Retreating Shorelines as an Emerging Threat to Adélie Penguins on Inexpressible Island
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data Sources
2.3. UAV Surveys
2.4. Shoreline Dynamics from 1983 to 2018
2.5. Data Processing
3. Results
3.1. Shoreline Retreating
3.2. Adélie Penguin Abundance and Colony Area
3.3. Changes in Penguin Distribution
4. Discussion
4.1. Factors Driving Adélie Penguin Abundance
4.2. Retreating Shorelines Affecting Adélie Penguin Colonies
4.3. Monitoring and Conservation of Adélie Penguins
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lynch, H.J.; Larue, M.A. First global census of the Adélie Penguin. Auk 2014, 131, 457–466. [Google Scholar] [CrossRef]
- Ainley, D. The Adélie Penguin: Bellwether of Climate Change; Columbia University Press: New York, NY, USA, 2002. [Google Scholar]
- Lyver, P.O.B.; Barron, M.; Barton, K.J.; Ainley, D.G.; Pollard, A.; Gordon, S.; Mcneill, S.; Ballard, G.; Wilson, P.R. Trends in the breeding population of Adélie penguins in the Ross Sea, 1981–2012: A coincidence of climate and resource extraction effects. PLoS ONE 2014, 9, e91188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynch, H.J.; Naveen, R.; Trathan, P.N.; Fagan, W.F. Spatially integrated assessment reveals widespread changes in penguin populations on the Antarctic Peninsula. Ecology 2012, 93, 1367–1377. [Google Scholar] [CrossRef]
- CCAMLR. CCAMLR Ecosystem Monitoring Program—Standard Methods; Commission for the Conservation of Antarctic Marine Living Resources: Hobart, Australia, 2004. [Google Scholar]
- Che-Castaldo, C.; Jenouvrier, S.; Youngflesh, C.; Shoemaker, K.T.; Humphries, G.; McDowall, P.; Landrum, L.; Holland, M.M.; Li, Y.; Ji, R.; et al. Pan-Antarctic analysis aggregating spatial estimates of Adélie penguin abundance reveals robust dynamics despite stochastic noise. Nat. Commun. 2017, 8, 832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cimino, M.A.; Fraser, W.R.; Irwin, A.J.; Oliver, M.J. Satellite data identify decadal trends in the quality of Pygoscelis penguin chick-rearing habitat. Glob. Chang. Biol. 2013, 19, 136–148. [Google Scholar] [CrossRef] [PubMed]
- Le Guen, C.; Kato, A.; Raymond, B.; Barbraud, C.; Beaulieu, M.; Bost, C.A.; Delord, K.; Ajj, M.I.; Meyer, X.; Raclot, T. Reproductive performance and diving behaviour share a common sea-ice concentration optimum in Adélie penguins (Pygoscelis adeliae). Glob. Chang. Biol. 2018, 24, 5304–5317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dugger, K.M.; Ainley, D.G.; Lyver, P.O.B.; Barton, K.; Ballard, G. Survival differences and the effect of environmental instability on breeding dispersal in an Adélie penguin meta-population. Proc. Natl. Acad. Sci. USA 2010, 107, 12375–12380. [Google Scholar] [CrossRef] [Green Version]
- Dugger, K.M.; Ballard, G.; Ainley, D.G.; Lyver, P.O.B.; Schine, C. Adélie penguins coping with environmental change: Results from a natural experiment at the edge of their breeding range. Front. Ecol. Evol. 2014, 2, 68. [Google Scholar] [CrossRef] [Green Version]
- Ainley, D.G.; Crockett, E.L.; Eastman, J.T.; Fraser, W.R.; Nur, N.; O’Brien, K.; Salas, L.A.; Siniff, D.B. How overfishing a large piscine mesopredator explains growth in Ross Sea penguin populations: A framework to better understand impacts of a controversial fishery. Ecol. Model. 2017, 349, 69–75. [Google Scholar] [CrossRef] [Green Version]
