A Stand-Off Laser-Induced Breakdown Spectroscopy (LIBS) System Applicable for Martian Rocks Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Development of a Stand-Off LIBS System
2.2. Sample Preparation and LIBS Analysis
2.3. Data Processing
2.3.1. Pre-Processing
- (a)
- (b)
- Continuum removal. The background continuum emission, caused by Bremsstrahlung and ion-electron recombination processes, was removed from de-noised LIBS spectra. The continuum was determined empirically by the interpolated spline function of local minima or a convex hull [36].
2.3.2. Standardization
2.3.3. Building Multivariate Models
- (a)
- PLS models: The component numbers of PLS was initially set in the range of 1–50. Several PLS models were generated using a leave-one-out cross-validation (LOOCV) method, based on the Python machine learning package sklearn (NIPALS algorithm was automatically selected) [37,51,52]. In other words, the LIBS spectra of each sample were selected as a test set and the other spectra of 14 samples were used as a train set to build a PLS model. The mean (μ) and standard deviation (σ) of the predicted compositions for each sample were subsequently calculated, and a Successfully Predicted Sample (SPS) number can be confirmed in based on whether the actual composition of the sample falls in the predicted composition range of [μ − σ, μ + σ]. The optimized number of factors of PLS models can be determined by a low predicted RMSE value and high SPS number.
- (b)
- LASSO models: The values of alpha were originally set as 0.02–1.0. Models were built using the LOOCV method, based on the Python package sklearn. The optimized alpha value was determined according to a low RMSE value and high SPS number, similar to the method of selecting variables numbers in PLS models.
2.3.4. Building Geochemical Identification Models
- (a)
- Geochemical identification using element ratios predicted by PLS and LASSO models. The elemental mass ratios, including (Fe2O3 + MgO)/SiO2, Fe2O3/MgO, Al2O3/SiO2, and (Na2O + K2O)/Al2O3, were calculated based on PLS and LASSO results for geochemical identification. The corrcoef values were denoted as the correlation coefficient value of predicted and actual elemental ratios. A larger corrcoef value indicates a higher correlation and better performance to identify the geochemical characteristics of igneous rocks.
- (b)
- Geochemical identification using PCA algorithm. Several eigenvectors and PCA scores were extracted from normalized LIBS spectra based on the Python machine learning package sklearn, and the PCA score ratios were calculated for geochemical identification. The corrcoef values were calculated to indicate the correlation between PCA scores and actual elemental ratios. Higher corrcoef values indicate better performance in geochemical identification.
3. Results and Discussion
3.1. Quantitative Abundance Determinations
3.2. Geochemical Characteristics Based on Predicted Elemental Abundance
3.3. Geochemical Characteristics with PCA Scores of LIBS Spectra
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McSween, H.Y.; Taylor, G.J.; Wyatt, M.B. Elemental composition of the Martian crust. Science 2009, 324, 736–739. [Google Scholar] [CrossRef] [Green Version]
- Carr, M.H.; Head, J.W., III. Geologic history of Mars. Earth Planet. Sci. Lett. 2010, 294, 185–203. [Google Scholar] [CrossRef] [Green Version]
