An Attenuation Model of Node Signals in Wireless Underground Sensor Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Experiment Design
2.2. WUSN Node Design and Soil Test Platform Construction Method
2.3. WUSN Node Signal Attenuation Model Establishment and Verification Method
2.3.1. Establishment of the WUSN Node Signal Attenuation Model
2.3.2. WUSN Node Signal Attenuation Model Verification
3. Result
3.1. Signal Sttenuation Model of WUSN Nodes
3.2. Verify the Signal Attenuation Model of WUSN Nodes
4. Discussions
4.1. Influence of Soil Moisture Content on the Signal Transmission of WUSN Nodes
4.2. The Influence of Node Burial Depth and Horizontal Distance between Nodes on the Signal Transmission of WUSN Nodes
4.3. Influence of Soil Compactness on WUSN Node Signal Transmission
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
The Test Factors | ||||||
---|---|---|---|---|---|---|
Test No. | Soil Moisture Content | Node Buried Depth | Soil Compactness (kg/cm2) | Soil Acid Alkalinity | Soil Temperature (°C) | Horizontal Distance between Nodes (cm) |
(%) | (cm) | |||||
1 | 20 | 45 | 1 | 7.5 | 27.5 | 10 |
2 | 27.5 | 50 | 4.5 | 5.5 | 25 | 60 |
3 | 15 | 55 | 1 | 9 | 10 | 50 |
4 | 17.5 | 70 | 1.5 | 5.5 | 27.5 | 50 |
5 | 30 | 55 | 3.5 | 6 | 27.5 | 40 |
6 | 17.5 | 65 | 4.5 | 6 | 12.5 | 10 |
7 | 17.5 | 50 | 3.5 | 7.5 | 10 | 80 |
8 | 30 | 35 | 2.5 | 6.5 | 10 | 70 |
9 | 30 | 50 | 2 | 5 | 15 | 30 |
10 | 27.5 | 65 | 4 | 8.5 | 27.5 | 80 |
11 | 10 | 35 | 2 | 6 | 25 | 50 |
12 | 17.5 | 40 | 1 | 8.5 | 30 | 70 |
13 | 10 | 50 | 3 | 9 | 27.5 | 70 |
14 | 12.5 | 30 | 4 | 6 | 20 | 70 |
15 | 15 | 50 | 4 | 8 | 17.5 | 10 |
16 | 22.5 | 30 | 3.5 | 8.5 | 12.5 | 50 |
17 | 20 | 35 | 3 | 8.5 | 17.5 | 30 |
18 | 10 | 30 | 0.5 | 5 | 10 | 10 |
19 | 10 | 70 | 4 | 7 | 22.5 | 40 |
20 | 12.5 | 35 | 1 | 5.5 | 12.5 | 20 |
21 | 15 | 35 | 4.5 | 5 | 22.5 | 80 |
22 | 27.5 | 55 | 1.5 | 5 | 17.5 | 70 |
23 | 10 | 40 | 3.5 | 5.5 | 17.5 | 90 |
24 | 22.5 | 60 | 4 | 5.5 | 10 | 30 |
25 | 25 | 55 | 2.5 | 5.5 | 15 | 10 |
26 | 30 | 70 | 4.5 | 9 | 30 | 90 |
27 | 22.5 | 35 | 0.5 | 8 | 27.5 | 90 |
28 | 30 | 45 | 0.5 | 5.5 | 20 | 80 |
29 | 10 | 55 | 4.5 | 8.5 | 20 | 20 |
30 | 27.5 | 45 | 3 | 6 | 10 | 20 |
31 | 15 | 30 | 3 | 5.5 | 30 | 40 |
32 | 15 | 40 | 1.5 | 6 | 15 | 30 |
33 | 17.5 | 60 | 3 | 5 | 20 | 90 |
34 | 20 | 40 | 4.5 | 8 | 10 | 40 |
35 | 27.5 | 60 | 2.5 | 9 | 12.5 | 40 |
36 | 25 | 35 | 1.5 | 7.5 | 20 | 40 |