- Pinkerton, M.H.; Lyver, P.O.B.; Stevens, D.W.; Forman, J.; Eisert, R.; Mormede, S. Increases in Adélie penguins in the Ross Sea: Could the fishery for Antarctic toothfish be responsible? Ecol. Model. 2016, 337, 262–271. [Google Scholar] [CrossRef]
- Davis, L.B.; Hofmann, E.E.; Klinck, J.M.; Piñones, A.; Dinniman, M.S. Distributions of krill and Antarctic silverfish and correlations with environmental variables in the western Ross Sea, Antarctica. Mar. Ecol. Prog. Ser. 2017, 584, 45–65. [Google Scholar] [CrossRef] [Green Version]
- Boersma, P.D.; Borboroglu, P.G.; Gownaris, N.J.; Bost, C.A.; Chiaradia, A.; Ellis, S.; Schneider, T.; Seddon, P.J.; Simeone, A.; Trathan, P.N.; et al. Applying science to pressing conservation needs for penguins. Conserv. Biol. 2020, 34, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Larue, M.A.; Ainley, D.G.; Swanson, M.; Dugger, K.M.; Lyver, P.O.; Barton, K.; Ballard, G. Climate change winners: Receding ice fields facilitate colony expansion and altered dynamics in an Adélie penguin metapopulation. PLoS ONE 2013, 8, e60568. [Google Scholar] [CrossRef]
- Patel, S.; Shah, E.; Jayaprasad, P.; James, M.E. Changes in Antarctic coastline between 1997 and 2016 using RADARSAT and MODIS data. Int. J. Remote Sens. 2020, 41, 1389–1414. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, Z.; Shokr, M.; Hui, F.; Cheng, X.; Chi, Z.; Heil, P.; Chen, Z. Automatically Extracted Antarctic Coastline Using Remotely-Sensed Data: An Update. Remote Sens. 2019, 11, 1844. [Google Scholar] [CrossRef] [Green Version]
- Schwaller, M.R.; Southwell, C.J.; Emmerson, L.M. Continental-scale mapping of Adélie penguin colonies from Landsat imagery. Remote Sens. Environ. 2013, 139, 353–364. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Cheng, X.; Li, X.; Zhu, R.; Hui, F.; Wu, W.; Zhao, T.; Kang, J.; Tang, J. Aerial photography based census of Adélie Penguin and its application in CH4 and N2O budget estimation in Victoria Land, Antarctic. Sci. Rep. 2017, 7, 12942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humphries, G.R.W.; Naveen, R.; Schwaller, M.; Che-Castaldo, C.; McDowall, P.; Schrimpf, M.; Lynch, H.J. Mapping application for penguin populations and projected dynamics (MAPPPD): Data and tools for dynamic management and decision support. Polar Rec. 2017, 53, 160–166. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.; Shanhun, F.; Macneil, R. Adélie Penguin Census Data. 2020. Available online: https://catalogue.data.govt.nz/dataset/adelie-penguin-census-data (accessed on 17 November 2021).
- LaRue, M.A.; Kooyman, G.; Lynch, H.J.; Fretwell, P. Emigration in emperor penguins: Implications for interpretation of long-term studies. Ecography 2015, 38, 114–120. [Google Scholar] [CrossRef]
- LaRue, M.A.; Knight, J. Applications of very high-resolution imagery in the study and conservation of large predators in the Southern Ocean. Conserv. Biol. 2014, 28, 1731–1735. [Google Scholar] [CrossRef]
- Borowicz, A.; McDowall, P.; Youngflesh, C.; Sayre-McCord, T.; Clucas, G.; Herman, R.; Forrest, S.; Rider, M.; Schwaller, M.; Hart, T.; et al. Multi-modal survey of Adélie penguin mega-colonies reveals the Danger Islands as a seabird hotspot. Sci. Rep. 2018, 8, 3926. [Google Scholar] [CrossRef]
- Zmarz, A.; Rodzewicz, M.; Dąbski, M.; Karsznia, I.; Korczak-Abshire, M.; Chwedorzewska, K.J. Application of UAV BVLOS remote sensing data for multi-faceted analysis of Antarctic ecosystem. Remote Sens. Environ. 2018, 217, 375–388. [Google Scholar] [CrossRef]
