Sub-Bottom Sediment Classification Using Reliable Instantaneous Frequency Calculation and Relaxation Time Estimation
Abstract
:1. Introduction
2. Methods
2.1. Relaxation Time Model
2.2. MVMD-WVD
2.2.1. Variational Mode Decomposition
2.2.2. Modified Variational Mode Decomposition
2.3. Calculating IF Using WVD
- (1).
- MVMD is used to decompose the original signal h(t). Mode ui(t) is obtained (i = 1, 2, 3, ..., K).
- (2).
- The analytical signal of ui(t) is obtained as z(t) using Equation (21). The WVD of z(t) is Wz(t, Ω) [18].
- (3).
- The final IF series can be obtained as
2.4. The Robust Estimation of Relaxation Time
- (1).
- Let the initial values of weights be 1, i.e., pi = p2 = … = pm = 1,
- (2).
- The first estimation value of parameter Xτ and the residual is
- (3).
- P(1) can be obtained by constructing the equivalent weight using pi = piwi.vi is the residual and is the i-th element in Vτ, σ0 is the root-mean-square error, and k0 and k1 are constants. Usually, k0 is set between 1 and 2.5, and k1 is set between 3 and 8. Here, k0 is set to 1 and k1 is set to 3.
- (4).
- The following iterative calculation is similar to the above until the last two solutions meet the limit of the difference requirement.
2.5. Sediment Classification
3. Experiment and Results
3.1. Case 1
3.2. Case 2
3.3. Case 3
4. Discussions
4.1. The Effectiveness of MVMD
4.2. Robust Line Fitting
4.3. Comparison with Traditional Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lurton, X. An Introduction to Underwater Acoustic: Principles and Applications, 2nd ed.; Springer: Chichester, UK, 2010; pp. 372–379. [Google Scholar]
- Li, S.; Zhao, J.; Zhang, H.; Bi, Z.; Qu, S. A Novel Horizon Picking Method on Sub-Bottom Profiler Sonar Images. Remote Sens. 2020, 12, 3322. [Google Scholar] [CrossRef]
- Zhao, J.; Li, S.; Zhang, H.; Feng, J. Comprehensive Sediment Horizon Picking From Subbottom Profile Data. IEEE J. Ocean. Eng. 2018, 44, 524–534. [Google Scholar] [CrossRef]
- Idczak, J.; Brodecka-Goluch, A.; Łukawska-Matuszewska, K.; Graca, B.; Gorska, N.; Klusek, Z.; Pezacki, P.D.; Bolałek, J. A geophysical, geochemical and microbiological study of a newly discovered pockmark with active gas seepage and submarine groundwater discharge (MET1-BH, central Gulf of Gdańsk, southern Baltic Sea). Sci. Total Environ. 2020, 742, 140306. [Google Scholar] [CrossRef]
- Fakiris, E.; Blondel, P.; Papatheodorou, G.; Christodoulou, D.; Dimas, X.; Georgiou, N.; Kordella, S.; Dimitriadis, C.; Rzhanov, Y.; Geraga, M.; et al. Multi-Frequency, Multi-Sonar Mapping of Shallow Habitats—Efficacy and Management Implications in the National Marine Park of Zakynthos, Greece. Remote Sens. 2019, 11, 461. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, J.J.L.; Von Deimling, J.S.; Schröder, J.F.; Schmidt, M.; Held, P.; Crutchley, G.J.; Scholten, J.; Gorman, A.R. Complex Eyed Pockmarks and Submarine Groundwater Discharge Revealed by Acoustic Data and Sediment Cores in Eckernförde Bay, SW Baltic Sea. Geochem. Geophys. Geosyst. 2020, 21, e2019GC008825. [Google Scholar] [CrossRef]
- Garcia-Gil, S.; Vilas, F.; Garcia-Garcia, A. Shallow gas features in incised-valley fills (Ría de Vigo, NW Spain): A case study. Cont. Shelf Res. 2002, 22, 2303–2315. [Google Scholar] [CrossRef]
- Kato, Y.; Fujinaga, K.; Nakamura, K.; Takaya, Y.; Kitamura, K.; Ohta, J.; Toda, R.; Nakashima, T.; Iwamori, H. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements. Nat. Geosci. 2011, 4, 535–539. [Google Scholar] [CrossRef]