- Bandfield, J.L.; Hamilton, V.E.; Christensen, P. A global view of Martian surface compositions from MGS-TES. Science 2000, 287, 1626–1630. [Google Scholar] [CrossRef] [Green Version]
- Christensen, P.; McSween, H.; Bandfield, J.; Ruff, S.; Rogers, A.; Hamilton, V.; Gorelick, N.; Wyatt, M.; Jakosky, B.; Kieffer, H. Evidence for magmatic evolution and diversity on Mars from infrared observations. Nature 2005, 436, 504–509. [Google Scholar] [CrossRef]
- Bandfield, J.L.; Hamilton, V.E.; Christensen, P.R.; McSween, H.Y., Jr. Identification of quartzofeldspathic materials on Mars. J. Geophys. Res. Planets 2004, 109, 109. [Google Scholar] [CrossRef] [Green Version]
- Wray, J.J.; Hansen, S.T.; Dufek, J.; Swayze, G.A.; Murchie, S.L.; Seelos, F.P.; Skok, J.R.; Irwin, R.P.; Ghiorso, M.S. Prolonged magmatic activity on Mars inferred from the detection of felsic rocks. Nat. Geosci. 2013, 6, 1013–1017. [Google Scholar] [CrossRef]
- Carter, J.; Poulet, F. Ancient plutonic processes on Mars inferred from the detection of possible anorthositic terrains. Nat. Geosci. 2013, 6, 1008–1012. [Google Scholar] [CrossRef]
- Sautter, V.; Toplis, M.J.; Wiens, R.C.; Cousin, A.; Fabre, C.; Gasnault, O.; Maurice, S.; Forni, O.; Lasue, J.; Ollila, A.; et al. In situ evidence for continental crust on early Mars. Nat. Geosci. 2015, 8, 605–609. [Google Scholar] [CrossRef] [Green Version]
- Cousin, A.; Sautter, V.; Payre, V.; Forni, O.; Mangold, N.; Gasnault, O.; Le Deit, L.; Johnson, J.; Maurice, S.; Salvatore, M. Classification of igneous rocks analyzed by ChemCam at Gale crater, Mars. Icarus 2017, 288, 265–283. [Google Scholar] [CrossRef]
- Anderson, A.S.; Mukundan, H.; McInroy, R.E.; Clegg, S.M. Combined LIBS-Raman for remote detection and characterization of biological samples. In Proceedings of the Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XIII, San Francisco, CA, USA, 9–11 February 2015; p. 932811. [Google Scholar]
- Stolper, E.; Baker, M.; Newcombe, M.; Schmidt, M.; Treiman, A.; Cousin, A.; Dyar, M.; Fisk, M.; Gellert, R.; King, P. The petrochemistry of Jake_M: A Martian mugearite. Science 2013, 341, 1239463. [Google Scholar] [CrossRef] [PubMed]
- Sautter, V.; Fabre, C.; Forni, O.; Toplis, M.; Cousin, A.; Ollila, A.; Meslin, P.; Maurice, S.; Wiens, R.; Baratoux, D. Igneous mineralogy at Bradbury Rise: The first ChemCam campaign at Gale crater. J. Geophys. Res. Planets 2014, 119, 30–46. [Google Scholar] [CrossRef] [Green Version]
- Maurice, S.; Clegg, S.M.; Wiens, R.C.; Gasnault, O.; Rapin, W.; Forni, O.; Cousin, A.; Sautter, V.; Mangold, N.; Le Deit, L.; et al. ChemCam activities and discoveries during the nominal mission of the Mars Science Laboratory in Gale crater, Mars. J. Anal. At. Spectrom. 2016, 31, 863–889. [Google Scholar] [CrossRef] [Green Version]
- Wiens, R.C.; Wan, X.; Lasue, J.; Maurice, S. Laser-induced breakdown spectroscopy in planetary science. In Laser-Induced Breakdown Spectroscopy; Elsevier: Amsterdam, The Netherlands, 2020; pp. 441–471. [Google Scholar]
- Wiens, R.C.; Maurice, S.; Barraclough, B.; Saccoccio, M.; Barkley, W.C.; Bell, J.F.; Bender, S.; Bernardin, J.; Blaney, D.; Blank, J. The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover: Body unit and combined system tests. Space Sci. Rev. 2012, 170, 167–227. [Google Scholar] [CrossRef]
- Maurice, S.; Wiens, R.; Saccoccio, M.; Barraclough, B.; Gasnault, O.; Forni, O.; Mangold, N.; Baratoux, D.; Bender, S.; Berger, G. The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover: Science objectives and mast unit description. Space Sci. Rev. 2012, 170, 95–166. [Google Scholar] [CrossRef]