- Goebel, M.E.; Perryman, W.L.; Hinke, J.T.; Krause, D.J.; Hann, N.A.; Gardner, S.; LeRoi, D.J. A small unmanned aerial system for estimating abundance and size of Antarctic predators. Polar Biol. 2015, 38, 619–630. [Google Scholar] [CrossRef] [Green Version]
- Mcdowall, P.; Lynch, H.J. Ultra-Fine Scale Spatially-Integrated Mapping of Habitat and Occupancy Using Structure-From-Motion. PLoS ONE 2017, 12, e0166773. [Google Scholar]
- Mcdowall, P.S.; Lynch, H.J. When the “selfish herd” becomes the “frozen herd”: Spatial dynamics and population persistence in a colonial seabird. Ecology 2019, 100, e02823. [Google Scholar] [CrossRef]
- Christie, K.S.; Gilbert, S.L.; Brown, C.L.; Hatfield, M.; Hanson, L. Unmanned aircraft systems in wildlife research: Current and future applications of a transformative technology. Front. Ecol. Environ. 2016, 14, 241–251. [Google Scholar] [CrossRef]
- Ainley, D.G.; Ballard, G.; Jones, R.M.; Jongsomjit, D.; Pierce, S.D.; Smith, W.O., Jr.; Veloz, S. Trophic cascades in the western Ross Sea, Antarctica: Revisited. Mar. Ecol. Prog. Ser. 2015, 534, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Ballard, G.; Dugger, K.M.; Nur, N.; Ainley, D.G. Foraging strategies of Adélie penguins: Adjusting body condition to cope with environmental variability. Mar. Ecol. Prog. Ser. 2010, 405, 287–302. [Google Scholar] [CrossRef]
- Thieler, E.; Himmelstoss, E.; Zichichi, J.; Ergul, A. Digital Shoreline Analysis System (DSAS); U.S. Geological Survey: Reston, VA, USA, 2009. [Google Scholar]
- Fox, J.; Weisberg, S. An. R Companion to Applied Regression, 3rd ed.; Sage: Thousand Oaks, CA, USA, 2019. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Williams, T.D. The Penguins.; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Emslie, S.D.; Coats, L.; Licht, K. A 45,000 yr record of Adélie penguins and climate change in the Ross Sea, Antarctica. Geology 2007, 35, 61–64. [Google Scholar] [CrossRef] [Green Version]
- Cimino, M.A.; Lynch, H.J.; Saba, V.S.; Oliver, M.J. Projected asymmetric response of Adélie penguins to Antarctic climate change. Sci. Rep. 2016, 6, 28785. [Google Scholar] [CrossRef]
- Southwell, C.; Emmerson, L. Density dependence forces divergent population growth rates and alters occupancy patterns of a central place foraging Antarctic seabird. Ecol. Evol. 2020, 10, 2339–2351. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Cheng, X.; Zhang, B.; Meng, H.; Wu, D.; Zhang, M.; Ji, M.; Li, X. Lagged response of Adélie penguin (Pygoscelis adeliae) abundance to environmental variability in the Ross Sea, Antarctica. Polar Biol. 2020, 43, 1769–1781. [Google Scholar] [CrossRef]
- CCAMLR. Fishery Report 2018: Exploratory Fishery for Dissostichus Mawsoni in Subarea 88.1; Commission for the Conservation of Antarctic Marine Living Resources: Hobart, Australia, 2018. [Google Scholar]
- Ainley, D.G.; Nur, N.; Eastman, J.T.; Ballard, G.; Parkinson, C.L.; Evans, C.W.; DeVries, A.L. Decadal trends in abundance, size and condition of Antarctic toothfish in McMurdo Sound, Antarctica, 1972–2011. Fish Fish. 2013, 14, 343–363. [Google Scholar] [CrossRef] [Green Version]
- IUCN. IUCN Red List of Threatened Species; International Union for Conservation of Nature (IUCN): Gland, Switzerland, 2012. [Google Scholar]
- IUCN. IUCN Red List of Threatened Species; International Union for Conservation of Nature (IUCN): Gland, Switzerland, 2018. [Google Scholar]
- Ainley, D.G.; Russell, J.L.; Jenouvrier, S.; Woehler, E.J.; Lyver, P.O.B.; Fraser, W.R.; Kooyman, G.L. Antarctic penguin response to habitat change as Earth’s troposphere reaches 2 °C above preindustrial levels. Ecol. Monogr. 2010, 80, 49–66. [Google Scholar] [CrossRef] [Green Version]