- Stevenson, I.; McCann, C.; Runciman, P. An attenuation-based sediment classification technique using Chirp sub-bottom profiler data and laboratory acoustic analysis. Mar. Geophys. Res. 2002, 23, 277–298. [Google Scholar] [CrossRef]
- Vardy, M.; Vanneste, M.; Henstock, T.; Clare, M.A.; Forsberg, C.F.; Provenzano, G. State-of-the-art remote characterization of shallow marine sediments: The road to a fully integrated solution. Near Surf. Geophys. 2017, 15, 387–402. [Google Scholar] [CrossRef]
- Mohamed, S. Seabed Classification Using Sub-Bottom Profiler. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2011. [Google Scholar]
- Plets, R.M.K. The Acoustic Imaging, Reconstruction and Characterization of Buried Archaeological Material. Ph.D. Thesis, University of Southampton, Southampton, UK, 2007. [Google Scholar]
- Plets, R.; Dix, J.; Adams, J.; Best, A. 3D reconstruction of a shallow archaeological site from high-resolution acoustic imagery: The Grace Dieu. Appl. Acoust. 2008, 69, 399–411. [Google Scholar] [CrossRef] [Green Version]
- Jannsen, D.; Voss, J.; Theilen, F. Comparison of methods to determine q in shallow marine sediments from vertical reflection seismograms. Geophys. Prospect. 1985, 33, 479–497. [Google Scholar] [CrossRef]
- Pinson, L.J.W.; Henstock, T.; Dix, J.K.; Bull, J. Estimating quality factor and mean grain size of sediments from high-resolution marine seismic data. Geophysics 2008, 73, G19–G28. [Google Scholar] [CrossRef] [Green Version]
- Schock, S.G. The Chirp—High Resolution, Quantitative Subbottom Profiler. Ph.D. Thesis, University of Rhode IsIand, Kingston, RI, USA, 1989. [Google Scholar]
- Panda, S. Remote Acoustic Evaluation of Seafloor Sediment Properties. Ph.D. Thesis, University of Rhode IsIand, Kingston, RI, USA, 1992. [Google Scholar]
- Robb, G.B.N.; White, P.R.; Bull, J.M.; Best, A.I.; Leighton, T.G.; Dix, J.K. The Estimation of Geo-Acoustic Properties from Broadband Acoustic Data, Focusing on Instantaneous Frequency Techniques. Inst. Sound Vib. Res. Southampt. UK Tech. Rep. 2002, 298, 40. [Google Scholar]
- Cohen, L. Time frequency distributions—A review. Proc. IEEE 1989, 77, 941–981. [Google Scholar] [CrossRef] [Green Version]
- Chen, V.C.; Qian, S. Joint time-frequency transform for radar range doppler imaging. IEEE Trans. Aerosp. Electron. Syst. 1998, 34, 486–499. [Google Scholar] [CrossRef]
- Andria, G.; Savino, M. Interpolated smoothed pseudo Wigner-Ville distribution for accurate spectrum analysis. IEEE Trans. Instrum. Meas. 1996, 45, 818–823. [Google Scholar] [CrossRef]
- Yegireddi, S.; Thomas, N. Segmentation and classification of shallow subbottom acoustic data, using image processing and neural networks. Mar. Geophys. Res. 2014, 35, 149–156. [Google Scholar] [CrossRef]
- Lee, G.H.; Kim, H.J.; Kim, D.C.; Yi, B.Y.; Nam, S.M.; Khim, B.K.; Lim, M.S. The acoustic diversity of the seabed based on the similarity index computed from Chirp seismic data. ICES J. Mar. Sci. 2008, 66, 227–236. [Google Scholar] [CrossRef] [Green Version]
- Dragomiretskiy, K.; Zosso, D. Variational Mode Decomposition. IEEE Trans. Signal Process. 2013, 62, 531–544. [Google Scholar] [CrossRef]
- Xue, Y.-J.; Cao, J.-X.; Wang, X.-J.; Du, H.-K. Estimation of seismic quality factor in the time-frequency domain using variational mode decomposition. Geophysics 2020, 85, V329–V343. [Google Scholar] [CrossRef]
- Taner, M.T.; Koehler, F.; Sheriff, R.E. Complex seismic trace analysis. Geophysics 1979, 44, 1041–1063. [Google Scholar] [CrossRef]