37 | 30 | 65 | 3 | 8 | 15 | 50 |
38 | 27.5 | 35 | 3.5 | 7 | 30 | 10 |
39 | 25 | 50 | 1 | 6 | 22.5 | 90 |
40 | 12.5 | 55 | 2 | 8 | 30 | 80 |
41 | 17.5 | 35 | 4 | 9 | 15 | 60 |
42 | 20 | 65 | 2 | 5.5 | 22.5 | 70 |
43 | 20 | 60 | 0.5 | 6 | 30 | 60 |
44 | 12.5 | 40 | 2.5 | 5 | 27.5 | 60 |
45 | 12.5 | 60 | 4.5 | 7.5 | 17.5 | 50 |
46 | 30 | 60 | 1.5 | 8.5 | 22.5 | 10 |
47 | 12.5 | 65 | 1.5 | 7 | 10 | 90 |
48 | 12.5 | 45 | 3.5 | 9 | 22.5 | 30 |
49 | 17.5 | 55 | 0.5 | 7 | 25 | 30 |
50 | 27.5 | 70 | 1 | 8 | 20 | 30 |
51 | 30 | 30 | 1 | 7 | 17.5 | 60 |
52 | 22.5 | 45 | 4.5 | 7 | 15 | 70 |
53 | 25 | 60 | 3.5 | 8 | 25 | 70 |
54 | 15 | 65 | 3.5 | 6.5 | 20 | 60 |
55 | 15 | 60 | 2 | 7 | 27.5 | 20 |
56 | 17.5 | 30 | 2.5 | 8 | 22.5 | 20 |
57 | 20 | 70 | 3.5 | 5 | 15 | 20 |
58 | 25 | 30 | 4.5 | 6.5 | 27.5 | 30 |
59 | 27.5 | 30 | 2 | 7.5 | 15 | 90 |
60 | 15 | 70 | 0.5 | 7.5 | 12.5 | 70 |
61 | 17.5 | 45 | 2 | 6.5 | 17.5 | 40 |
62 | 10 | 65 | 2.5 | 7.5 | 30 | 30 |
63 | 22.5 | 50 | 1.5 | 6.5 | 30 | 20 |
64 | 22.5 | 40 | 2 | 9 | 20 | 10 |
65 | 12.5 | 70 | 3 | 6.5 | 25 | 10 |
66 | 15 | 45 | 2.5 | 8.5 | 25 | 90 |
67 | 20 | 30 | 1.5 | 9 | 25 | 80 |
68 | 12.5 | 50 | 0.5 | 8.5 | 15 | 40 |
69 | 10 | 60 | 1 | 6.5 | 15 | 80 |
70 | 30 | 40 | 4 | 7.5 | 25 | 20 |
71 | 25 | 70 | 2 | 8.5 | 10 | 60 |
72 | 27.5 | 40 | 0.5 | 6.5 | 22.5 | 50 |
73 | 20 | 55 | 4 | 6.5 | 12.5 | 90 |
74 | 10 | 45 | 1.5 | 8 | 12.5 | 60 |
75 | 20 | 50 | 2.5 | 7 | 20 | 50 |
76 | 22.5 | 65 | 1 | 5 | 25 | 40 |
77 | 22.5 | 70 | 2.5 | 6 | 17.5 | 80 |
78 | 25 | 40 | 3 | 7 | 12.5 | 80 |
79 | 25 | 65 | 0.5 | 9 | 17.5 | 20 |
80 | 22.5 | 55 | 3 | 7.5 | 22.5 | 60 |
81 | 25 | 45 | 4 | 5 | 30 | 50 |
References
- McBratney, A.; Whelan, B.; Ancev, T.; Bouma, J. Future directions of precision agriculture. Precis. Agric. 2005, 6, 7–23. [Google Scholar] [CrossRef]
- Lajoie-O’Malley, A.; Bronson, K.; van der Burg, S.; Klerkx, L. The future(s) of figital agriculture and sustainable food systems: An analysis of high-level policy documents. Ecosyst. Serv. 2020, 45, 101183. [Google Scholar] [CrossRef]
- Hassan, S.I.; Alam, M.M.; Illahi, U.; AI Ghamdi, M.A.; Almotiri, S.H.; Su’Ud, M.M. A systematic review on monitoring and advanced control strategies in smart agriculture. IEEE Access 2021, 9, 32517–32548. [Google Scholar] [CrossRef]