- Maurice, S.; Wiens, R.C.; Bernardi, P.; Caïs, P.; Robinson, S.; Nelson, T.; Gasnault, O.; Reess, J.-M.; Deleuze, M.; Rull, F. The SuperCam instrument suite on the Mars 2020 rover: Science objectives and Mast-Unit description. Space Sci. Rev. 2021, 217, 1–108. [Google Scholar] [CrossRef]
- Wiens, R.C.; Maurice, S.; Robinson, S.H.; Nelson, A.E.; Cais, P.; Bernardi, P.; Newell, R.T.; Clegg, S.; Sharma, S.K.; Storms, S. The SuperCam instrument suite on the NASA Mars 2020 rover: Body unit and combined system tests. Space Sci. Rev. 2021, 217, 1–87. [Google Scholar] [CrossRef] [PubMed]
- Kalam, S.A.; Rao, S.B.M.; Jayananda, M.; Rao, S.V. Standoff femtosecond filament-induced breakdown spectroscopy for classification of geological materials. J. Anal. At. Spectrom. 2020, 35, 3007–3020. [Google Scholar] [CrossRef]
- Xu, W.; Liu, X.; Yan, Z.; Li, L.; Zhang, Z.; Kuang, Y.; Jiang, H.; Yu, H.; Yang, F.; Liu, C. The MarSCoDe Instrument Suite on the Mars Rover of China’s Tianwen-1 Mission. Space Sci. Rev. 2021, 217, 1–58. [Google Scholar] [CrossRef]
- Jiang, X.; Yang, B.; Li, S. Overview of China’s 2020 Mars mission design and navigation. Astrodynamics 2018, 2, 1–11. [Google Scholar] [CrossRef]
- Li, C.; Zhang, R.; Yu, D.; Dong, G.; Liu, J.; Geng, Y.; Sun, Z.; Yan, W.; Ren, X.; Su, Y.; et al. China’s Mars Exploration Mission and Science Investigation. Space Sci. Rev. 2021, 217, 57. [Google Scholar] [CrossRef]
- Ren, X.; Cai, T.; Liu, D.; Liu, J.; Zhang, H.; Fu, Q.; Zhang, Z.; Xu, W. Preliminary Scientific Exploration Programs for Mars Surface Composition Detection Package of China’s First Mars Exploration. In Proceedings of the European Planetary Science Congress Abstracts, Berlin, Germany, 16–21 September 2018. [Google Scholar]
- Wan, W.; Wang, C.; Li, C.; Wei, Y. China’s first mission to Mars. Nat. Astron. 2020, 4, 721. [Google Scholar] [CrossRef]
- Wu, B.; Dong, J.; Wang, Y.; Li, Z.; Chen, Z.; Liu, W.C.; Zhu, J.; Chen, L.; Li, Y.; Rao, W. Characterization of the Candidate Landing Region for Tianwen-1–China’s First Mission to Mars. Earth Space Sci. Rev. 2021, 8, e2021EA001670. [Google Scholar] [CrossRef]
- Zou, Y.; Zhu, Y.; Bai, Y.; Wang, L.; Jia, Y.; Shen, W.; Fan, Y.; Liu, Y.; Wang, C.; Zhang, A. Scientific objectives and payloads of Tianwen-1, China’s first Mars exploration mission. Adv. Space Res. 2021, 67, 812–823. [Google Scholar] [CrossRef]
- Haaland, D.M.; Thomas, E.V. Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information. Anal. Chem. 1988, 60, 1193–1202. [Google Scholar] [CrossRef]
- Wold, S.; Albano, C.; Dunn, W.; Edlund, U.; Esbensen, K.; Geladi, P.; Hellberg, S.; Johansson, E.; Lindberg, W.; Sjöström, M. Multivariate data analysis in chemistry. In Chemometrics; Springer: Berlin/Heidelberg, Germany, 1984; pp. 17–95. [Google Scholar]
- Sirven, J.-B.; Bousquet, B.; Canioni, L.; Sarger, L. Laser-induced breakdown spectroscopy of composite samples: Comparison of advanced chemometrics methods. Anal. Chem. 2006, 78, 1462–1469. [Google Scholar] [CrossRef] [PubMed]
- Tucker, J.; Dyar, M.; Schaefer, M.; Clegg, S.; Wiens, R. Optimization of laser-induced breakdown spectroscopy for rapid geochemical analysis. Chem. Geol. 2010, 277, 137–148. [Google Scholar] [CrossRef]
- Dyar, M.D.; Tucker, J.M.; Humphries, S.; Clegg, S.M.; Wiens, R.C.; Lane, M.D. Strategies for Mars remote laser-induced breakdown spectroscopy analysis of sulfur in geological samples. Spectrochim. Acta Part B At. Spectrosc. 2011, 66, 39–56. [Google Scholar] [CrossRef]