- Trathan, P.N.; Pablo, G.B.; Dee, B.; Charles-André, B.; Crawford, R.J.M.; Crossin, G.T.; Cuthbert, R.J.; Peter, D.; Lloyd Spencer, D.; Santiago, D.L.P. Pollution, habitat loss, fishing, and climate change as critical threats to penguins. Conserv. Biol. 2014, 29, 31–41. [Google Scholar] [CrossRef]
Year | Type | Height (m) | Camera Type | Resolution (m) | Source |
---|---|---|---|---|---|
1983 | Aerial | 800 | WILDRC8 | 0.15 | University of Minnesota |
2012 | Aerial | 500 | Hasselblad H4D60 | 0.10 | The 29th CARE |
2018 | UAV | 350 | Hongpeng AP5100 | 0.07 | The 34th CARE |
Shoreline Dynamics | 1983–2012 | 2012–2018 |
---|---|---|
Net Shoreline Movement (NSM, m) | ||
Average | −12.41 | −11.88 |
STD | 2.50 | 0.88 |
Maximum | −61.36 | −27.63 |
Minimum | −1.68 | −1.06 |
End-Point Rate (EPR, m yr−1) | ||
Average | −0.43 | −2.31 |
STD | 0.09 | 0.17 |
Maximum | −2.12 | −5.38 |
Minimum | −0.06 | −0.21 |
Sample | TP | FP | FN | Precision | Recall |
---|---|---|---|---|---|
1 | 973 | 192 | 33 | 0.84 | 0.97 |
2 | 1080 | 157 | 39 | 0.87 | 0.96 |
3 | 576 | 73 | 75 | 0.89 | 0.88 |
4 | 483 | 122 | 23 | 0.80 | 0.95 |
5 | 956 | 252 | 23 | 0.79 | 0.98 |
6 | 730 | 142 | 26 | 0.84 | 0.97 |
Dependent Variable | Independent Variable | Sum of Squares | df | F | p | Contribution |
---|---|---|---|---|---|---|
Abundance | Distance | 27.40 | 8 | 66.92 | <0.001 * | 60.61% |
Year (Distance) | 15.05 | 18 | 16.34 | <0.001 * | 33.29% | |
Residuals | 2.76 | 54 | ||||
Total | 45.21 | 80 | ||||
Area | Distance | 28.84 | 8 | 62.69 | <0.001 * | 55.57% |
Year (Distance) | 19.95 | 18 | 19.27 | <0.001 * | 38.44% | |
Residuals | 3.11 | 54 | ||||
Total | 51.90 | 80 | ||||
Density | Distance | 0.62 | 8 | 9.20 | <0.001 * | 25.73% |
Year (Distance) | 1.33 | 18 | 8.75 | <0.001 * | 55.19% | |
Residuals | 0.46 | 54 | ||||
Total | 2.41 | 80 |
Dependent Variable | Independent Variable | Sum of Squares | df | F | p | Contribution |
---|---|---|---|---|---|---|
Abundance | Elevation | 87.13 | 4 | 261.64 | <0.001 * | 84.13% |
Year (Elevation) | 13.94 | 10 | 16.74 | <0.001 * | 13.46% | |
Residuals | 2.50 | 30 | ||||
Total | 103.57 | 44 | ||||
Area | Elevation | 81.28 | 4 | 138.21 | <0.001 * | 76.98% |
Year (Elevation) | 19.89 | 10 | 13.53 | <0.001 * | 18.84% | |
Residuals | 4.41 | 30 | ||||
Total | 105.58 | 44 | ||||
Density | Elevation | 1.87 | 4 | 35.84 | <0.001 * | 54.36% |
Year (Elevation) | 1.18 | 10 | 9.07 | <0.001 * | 34.30% | |
Residuals | 0.39 | 30 | ||||
Total | 3.44 | 44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Chen, J.; Cheng, X.; Zhu, L.; Li, B.; Li, X. Retreating Shorelines as an Emerging Threat to Adélie Penguins on Inexpressible Island. Remote Sens. 2021, 13, 4718. https://doi.org/10.3390/rs13224718
Chen X, Chen J, Cheng X, Zhu L, Li B, Li X. Retreating Shorelines as an Emerging Threat to Adélie Penguins on Inexpressible Island. Remote Sensing. 2021; 13(22):4718. https://doi.org/10.3390/rs13224718
Chicago/Turabian StyleChen, Xintong, Jiquan Chen, Xiao Cheng, Lizhong Zhu, Bing Li, and Xianglan Li. 2021. "Retreating Shorelines as an Emerging Threat to Adélie Penguins on Inexpressible Island" Remote Sensing 13, no. 22: 4718. https://doi.org/10.3390/rs13224718
APA StyleChen, X., Chen, J., Cheng, X., Zhu, L., Li, B., & Li, X. (2021). Retreating Shorelines as an Emerging Threat to Adélie Penguins on Inexpressible Island. Remote Sensing, 13(22), 4718. https://doi.org/10.3390/rs13224718