- Hardie, M. Review of Novel and Emerging Proximal Soil Moisture Sensors for Use in Agriculture. Sensors 2020, 20, 6934. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Garcia, L.; Lunadei, L.; Barreiro, P.; Robla, J. A review of wireless sensor technologies and applications in agriculture and food industry: State of the art and current trends. Sensors 2009, 9, 4728–4750. [Google Scholar] [CrossRef] [Green Version]
- Prasad, P. Recent trend in wireless sensor network and its applications: A survey. Sens. Rev. 2015, 35, 229–236. [Google Scholar] [CrossRef]
- Akyildiz, I.F.; Stuntebeck, E.P. Wireless underground sensor networks: Research challenges. Ad Hoc Netw. 2006, 4, 669–686. [Google Scholar] [CrossRef]
- Silva, A.R.; Vuran, M.C. Communication with aboveground devices in wireless underground sensor networks: An empirical study. In Proceedings of the 2010 IEEE International Conference on Communications, Cape Town, South Africa, 23–27 May 2010; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Vuran, M.C.; Salam, A.; Wong, R.; Irmak, S. Internet of underground things in precision agriculture: Architecture and technology aspects. Ad Hoc Netw. 2018, 81, 160–173. [Google Scholar] [CrossRef] [Green Version]
- Sambo, D.W.; Forster, A.; Yenke, B.O.; Sarr, I.; Dayang, P. Wireless underground sensor networks path loss model for precision agriculture (WUSN-PLM). IEEE Sens. J. 2020, 20, 5298–5313. [Google Scholar] [CrossRef]
- Wang, B.; Chen, T. Understanding the continuous usage in wireless sensor networks of wisdom agriculture. Int. J. Mob. Commun. 2019, 17, 422. [Google Scholar] [CrossRef]
- Zhang, Z. Design of wireless underground sensor network nodes for field information acquisition. J. Afr. Agric. Res. 2012, 7, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Akyildiz, D.I.F.; Vuran, M.C. Wireless Underground Sensor Networks; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2010. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, H.E.; Electronics, S.O. A new design of wireless sensor underground network transceiver based on magnetic induction technology. Chin. J. Electron Devices 2018, 41, 104–109. [Google Scholar] [CrossRef]
- Zhang, Z. Research on Key Technologies of Wireless Underground Sensor Network for Farmland Soil Moisture Water Content. Ph.D. Thesis, Northwest A&F University, Xianyang, China, 2015. Available online: https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CDFDLAST2018&filename=1015333656.nh (accessed on 1 November 2021).
