Estimating Forest Stand Height in Savannakhet, Lao PDR Using InSAR and Backscatter Methods with L-Band SAR Data
Abstract
:1. Introduction
1.1. REDD+ in Lao PDR
1.2. Estimating Forest Stand Height with Remote Sensing
1.3. Area of Interest
1.4. Objectives
2. Materials and Methods
2.1. Data
2.1.1. ALOS PALSAR
2.1.2. Training and Testing Datasets
2.1.3. Regional Land Cover Monitoring System
2.1.4. Shuttle Radar Topography Mission
2.1.5. CHIRPS
2.2. Methods
2.2.1. Backscatter Technique
2.2.2. Interferometric SAR (InSAR) Technique
2.2.3. Fusion Technique
2.2.4. Comparisons
3. Results
4. Discussion
4.1. Limitations
4.2. Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AGB | Above-Ground Biomass |
ALOS | Advanced Land Observing Satellite |
ALS | Airborne Laser Scanning |
ASF | Alaska Satellite Facility |
CHIRPS | Climate Hazards Group InfraRed Precipitation with Stations |
DEM | Digital Elevation Model |
FREL | Forest Reference Emission Levels |
FSH | Forest Stand Height |
GEDI | Global Ecosystem Dynamics Investigation |
GLAD | Global Land Analysis and Discovery |
GEE | Google Earth Engine |
IPCC | Intergovernmental Panel on Climate Change |
InSAR | Interferometric SAR |
ISCE | Interferometric SAR Computing Environment |
JAXA | Japan Aerospace Exploration Agency |
LiDAR | Light Detection And Ranging |
MRV | Monitoring, reporting, and verification |
NISAR | NASA-ISRO Synthetic Aperture Radar |
PDR | People’s Democratic Republic |
PALSAR | Phased Array type L-band Synthetic Aperture Radar |
REDD | Reducing Emissions from Deforestation and Forest Degradation |
RF | Random Forest |
RLCMS | Regional Land Cover Monitoring System |
RMSE | Root Mean Square Error |
SAR | Synthetic Aperture Radar |
SRTM | Shuttle Radar Topography Mission |
Appendix A. Precipitation Investigation
11–13 June 2009 | 27–29 July 2009 | |
---|---|---|
Mean | 5.8 | 36.5 mm/day |
Maximum | 13.0 | 23.0 mm/day |
Minimum | 0 | 57.5 mm/day |
Standard Deviation | 2.5 | 6.2 mm/day |
Appendix B. Fitting Coefficients for Backscatter Approach
Appendix C. Alternative Backscatter Approach
Appendix D. Random Forest Comparison
Appendix E. Comparison Products
Appendix F. Scripts and Data
References
- Ramcilovik-Suominen, S. REDD+ as a tool for state territorialization: Managing forests and people in Laos. J. Political Ecol. 2019, 26, 26–281. [Google Scholar] [CrossRef] [Green Version]
- Secretariat, U. Key Decisions Relevant for Reducing Emissions from Deforestation and Forest Degradation in Developing Countries (REDD+); UNFCCC Secretariat: Bonn, Germany, 2016. [Google Scholar]
- Chien, H. Reducing Emissions, Forest Management and Multiactor Perspectives: Problem Representation Analysis of Laos REDD+ Programs. For. Soc. 2019, 3, 262–277. [Google Scholar] [CrossRef]
- UNFCCC. Factsheets: Forest Reference Emission Levels; UNFCCC: Bonn, Germany, 2021. [Google Scholar]
- Thongmanivong, S.; Phanvilay, K.; Boutthavong, S. Report on Forest Inventory Dongsithuane Production Forest, Song Khone District Savanakhet Province; National University of Laos: Don Noun, Laos, 2009. [Google Scholar]
- Vongvisouk, T.; Thongmanivong, S.; Komany, S.; Inthaboualy, I.; Pham, T.T.; Moeliono, M.; Bong, I.W.; Phompila, C. Lao PDR’s Nationally Determined Contribution (NDC): Progress, Opportunities, and Challenges in the Forestry Sector; CIFOR: Bogor, Indonesia, 2020. [Google Scholar] [CrossRef]