- Dyar, M.; Carmosino, M.; Breves, E.; Ozanne, M.; Clegg, S.; Wiens, R. Comparison of partial least squares and lasso regression techniques as applied to laser-induced breakdown spectroscopy of geological samples. Spectrochim. Acta Part B At. Spectrosc. 2012, 70, 51–67. [Google Scholar] [CrossRef]
- Anderson, R.B.; Morris, R.V.; Clegg, S.M.; Bell, J.F., III; Wiens, R.C.; Humphries, S.D.; Mertzman, S.A.; Graff, T.G.; McInroy, R. The influence of multivariate analysis methods and target grain size on the accuracy of remote quantitative chemical analysis of rocks using laser induced breakdown spectroscopy. Icarus 2011, 215, 608–627. [Google Scholar] [CrossRef]
- Anderson, R.B.; Bell, J.F., III; Wiens, R.C.; Morris, R.V.; Clegg, S.M. Clustering and training set selection methods for improving the accuracy of quantitative laser induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2012, 70, 24–32. [Google Scholar] [CrossRef]
- Li, L.-N.; Liu, X.-F.; Xu, W.M.; Wang, J.-Y.; Shu, R. A laser-induced breakdown spectroscopy multi-component quantitative analytical method based on a deep convolutional neural network. Spectrochim. Acta Part B At. Spectrosc. 2020, 169, 105850. [Google Scholar] [CrossRef]
- Wiens, R.C.; Maurice, S.; Lasue, J.; Forni, O.; Anderson, R.B.; Clegg, S.; Bender, S.; Blaney, D.; Barraclough, B.L.; Cousin, A.; et al. Pre-flight calibration and initial data processing for the Chem Cam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover. Spectrochim. Acta Part B At. Spectrosc. 2013, 82, 1–27. [Google Scholar] [CrossRef]
- Clegg, S.M.; Wiens, R.C.; Anderson, R.; Forni, O.; Frydenvang, J.; Lasue, J.; Cousin, A.; Payre, V.; Boucher, T.; Dyar, M.D.; et al. Recalibration of the Mars Science Laboratory ChemCam instrument with an expanded geochemical database. Spectrochim. Acta Part B At. Spectrosc. 2017, 129, 64–85. [Google Scholar] [CrossRef]
- Anderson, R.B.; Clegg, S.M.; Frydenvang, J.; Wiens, R.C.; McLennan, S.; Morris, R.V.; Ehlmann, B.; Dyar, M.D. Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-models. Spectrochim. Acta Part B At. Spectrosc. 2017, 129, 49–57. [Google Scholar] [CrossRef]
- Andries, E. Sparse models by iteratively reweighted feature scaling: A framework for wavelength and sample selection. J. Chemom. 2013, 27, 50–62. [Google Scholar] [CrossRef]
- Filzmoser, P.; Gschwandtner, M.; Todorov, V. Review of sparse methods in regression and classification with application to chemometrics. J. Chemom. 2012, 26, 42–51. [Google Scholar] [CrossRef]
- Davis, J.C.; Sampson, R.J. Statistics and Data Analysis in Geology; Wiley: New York, NY, USA, 1986; Volume 646. [Google Scholar]
- Pořízka, P.; Klus, J.; Képeš, E.; Prochazka, D.; Hahn, D.W.; Kaiser, J. On the utilization of principal component analysis in laser-induced breakdown spectroscopy data analysis, a review. Spectrochim. Acta Part B At. Spectrosc. 2018, 148, 65–82. [Google Scholar] [CrossRef]
- Moram, S.S.B.; Shaik, A.K.; Byram, C.; Hamad, S.; Soma, V.R. Instantaneous trace detection of nitro-explosives and mixtures with nanotextured silicon decorated with Ag–Au alloy nanoparticles using the SERS technique. Anal. Chim. Acta 2020, 1101, 157–168. [Google Scholar] [CrossRef]