- Li, J.; Liu, X.; Lu, T.; Feng, Y. Research on wireless underground sensors network. Comput. Knowl. Technol. 2008, 2, 1738–1740. [Google Scholar] [CrossRef]
- Vuran, M.; Dong, X.; Preston, K. Wireless underground sensor networks: System in support of future agriculture. J. Nanotechnol. Eng. Med. 2013, 4, 020906. [Google Scholar] [CrossRef]
- Castellanos, G.; Deruyck, M.; Martens, L.; Joseph, W. System assessment of WUSN using NB-IoT UAV-Aided networks in potato crops. IEEE Access 2020, 8, 56823–56836. [Google Scholar] [CrossRef]
- Parameswaran, V.; Zhou, H.; Zhang, Z. Irrigation control using Wireless Underground Sensor Networks. In Proceedings of the 2012 Sixth International Conference on Sensing Technology (ICST), Kolkata, India, 18–21 December 2012; pp. 659–665. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Wu, P.; Zhang, Z.; Wang, N.; Han, W. Electromagnetic wave propagation in soil for wireless underground sensor networks. Prog. Electromagn. Res. M 2013, 30, 11–23. [Google Scholar] [CrossRef] [Green Version]
- Zungeru, A.M.; Chuma, J.; Mangwala, M.; Sigweni, B.; Matsebe, O. Signal propagation and analysisin wireless underground sensor networks. Int. J. Eng. Res. Afr. 2019, 41, 60–78. [Google Scholar] [CrossRef]
- Akkaş, M.A.; Sokullu, R. Channel modeling and analysis for wireless underground sensor networks in water medium using electromagnetic waves in the 300–700 MHz range. Wirel. Pers. Commun. 2015, 84, 1449–1468. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, Z.; Chai, R. Experiment on through-the-earth communication characteristics of soil information acquisition sensor nodes. J. Drain. Irrig. Mach. Eng. 2019, 37, 1005–1012. [Google Scholar] [CrossRef]
- Han, W.; Wu, P.; Yu, X.; Zhang, Z.; Li, D. Research progress in wireless sensor network for agricultural environment monitoring. Trans. CSAE 2011, 27, 326–330. [Google Scholar] [CrossRef]
- Trang, H.; Le, T.D.; Hwang, S.O. Connectivity analysis of underground sensors in wireless underground sensor networks. Ad Hoc Netw. 2018, 71, 104–116. [Google Scholar] [CrossRef]
- Zemmour, H.; Baudoin, G.; Diet, A. Soil effects on the underground-to-aboveground communication link in ultrawideband wireless underground sensor networks. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 218–221. [Google Scholar] [CrossRef]
- Hardie, M.; Hoyle, D. Underground wireless data transmission using 433-MHz LoRa for agriculture. Sensors 2019, 19, 4232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, X.; Han, W.; Wu, P.; Zhang, Z. Experiment of propagation haracteristics based on different frequency channels of wireless underground sensor network in soil. Trans. Chin. Soc. Agric. Mach. 2015, 46, 252–260. [Google Scholar] [CrossRef]
- Schillaci, C.; Perego, A.; Valkama, E.; Märker, M.; Saia, S.; Veronesi, F.; Lipani, A.; Lombardo, L.; Tadiello, T.; Gamper, H.A.; et al. New pedotransfer approaches to predict soil bulk density using WoSIS soil data and environmental covariates in Mediterranean agro-ecosystems. Sci. Total Environ. 2021, 780, 146609. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.A.; Dong, L.; Dhau, J.; Khosla, A.; Kaushik, A. Perspective—Electrochemical sensors for soil quality assessment. J. Electrochem. Soc. 2020, 167, 037550. [Google Scholar] [CrossRef]
- Li, W.; Zhang, G.; Zheng, L. Simulation of channel model for WUSN based on NS2. Comput. Mod. 2016, 1, 121–126. [Google Scholar] [CrossRef]
- Abdorahimi, D.; Sadeghioon, A.M. Comparison of radio frequency path loss models in soil for wireless underground sensor networks. J. Sens. Actuator Netw. 2019, 8, 35. [Google Scholar] [CrossRef] [Green Version]
- Qiao, X. The Construction of Green Infrastructure in Yangling. Master’s Thesis, Northwest A&F University, Xianyang, China,, 2015. Available online: https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201601&filename=1015331982.nh (accessed on 1 November 2021).