- Timothy, D.; Onisimo, M.; Cletah, S.; Adelabu, S.; Tsitsu, B. Remote Sensing of Aboveground Forest Biomass: A Review. Trop. Ecol. 2016, 57, 125–132. [Google Scholar]
- UNFCCC. Report of the Conference of the Parties on Its Fifteenth Session, Held in Copenhagen from 7 to 19 December 2009; UNFCCC: Rio de Janeiro, Brazil, 2010. [Google Scholar]
- Shanti, R.; Panichelli, L.; Waterworth, R.; Federici, S.; Green, C.; Jonckheere, I.; Kahuri, S.; Kurz, W.; Ligt, R.; Ometto, J.; et al. Consistent Representation of Lands. In 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 3; U.N. Food and Agriculture Organization: Rome, Italy, 2019; Chapter 4. [Google Scholar]
- Espejo, A.; Federici, S.; Green, C.; Oloffson, P.; Sanchez, M.J.S.; Waterworth, R.; Amuchastegui, N.; d’Annuzio, R.; Balzter, H.; Bholanath, P.; et al. Integrating Remote-Sensing and Ground-Based Observations for Estimation of Emissions and Removals of Greenhouse Gases in Forests Methods and Guidance from the Global Forest Observations Initiative; U.N. Food and Agriculture Organization: Rome, Italy, 2020. [Google Scholar]
- Srivastava, N.; Cianciala, E.; Fernandes, J. Report of the Technical Assessment of the Proposed Forest Reference Emission Level/Forest Reference Level of the Lao People’s Democratic Republic Submitted in 2018; UNFCCC: Rio de Janeiro, Brazil, 2019. [Google Scholar]
- Aalde, H.; Gonzalez, P.; Gytarsky, M.; Krug, T.; Kurz, W.A.; Ogle, S.; Raison, J.; Schoene, D.; Ravindranath, N.; Elhassan, N.G.; et al. Forest Land. In 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4; U.N. Food and Agriculture Organization: Rome, Italy, 2019; Chapter 4. [Google Scholar]
- Basuki, T.; van Laake, P.; Skidmore, A.; Hussin, Y. Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. For. Ecol. Manag. 2009, 257, 1684–1694. [Google Scholar] [CrossRef]
- Shi, L.; Liu, S. Methods of Estimating Forest Biomass: A Review. In Biomass Volume Estimation and Valorization for Energy; Tumuluru, J.S., Ed.; IntechOpen: London, UK, 2017; Chapter 2. [Google Scholar]
- Hansen, M.C.; Potapov, P.V.; Geotz, S.J.; Turubanova, S.; Tyukavina, A.; Krylov, A.; Kommareddy, A.; Egorov, A. Mapping tree height distributions in Sub-Saharan Africa using Landsat 7 and 8 data. Remote Sens. Environ. 2016, 185, 221–232. [Google Scholar] [CrossRef] [Green Version]
- Vicharnakorn, P.; Shrestha, R.; Nagai, M.; Salam, A.; Kiratiprayoon, S. Carbon Stock Assessment Using Remote Sensing and Forest Inventory Data in Savannakhet, Lao PDR. Remote Sens. 2014, 6, 5452–5479. [Google Scholar] [CrossRef] [Green Version]
- Vorster, A.G.; Evangelista, P.H.; Stovall, A.E.L.; Ex, S. Variability and uncertainty in forest biomass estimates from the tree to landscape scale: The role of allometric equations. Carbon Balance Manag. 2020, 15, 8. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.; Clevers, J.G.; Liu, X.; Tian, X.; Li, Z.; Li, Z. Predicting forest height using the GOST, Landsat 7 ETM+, and airborne LiDAR for sloping terrains in the Greater Khingan Mountains of China. ISPRS J. Photogramm. Remote Sens. 2018, 137, 97–111. [Google Scholar] [CrossRef]
- Ahmed, O.S.; Franklin, S.E.; Wulder, M.A.; White, J.C. Characterizing stand-level forest canopy cover and height using Landsat time series, samples of airborne LiDAR, and the Random Forest algorithm. ISPRS J. Photogramm. Remote Sens. 2015, 101, 89–101. [Google Scholar] [CrossRef]