- Sirven, J.-B.; Salle, B.; Mauchien, P.; Lacour, J.-L.; Maurice, S.; Manhes, G. Feasibility study of rock identification at the surface of Mars by remote laser-induced breakdown spectroscopy and three chemometric methods. J. Anal. At. Spectrom. 2007, 22, 1471–1480. [Google Scholar] [CrossRef]
- Schröder, S.; Pavlov, S.; Rauschenbach, I.; Jessberger, E.; Hübers, H.-W. Detection and identification of salts and frozen salt solutions combining laser-induced breakdown spectroscopy and multivariate analysis methods: A study for future martian exploration. Icarus 2013, 223, 61–73. [Google Scholar] [CrossRef]
- El-Saeid, R.; Abdel-Salam, Z.; Pagnotta, S.; Palleschi, V.; Harith, M. Classification of sedimentary and igneous rocks by laser induced breakdown spectroscopy and nanoparticle-enhanced laser induced breakdown spectroscopy combined with principal component analysis and graph theory. Spectrochim. Acta Part B At. Spectrosc. 2019, 158, 105622. [Google Scholar] [CrossRef]
- Chatterjee, S.; Singh, M.; Biswal, B.P.; Sinha, U.K.; Patbhaje, S.; Sarkar, A. Application of laser-induced breakdown spectroscopy (LIBS) coupled with PCA for rapid classification of soil samples in geothermal areas. Anal. Bioanal. Chem. 2019, 411, 2855–2866. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Ling, Z.; Zhang, J.; Fu, X.; Liu, C.; Xin, Y.; Li, B.; Qiao, L. A Mars Environment Chamber Coupled with Multiple In Situ Spectral Sensors for Mars Exploration. Sensors 2021, 21, 2519. [Google Scholar] [CrossRef] [PubMed]
- Engel, J.; Gerretzen, J.; Szymańska, E.; Jansen, J.J.; Downey, G.; Blanchet, L.; Buydens, L.M. Breaking with trends in pre-processing? TrAC—Trends Anal. Chem. 2013, 50, 96–106. [Google Scholar] [CrossRef]
- Myakalwar, A.K.; Dingari, N.C.; Dasari, R.R.; Barman, I.; Gundawar, M.K. Non-gated laser induced breakdown spectroscopy provides a powerful segmentation tool on concomitant treatment of characteristic and continuum emission. PLoS ONE 2014, 9, e103546. [Google Scholar] [CrossRef] [Green Version]
- Wegelin, J.A. A Survey of Partial Least Squares (PLS) Methods, with Emphasis on the Two-Block Case; University of Washington: Seattle, WA, USA, 2000. [Google Scholar]
- Andersson, M. A comparison of nine PLS1 algorithms. J. Chemom. J. Chemom. Soc. 2009, 23, 518–529. [Google Scholar] [CrossRef]
- Hahn, D.W.; Omenetto, N. Laser-induced breakdown spectroscopy (LIBS), part I: Review of basic diagnostics and plasma–particle interactions: Still-challenging issues within the analytical plasma community. Appl. Spectrosc. 2010, 64, 335A–366A. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Salam, Z.; Nanjing, Z.; Anglos, D.; Harith, M. Effect of experimental conditions on surface hardness measurements of calcified tissues via LIBS. Appl. Phys. B 2009, 94, 141–147. [Google Scholar] [CrossRef]
- Aberkane, S.M.; Bendib, A.; Yahiaoui, K.; Boudjemai, S.; Abdelli-Messaci, S.; Kerdja, T.; Amara, S.; Harith, M. Correlation between Fe–V–C alloys surface hardness and plasma temperature via LIBS technique. Appl. Surf. Sci. 2014, 301, 225–229. [Google Scholar] [CrossRef]
- Xu, W.; Sun, C.; Tan, Y.; Gao, L.; Zhang, Y.; Yue, Z.; Shabbir, S.; Wu, M.; Zou, L.; Chen, F. Total alkali silica classification of rocks with LIBS: Influences of the chemical and physical matrix effects. J. Anal. At. Spectrom. 2020, 35, 1641–1653. [Google Scholar] [CrossRef]
- Kramida, A.; Ralchenko, Y.; Reader, J.; NIST ASD Team. NIST Atomic Spectra Database (ver. 5.8). 2021. Available online: https://www.nist.gov/pml/atomic-spectra-database (accessed on 1 October 2021).