- Wu, J.; Qi, Y.; Chang, Q.; Liu, M.; Bai, L. Attribution of lou soil in Chinese soil taxonomy and establishment of representative soil series in Guanzhong area. Acta Pedol. Sin. 2021, 58, 371–375. [Google Scholar] [CrossRef]
- Ding, Y. Study and implement of the digital GFSK modulation and demodulation. Electron. Test 2010, 10, 52–55. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2010&filename=WDZC201010014&uniplatform=NZKPT&v=Nb5ehory8IfteTXLACJrbZeZbCW2xtlSZ1qs30YN0VLGBRwuZk2NegZIgcl6Em2W (accessed on 1 November 2021).
- Shimizu, M.; Aoki, N.; Shirakawa, K.; Tozawa, Y.; Daido, Y. New method of analyzing BER performance of GFSK with postdetection filtering. IEEE Trans. Commun. 1997, 45, 429–436. [Google Scholar] [CrossRef]
- Daniels, D.J. Surface-penetrating radar. Electron. Commun. Eng. J. 1996, 8, 165–182. [Google Scholar] [CrossRef]
- Dhillon, S.S.; Chakrabarty, K.; Iyengar, S.S. Sensor placement for grid coverage under imprecise detections. In Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997), Annapolis, MD, USA, 8–11 July 2002; Volume 2, pp. 1581–1587. [Google Scholar] [CrossRef] [Green Version]
- Huai, T.; Pang, J.; Wen, Q.; Song, Y. Fractal characteristics of soil particle size distribution in soils different in land use. J. Ecol. Rural. Environ. 2008, 24, 41–44. [Google Scholar] [CrossRef]
- Guo, X. Discuss the composition of soil organic matter and its effect on soil fertility. Inn. Mong. Prataculture 2013, 25, 19–21. [Google Scholar] [CrossRef]
- Dai, X. Changes of Nutrient Balance in Soil in Midwest Region of Guanzhong Plain. Master’s Thesis, Northwest A&F University, Xianyang, China,, 2012. Available online: https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD2012&filen-ame=1012436235 (accessed on 1 November 2021).
- Bogena, H.; Huisman, J.; Meier, H.; Rosenbaum, U.; Weuthen, A. Hybrid wireless underground sensor networks: Quantification of signal attenuation in soil. Vadose Zone J. 2009, 8, 755–761. [Google Scholar] [CrossRef]
- Palczewska, A.; Palczewski, J.; Robinson, R.M.; Neagu, D. Interpreting random forest models using a feature contribution method. In Proceedings of the 2013 IEEE 14th International Conference on Information Reuse & Integration (IRI), San Francisco, CA, USA, 14–16 August 2013; pp. 112–119. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Asghari, V.; Hsu, S.C.; Lee, C.J.; Chen, J.H. Detecting corporate misconduct through random forest in China’s construction industry. J. Clean. Prod. 2020, 268, 122266. [Google Scholar] [CrossRef]
- Wei, G.; Cosman, P.; Berry, C.C.; Feng, Z.; Schafer, W.R. Automatic tracking, feature extraction and classification of C. elegans phenotypes. IEEE Trans. Biomed. Eng. 2004, 51, 1811–1820. [Google Scholar] [CrossRef]
- Wei, H. Diagnosis and treatment of multicollinearity in regression analysis. J. Zhoukou Norm. Univ. 2019, 36, 16–20. [Google Scholar] [CrossRef]
- Xu, J.; Xu, S. Variable screening technique and statistical test in regression analysis. Shanghai Chem. Ind. 2016, 41, 5. [Google Scholar] [CrossRef]
- Guo, W.; Zhang, P.; Song, K.; Han, W.; Xu, J. Dielectric properties of Lou soil and moisture content detection affected by frequency and temperature. J. Drain. Irrig. Mach. Eng. 2013, 31, 713–718. [Google Scholar] [CrossRef]
- Zhang, P. Analysis to Effects of Main Factors on Dielectric Properties of Soils. Master’s Thesis, Northwest A&F University, Xianyang, China,, 2013. Available online: https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201401&filename=1013345469.nh (accessed on 1 November 2021).