- Stovall, A.E.; Vorster, A.G.; Anderson, R.S.; Evangelista, P.H.; Shugart, H.H. Non-destructive aboveground biomass estimation of coniferous trees using terrestrial LiDAR. Remote Sens. Environ. 2017, 200, 31–42. [Google Scholar] [CrossRef]
- Healey, S.P.; Yang, Z.; Gorelick, N.; Ilyushchenko, S. Highly Local Model Calibration with a New GEDI LiDAR Asset on Google Earth Engine Reduces Landsat Forest Height Signal Saturation. Remote Sens. 2020, 12, 2840. [Google Scholar] [CrossRef]
- Potapov, P.; Li, X.; Hernandez-Serna, A.; Tyukavina, A.; Hansen, M.C.; Kommareddy, A.; Pickens, A.; Turubanova, S.; Tang, H.; Silva, C.E.; et al. Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sens. Environ. 2021, 253, 112165. [Google Scholar] [CrossRef]
- Hou, Z.; Xu, Q.; Tokola, T. Use of ALS, Airborne CIR and ALOS AVNIR-2 data for estimating tropical forest attributes in Lao PDR. ISPRS J. Photogramm. Remote Sens. 2011, 66, 776–786. [Google Scholar] [CrossRef]
- Ferretti, A. Satellite InSAR Data. Reservoir Monitoring from Space; European Association of Geoscientists and Engineers: Houten, The Netherlands, 2014. [Google Scholar]
- Mitchell, A.L.; Rosenqvist, A.; Mora, B. Current remote sensing approaches to monitoring forest degradation in support of countries measurement, reporting and verification (MRV) systems for REDD+. Carbon Balance Manag. 2017, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flores-Anderson, A.I.; Herndon, K.E.; Thapa, R.B.; Cherrington, E. Handbook on Measurement, Reporting and Verification for Developing Country Parties; SERVIR Global Science Coordination Office: Huntsville, AL, USA, 2019.
- Woodhouse, I. Introduction to Microwave Remote Sensing; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Hyyppä, J.; Hyyppä, H.; Inkinen, M.; Engdahl, M.; Linko, S.; Zhu, Y.H. Accuracy comparison of various remote sensing data sources in the retrieval of forest stand attributes. For. Ecol. Manag. 2000, 128, 109–120. [Google Scholar] [CrossRef]
- Pourshamsi, M.; Xia, J.; Yokoya, N.; Garcia, M.; Lavalle, M.; Pottier, E.; Balzter, H. Tropical forest canopy height estimation from combined polarimetric SAR and LiDAR using machine-learning. ISPRS J. Photogramm. Remote Sens. 2021, 172, 79–94. [Google Scholar] [CrossRef]
- Papathanassiou, K.; Cloude, S. The Effect of Temporal Decorrelation on the Inversion of Forest Parameters from Pol-InSAR Data; IEEE: Piscataway, NJ, USA, 2003; Volume 3, pp. 1429–1431. [Google Scholar]
- Lavalle, M.; Simard, M.; Hensley, S. A Temporal Decorrelation Model for Polarimetric Radar Interferometers. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2880–2888. [Google Scholar] [CrossRef]
- Lavalle, M.; Hensley, S. Extraction of Structural and Dynamic Properties of Forests From Polarimetric-Interferometric SAR Data Affected by Temporal Decorrelation. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4752–4767. [Google Scholar] [CrossRef]
- Lei, Y.; Siqueira, P. Estimation of forest height using spaceborne repeat-pass L-band InSAR correlation magnitude over the US state of Maine. Remote Sens. 2014, 6, 10252–10285. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.K.; Kugler, F.; Papathanassiou, K.P.; Hajnsek, I. Quantification of Temporal Decorrelation Effects at L-Band for Polarimetric SAR Interferometry Applications. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1351–1367. [Google Scholar] [CrossRef]