Apparatus | Specifications | |
---|---|---|
Laser (Dawa-200) | Wavelength | 1064 nm |
Laser Type | Nd:YAG Q-switched Laser | |
Pulse energy | 130 mJ/Pulse | |
Adjustable repetition rate | 1–20 Hz | |
Pulse width | 8 ns | |
Beam quality parameter M2 | 3 | |
Beam diameter | 6 mm | |
Telescope | Detection distance | 400–1500 mm |
Spectral range | 250–850 nm | |
Demultiplexer | Spectral range | 230–339 nm@UV, 330–549 nm@VIS, 539–1000 nm@VNIR |
Excluding spectral range | 339–354 nm 549–570 nm | |
Spectrometer (HR2000+) | Spectral range | 240–972 nm |
Spectral resolution | 0.10 nm@UV 0.21 nm@VIS 0.32 nm@VNIR | |
Slit width | 10 μm | |
Grating ruling | 2400 lpmm@UV 1200 lpmm@VIS 600 lpmm@VNIR | |
Fiber bundle configuration | Fiber 1 | 300 μm core diameter 200–1100 nm |
Fiber 2 and 3 | 9 @ 105 μm core diameter 200–1100 nm | |
Fiber 4 | 9 @ 105 μm core diameter 400–2200 nm |
No. | Sample Name | Reference ID | SiO2 | Al2O3 | T Fe2O3 | TiO2 | CaO | MgO | K2O | Na2O |
---|---|---|---|---|---|---|---|---|---|---|
1 | Nephelite-1 | GBW03124 | 60.64 ± 0.14 | 20.05 ± 0.13 | 2.03 ± 0.06 | 0.12 ± 0.01 | 0.52 ± 0.04 | 0.13 ± 0.02 | 5.06 ± 0.10 | 8.97 ± 0.13 |
2 | Nephelite-2 | GBW03125 | 39.42 ± 0.09 | 29.67 ± 0.13 | 3.26 ± 0.04 | 0.14 ± 0.01 | 5.98 ± 0.14 | 0.92 ± 0.06 | 4.72 ± 0.08 | 12.59 ± 0.10 |
3 | Sodaclase | GBW03134 | 67.96 ± 0.10 | 19.62 ± 0.07 | 0.10 ± 0.01 | 0.05 ± 0.01 | 0.48 ± 0.05 | 0.02 ± 0.00 | 0.10 ± 0.01 | 11.26 ± 0.08 |
4 | Basalt | GBW07105 | 44.64 ± 0.16 | 13.83 ± 0.20 | 13.40 ± 0.19 | 0.00 | 8.81 ± 0.14 | 7.77 ± 0.26 | 2.32 ± 0.08 | 3.38 ± 0.07 |
5 | Andesite-1 | GBW07104 | 60.62 ± 0.22 | 16.17 ± 0.17 | 4.90 ± 0.09 | 0.00 | 5.20 ± 0.11 | 1.72 ± 0.08 | 1.89 ± 0.07 | 3.86 ± 0.11 |
6 | Dolerite | DNC-1a | 47.15 ± 0.21 | 18.34 ± 0.17 | 9.97 ± 0.15 | 0.48 ± 0.01 | 11.49 ± 0.07 | 10.13 ± 0.11 | 0.23 ± 0.01 | 1.89 ± 0.06 |
7 | Dunite | DTS-2b | 39.40 ± 0.80 | 0.45 ± 0.06 | 7.76 ± 0.21 | 0.00 | 0.12 ± 0.01 | 49.40 ± 1.80 | 0.00 | 0.00 |
8 | Olivine Basalt | MO-14 | 46.85 ± 0.04 | 17.06 ± 0.05 | 10.85 ± 0.02 | 1.62 ± 0.01 | 9.60 ± 0.03 | 8.05 ± 0.06 | 0.47 ± 0.00 | 3.00 ± 0.01 |
9 | Andesite-2 | JA-2 | 56.42 | 15.22 | 8.37 | 0.66 | 6.29 | 7.60 | 1.81 | 3.11 |
10 | Andesite-3 | JA-3 | 62.27 | 15.56 | 6.60 | 0.70 | 6.24 | 3.72 | 1.41 | 3.19 |
11 | Gabbride | MO-7 | 40.79 ± 0.05 | 17.60 ± 0.05 | 12.35 ± 0.02 | 3.39 ± 0.01 | 14.62 ± 0.05 | 6.46 ± 0.05 | 0.75 ± 0.00 | 2.05 ± 0.01 |