- Wang, J.R.; Schmugge, T.J. An empirical model for the complex dielectric permittivity of soils as a function of water content. IEEE Trans. Geosci. Remote. Sens. 1980, GE-18, 288–295. [Google Scholar] [CrossRef] [Green Version]
- Xu, S. Analysis of soil moisture content measurement technology and permittivity influencing factors. Technol. Innov. Appl. 2017, 27, 34. [Google Scholar]
- Chen, Q.; Zeng, J.; Li, Z.; Zhou, J.; Tian, B. Relationship model of soil moisture and dielectric constant monitored with remote sensing. Trans. Chin. Soc. Agric. Eng. 2012, 28, 171–175. [Google Scholar] [CrossRef]
- Sun, Z.; Akyildiz, I.F. Connectivity in wireless underground sensor networks. In Proceedings of the 2010 7th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), Boston, MA, USA, 21–25 June 2010; pp. 1–9. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.I.; Wu, S.; Ivoghlian, A.; Salcic, Z.; Austin, A.; Zhou, X. LWS: A LoRaWAN wireless underground sensor network simulator for agriculture applications. In Proceedings of the 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation, Leicester, UK, 19–23 August 2019; pp. 475–482. [Google Scholar] [CrossRef]
- Dong, X.; Vuran, M.C. A channel model for wireless underground sensor networks using lateral waves. In Proceedings of the 2011 IEEE Global Telecommunications Conference—GLOBECOM, Houston, TX, USA, 5–9 December 2011; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Li, L. Study of Some Key Techniques in Wireless Underground Sensor Networks. Ph.D. Thesis, Beijing University of Posts and Telecommunications, Beijing, China, 2008. Available online: https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CD-FD9908&filename=2008139233.nh (accessed on 1 November 2021).
- Wang, P. The Experimental Study and Signal Inversion of Ground Penetrating Radar for Soil Compactness Detection. Ph.D. Thesis, China University of Mining and Technology (Beijing), Beijing, China, 2010. Available online: https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CDFD0911&filename=2010240555.nh (accessed on 1 November 2021).
- Sui, J.; Li, T.; Shi, T.; Wang, Q.; Li, Y. Effect of soil compactness on electromagnetic wave attenuation. J. Heilongjiang Bayi Agric. Univ. 1991, 51–53. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD9093-&filename=HLJK199101007&uniplatform=NZKPT&v=r4rHXWdW-1zhvekkfX0lJHic6DGr1BIXAJv8_vsFtWq6QSusjuKyi82sECiOP2ZJ (accessed on 1 November 2021).
- Guo, S. The Soil A New Approach to Estimating the Path Loss in Underground Wireless Sensor Networks Detection Model Based on Genetrating Radar in Reclamation Area. Master’s Thesis, Shandong Agricultural University, Tai’an, China, 2013. Available online: https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201402&filename=1014154161.nh (accessed on 1 November 2021).