- Barnes, A.E. Theory of 2-D complex seismic trace analysis. Geophysics 1996, 61, 264–272. [Google Scholar] [CrossRef]
- Qiu, W.N. The Theory and Method of Surveying Data Processing, 2nd ed.; WuHan University Press: Wuhan, China, 2008; pp. 126–140. [Google Scholar]
- Li, S.; Zhao, J.; Zhang, H.; Zhang, Y. Automatic Detection of Pipelines from Sub-bottom Profiler Sonar Images. IEEE J. Ocean. Eng. 2021, in press. [Google Scholar] [CrossRef]
- Zhao, D.B. Discussion on Common Classification and Nomenclature Methods of Sediment Grain Size. Mar. Geol. Lett. 2009, 25, 41–44. [Google Scholar]
- Folk, R.L. Practical Petrographic Classification of Limestones. AAPG Bull. 1959, 43, 1–38. [Google Scholar] [CrossRef]
Symbols | Descriptions |
---|---|
pres, V,ρ, Rconst | The excess pressure, the adiabatic acoustic speed, the excess density, a constant characterizing the relaxation process |
ξ | The displacement at a surface |
kwave, α, Vp, ω | Wave number, attenuation coefficient, phase velocity, frequency |
τrelax, ϕsize | The relax time, the average particle size |
fshift | The slope of line fitting of an IF series in a given interval |
uk, Ak, ϕk | The k-th mode in VMD, the amplitude of the mode, the corresponding phase |
h, λ, K | Signal to be decomposed, Lagrangian multiplier, the number of modes |
ωk,σk | The mean frequency (the center frequency) and its corresponding standard deviation of k-th mode |
Gi, Gk | Two normal distribution functions |
(t) | A signal, the corresponding analytical signal, the result after Hilbert transform of x(t) |
fIF | The instantaneous frequency series |
Wz(t, Ω) | The WVD of an analytical signal z(t) at time t and frequency Ω in WVD |
The observation vector, the coefficient matrix, the parameter vector, the error term of observation function | |
pnum, a, b | Ping number, the slope, the intercept of a fitted line based on relaxation time map |
τrelax (pnum) | The relaxation time τrelax in pnum-th |
wi, vi, σ0 | The weight function and the residual of i-th observation value in robust estimation, the root-mean-square error |
P, k0, k1 | Equivalent weight matrix, two constants of weight function in robust estimation |
Sediment Type | Relaxation Time (μs) |
---|---|
Medium sand | 0.15 |
Fine sand | 0.17 |
Coarse silt | 0.13 |
Medium silt | 0.06 |
Fine silt | 0.03 |
Clay | 0.02 |
Sediment Type | Relaxation Time Range (μs) |
---|---|
Sand | τrelax ≥ 0.095 |
Silt | 0.045 ≤ τrelax < 0.095 |
Mud | 0.020 < τrelax < 0.045 |
Clay | τrelax ≤ 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Zhao, J.; Zhang, H.; Qu, S. Sub-Bottom Sediment Classification Using Reliable Instantaneous Frequency Calculation and Relaxation Time Estimation. Remote Sens. 2021, 13, 4809. https://doi.org/10.3390/rs13234809
Li S, Zhao J, Zhang H, Qu S. Sub-Bottom Sediment Classification Using Reliable Instantaneous Frequency Calculation and Relaxation Time Estimation. Remote Sensing. 2021; 13(23):4809. https://doi.org/10.3390/rs13234809
Chicago/Turabian StyleLi, Shaobo, Jianhu Zhao, Hongmei Zhang, and Siheng Qu. 2021. "Sub-Bottom Sediment Classification Using Reliable Instantaneous Frequency Calculation and Relaxation Time Estimation" Remote Sensing 13, no. 23: 4809. https://doi.org/10.3390/rs13234809
APA StyleLi, S., Zhao, J., Zhang, H., & Qu, S. (2021). Sub-Bottom Sediment Classification Using Reliable Instantaneous Frequency Calculation and Relaxation Time Estimation. Remote Sensing, 13(23), 4809. https://doi.org/10.3390/rs13234809