12 | Trachyte | GBW07110 | 63.06 ± 0.19 | 16.10 ± 0.20 | 4.51 ± 0.12 | 0.80 ± 0.04 | 2.47 ± 0.07 | 0.84 ± 0.10 | 5.17 ± 0.10 | 3.06 ± 0.08 |
13 | Hawaiian Basalt | BHVO-2 | 49.90 ± 0.60 | 13.50 ± 0.20 | 12.30 ± 0.20 | 2.73 ± 0.04 | 11.40 ± 0.20 | 7.23 ± 0.12 | 0.52 ± 0.01 | 2.22 ± 0.08 |
14 | Icelandic Basalt | BIR-1a | 47.96 ± 0.19 | 15.50 ± 0.15 | 11.30 ± 0.12 | 0.96 ± 0.01 | 13.30 ± 0.12 | 9.70 ± 0.08 | 0.03 ± 0.00 | 1.82 ± 0.05 |
15 | Andesite | AGV-2 | 59.30 ± 0.70 | 16.91 ± 0.21 | 6.69 ± 0.10 | 1.05 ± 0.22 | 5.20 ± 0.13 | 1.79 ± 0.03 | 2.88 ± 0.11 | 4.19 ± 0.13 |
Models | Parameters | SiO2 | Al2O3 | TFe2O3 | TiO2 | CaO | MgO | K2O | Na2O |
---|---|---|---|---|---|---|---|---|---|
PLS | RMES | 2.52 | 0.70 | 0.98 | 0.31 | 1.20 | 1.99 | 0.54 | 0.76 |
SPS number | 4 | 5 | 9 | 6 | 6 | 10 | 6 | 9 | |
LASSO | RMES | 1.82 | 0.99 | 0.76 | 0.12 | 1.37 | 1.41 | 0.44 | 0.35 |
SPS number | 4 | 8 | 7 | 5 | 7 | 8 | 6 | 8 |
Ion (Atom) | λ/nm | Level Energy/eV | Transition | Transition Probability/s−1 |
---|---|---|---|---|
Fe (II) | 254.34 | 7.22–2.84 | 3d7(4F3/2)4f–3d6(3F2)4s | 8.00 × 107 |
Mg (II) | 279.55 | 4.43–0.00 | 2p63p–2p63s | 2.60 × 108 |
Si (I) | 288.16 | 5.08–0.78 | 3s23p4s–3s23p2 | 2.17 × 108 |
Ca (II) | 393.39 | 3.15–0.00 | 3p64p–3p64s | 1.47 × 108 |
Al (I) | 396.20 | 3.14–0.01 | 3s24s–3s23p | 9.85 × 107 |
Na (I) | 589.00 | 2.10–0.00 | 2p63p–2p63s | 6.16 × 107 |
K (I) | 766.49 | 1.62–0.00 | 3p64p–3p64s | 3.78 × 107 |
O (I) | 777.42 | 10.74–9.15 | 2s22p3(4S°)3p–2s22p3(4S°)3s | 3.69 × 107 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Ling, Z.; Zhang, J.; Wu, Z.; Bai, H.; Liu, Y. A Stand-Off Laser-Induced Breakdown Spectroscopy (LIBS) System Applicable for Martian Rocks Studies. Remote Sens. 2021, 13, 4773. https://doi.org/10.3390/rs13234773
Liu C, Ling Z, Zhang J, Wu Z, Bai H, Liu Y. A Stand-Off Laser-Induced Breakdown Spectroscopy (LIBS) System Applicable for Martian Rocks Studies. Remote Sensing. 2021; 13(23):4773. https://doi.org/10.3390/rs13234773
Chicago/Turabian StyleLiu, Changqing, Zongcheng Ling, Jiang Zhang, Zhongchen Wu, Hongchun Bai, and Yiheng Liu. 2021. "A Stand-Off Laser-Induced Breakdown Spectroscopy (LIBS) System Applicable for Martian Rocks Studies" Remote Sensing 13, no. 23: 4773. https://doi.org/10.3390/rs13234773
APA StyleLiu, C., Ling, Z., Zhang, J., Wu, Z., Bai, H., & Liu, Y. (2021). A Stand-Off Laser-Induced Breakdown Spectroscopy (LIBS) System Applicable for Martian Rocks Studies. Remote Sensing, 13(23), 4773. https://doi.org/10.3390/rs13234773