Particle-Sized Fractions (%) | |||
---|---|---|---|
Soil Type | Sand | Silt | Clay |
(2–0.02 mm) | (0.02–0.002 mm) | (<0.002 mm) | |
silt loam | 37.6 | 41.6 | 20.8 |
Test Factors | Importance Score | VIF | t | Coefficient of the Model |
---|---|---|---|---|
Soil moisture content | 0.843 | 1 | 49.765 *** | −0.559 |
Node burial depth | 0.889 | 1 | 49.293 *** | −0.282 |
Soil compactness | 0.439 | 1 | 52.856 *** | −1.85 |
Horizontal distance between nodes | 1.017 | 1 | 29.137 *** | −0.162 |
Test Factors | Attenuation Model Equation | R2 | RMSE (dbm) |
---|---|---|---|
Soil moisture content | R = −0.559 ∗ W − 23.70 | 0.893 | 2.489 |
Node burial depth | R = −0.282 ∗ D − 20.83 | 0.839 | 2.955 |
Soil compactness | R = −1.85 ∗ C − 28.365 | 0.812 | 2.955 |
Horizontal distance between nodes | R = −0.162 ∗ L − 27.67 | 0.79 | 4.192 |
Test No. | Test Factors and Signal Strength | |||||
---|---|---|---|---|---|---|
Soil Moisture Content (%) | Node Burial Depth (cm) | Soil Compactness (kg/cm2) | Horizontal Distance between Nodes (cm) | Model Prediction Value (dbm) | Test Values (dbm) | |
1 | 12.5 | 35 | 2 | 20 | −36.49 | −30.5 |
2 | 20 | 30 | 1 | 20 | −37.43 | −39.25 |
3 | 17.5 | 30 | 1.5 | 30 | −38.57 | −35.27 |
4 | 10 | 35 | 2.5 | 30 | −37.64 | −38.3 |
5 | 15 | 30 | 2 | 40 | −39.72 | −42.34 |
6 | 12.5 | 40 | 1.5 | 40 | −40.22 | −42.38 |
7 | 17.5 | 35 | 1 | 50 | −42.3 | −45.41 |
8 | 20 | 35 | 0.5 | 40 | −41.15 | −40.43 |
9 | 20 | 45 | 2 | 30 | −45.13 | −48.47 |
10 | 17.5 | 45 | 2.5 | 40 | −46.27 | −50.48 |
11 | 15 | 45 | 0.5 | 50 | −42.8 | −45.54 |
12 | 12.5 | 45 | 1 | 10 | −35.84 | −33.59 |
13 | 12.5 | 30 | 2.5 | 50 | −40.87 | −36.64 |
14 | 17.5 | 40 | 0.5 | 20 | −37.92 | −34.69 |
15 | 10 | 40 | 2 | 50 | −41.37 | −45.75 |
16 | 10 | 30 | 0.5 | 10 | −29.29 | −24.36 |
17 | 15 | 35 | 1.5 | 10 | −35.35 | −30.86 |
18 | 20 | 50 | 1.5 | 50 | −48.85 | −42.9 |
19 | 10 | 45 | 1.5 | 20 | −37 | −32.95 |
20 | 15 | 50 | 2.5 | 20 | −43.05 | −37.94 |
21 | 12.5 | 50 | 0.5 | 30 | −39.57 | −43.11 |
22 | 17.5 | 50 | 2 | 10 | −41.9 | −50.36 |
23 | 20 | 40 | 2.5 | 10 | −41.4 | −45.53 |
24 | 10 | 50 | 1 | 40 | −40.72 | −43.01 |
25 | 15 | 40 | 1 | 30 | −39.07 | −42.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, M.; Zhang, Z.; Yang, J.; Zheng, J.; Han, W. An Attenuation Model of Node Signals in Wireless Underground Sensor Networks. Remote Sens. 2021, 13, 4642. https://doi.org/10.3390/rs13224642
Han M, Zhang Z, Yang J, Zheng J, Han W. An Attenuation Model of Node Signals in Wireless Underground Sensor Networks. Remote Sensing. 2021; 13(22):4642. https://doi.org/10.3390/rs13224642
Chicago/Turabian StyleHan, Meng, Zenglin Zhang, Jie Yang, Jiayun Zheng, and Wenting Han. 2021. "An Attenuation Model of Node Signals in Wireless Underground Sensor Networks" Remote Sensing 13, no. 22: 4642. https://doi.org/10.3390/rs13224642
APA StyleHan, M., Zhang, Z., Yang, J., Zheng, J., & Han, W. (2021). An Attenuation Model of Node Signals in Wireless Underground Sensor Networks. Remote Sensing, 13(22), 4642. https://doi.org/10.3390/rs13224642