural ⑥ | ||||
Very low | |||||
<50 | density rural ⑦ |
GHSL Built-Up Percentage of Grid Cell | ||
---|---|---|
Official | ≥50% | <50% |
Census urban land | urban agreement | urban, not built-up |
Census rural land | rural, but built-up | rural agreement |
India | Mexico | United States | ||||
---|---|---|---|---|---|---|
Status | Area | Percent | Area | Percent | Area | Percent |
Official Designation | ||||||
Urban | 109,578 | 3.39 | 22,942 | 1.17 | 274,962 | 3.58 |
Rural | 3,124,420 | 96.61 | 1,942,272 | 98.83 | 7,398,680 | 96.42 |
GHSL threshold versus Official Designation | ||||||
Urban agreement | 12,580 | 0.39 | 13,237 | 0.67 | 113,853 | 1.46 |
Urban, not built-up | 97,203 | 3.01 | 9705 | 0.49 | 165,413 | 2.12 |
Rural, but built-up | 5014 | 0.16 | 4872 | 0.25 | 13,618 | 0.17 |
Rural agreement | 3,113,781 | 96.44 | 1,937,399 | 98.58 | 7,517,111 | 96.25 |
Degree of Urbanization Category | ||||||
Urban centre | 75,094 | 2.31 | 12,223 | 0.63 | 91,009 | 1.18 |
Dense urban | 51,522 | 1.58 | 4739 | 0.24 | 19,496 | 0.25 |
Semi-dense urban | 4856 | 0.15 | 2538 | 0.13 | 16,373 | 0.21 |
Suburban or peri-urban | 41,477 | 1.27 | 9010 | 0.46 | 64,035 | 0.83 |
Rural | 234,587 | 7.21 | 19,264 | 0.99 | 31,426 | 0.41 |
Low-density rural | 304,857 | 9.37 | 52,865 | 2.72 | 404,267 | 5.23 |
Very low-density rural | 2,541,742 | 78.11 | 1,844,728 | 94.83 | 7,103,698 | 91.89 |
India | Mexico | United States | ||||
---|---|---|---|---|---|---|
Status | Population | Percent | Population | Percent | Population | Percent |
Official Designation | ||||||
Urban | 377,108 | 31.28 | 85,568 | 77.82 | 247,516 | 80.77 |
Rural | 833,746 | 68.72 | 20,685 | 22.18 | 59,141 | 19.23 |
GHSL threshold versus Official Designation | ||||||
Urban agreement | 129,362 | 10.68 | 60,550 | 56.99 | 177,569 | 57.90 |
Urban, not built-up | 247,747 | 20.46 | 25,018 | 23.55 | 69,948 | 22.81 |
Rural, but built-up | 5521 | 0.46 | 96 | 0.09 | 2287 | 0.75 |
Rural agreement | 828,225 | 68.40 | 20,589 | 19.38 | 56,854 | 18.54 |
Degree of Urbanization Category | ||||||
Urban centre | 296,221 | 24.52 | 60,861 | 57.45 | 144,458 | 47.37 |
Dense urban | 45,516 | 3.77 | 10,235 | 9.66 | 21,038 | 6.90 |
Semi-dense urban | 1988 | 0.16 | 1679 | 1.59 | 9545 | 3.13 |
Suburban or peri-urban | 38,501 | 3.19 | 5818 | 5.49 | 38,801 | 12.72 |
Rural | 128,965 | 10.68 | 3785 | 3.57 | 12,905 | 4.23 |
Low-density rural | 131,087 | 10.85 | 4529 | 4.28 | 40,953 | 13.43 |
Very low-density rural | 565,639 | 46.83 | 19,026 | 17.96 | 37,252 | 12.22 |
Status | India | Mexico | United States |
---|---|---|---|
Official Designation | |||
Urban | 3388 | 3730 | 886 |
Rural | 267 | 11 | 8 |
GHSL threshold versus Official Designation | |||
Urban agreement | 10,283 | 5336 | 1560 |
Urban, not built-up | 2549 | 1538 | 423 |
Rural, but built-up | 1101 | 57 | 168 |
Rural agreement | 266 | 11 | 8 |
Degree of Urbanization Category | |||
Urban centre | 3945 | 4979 | 1587 |
Dense urban | 883 | 2160 | 1079 |
Semi-dense urban | 409 | 662 | 583 |
Suburban or peri-urban | 928 | 646 | 606 |
Rural | 549 | 196 | 411 |
Low-density rural | 430 | 86 | 101 |
Very low-density rural | 223 | 10 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balk, D.; Leyk, S.; Montgomery, M.R.; Engin, H. Global Harmonization of Urbanization Measures: Proceed with Care. Remote Sens. 2021, 13, 4973. https://doi.org/10.3390/rs13244973
Balk D, Leyk S, Montgomery MR, Engin H. Global Harmonization of Urbanization Measures: Proceed with Care. Remote Sensing. 2021; 13(24):4973. https://doi.org/10.3390/rs13244973
Chicago/Turabian StyleBalk, Deborah, Stefan Leyk, Mark R. Montgomery, and Hasim Engin. 2021. "Global Harmonization of Urbanization Measures: Proceed with Care" Remote Sensing 13, no. 24: 4973. https://doi.org/10.3390/rs13244973
APA StyleBalk, D., Leyk, S., Montgomery, M. R., & Engin, H. (2021). Global Harmonization of Urbanization Measures: Proceed with Care. Remote Sensing, 13(24), 4973. https://doi.org/10.3390/rs13244973