- Askne, J.; Dammert, P.; Ulander, L.; Smith, G. C-band repeat-pass interferometric SAR observations of the forest. IEEE Trans. Geosci. Remote Sens. 1997, 35, 25–35. [Google Scholar] [CrossRef]
- Yu, Y.; Saatchi, S. Sensitivity of L-Band SAR Backscatter to Aboveground Biomass of Global Forests. Remote Sens. 2016, 8, 522. [Google Scholar] [CrossRef] [Green Version]
- Joshi, N.; Mitchard, E.; Schumacher, J.; Johannsen, V.; Saatchi, S.; Fensholt, R. L-Band SAR Backscatter Related to Forest Cover, Height and Aboveground Biomass at Multiple Spatial Scales across Denmark. Remote Sens. 2015, 7, 4442–4472. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Liu, C.; Wang, X. Constructing a Finer-Resolution Forest Height in China Using ICESat/GLAS, Landsat and ALOS PALSAR Data and Height Patterns of Natural Forests and Plantations. Remote Sens. 2019, 11, 1740. [Google Scholar] [CrossRef] [Green Version]
- Lei, Y.; Siqueira, P.; Torbick, N.; Ducey, M.; Chowdhury, D.; Salas, W. Generation of Large-Scale Moderate-Resolution Forest Height Mosaic With Spaceborne Repeat-Pass SAR Interferometry and Lidar. IEEE Trans. Geosci. Remote Sens. 2019, 57, 770–787. [Google Scholar] [CrossRef]
- Berninger, A.; Lohberger, S.; Zhang, D.; Siegert, F. Canopy Height and Above-Ground Biomass Retrieval in Tropical Forests Using Multi-Pass X- and C-Band Pol-InSAR Data. Remote Sens. 2019, 11, 2105. [Google Scholar] [CrossRef] [Green Version]
- Urbazaev, M.; Cremer, F.; Migliavacca, M.; Reichstein, M.; Schmullius, C.; Thiel, C. Potential of multi-temporal ALOS-2 PALSAR-2 ScanSAR data for vegetation height estimation in tropical forests of Mexico. Remote Sens. 2018, 10, 1277. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seymour, F.; Busch, J. Tropical Forests: A Large Share of Climate Emissions; An Even Larger Share of Potential Emission Reductions. In Why Forests? Why Now? The Science, Economics, and Politics of Tropical Forests and Climate Change; Brookings Institution Press: Washington, DC, USA, 2016; pp. 27–58. [Google Scholar]
- Hou, Z.; Xu, Q.; Nuutinen, T.; Tokola, T. Extraction of remote sensing-based forest management units in tropical forests. Remote Sens. Environ. 2013, 130, 1–10. [Google Scholar] [CrossRef]
- Chanthavong, S. Participatory Forest Management: A Research Study in Savannakhet Province, Laos; Laos Country Report; University of New England: Armidale, Australia, 2003; pp. 44–54. [Google Scholar]
- Thongmanivong, S.; Phanvilay, K.; Vongvisouk, T. How Laos is Moving Forward with REDD+ Schemes; Laos Country Report; University of New England: Armidale, Australia, 2013. [Google Scholar]
- SUPSFM Preparation Team. Environment and Social Impact Assessment: Scaling-up Participatory Sustainable Forest Management Lao PDR–Forest Investment Program; Ministry of Agriculture and Forestry: Vientiane, Lao, 2013.
- Saah, D.; Tenneson, K.; Poortinga, A.; Nguyen, Q.; Chishtie, F.; Aung, K.S.; Markert, K.N.; Clinton, N.; Anderson, E.R.; Cutter, P.; et al. Primitives as building blocks for constructing land cover maps. ITC J. 2020, 85, 101979. [Google Scholar] [CrossRef]
- Government of Lao People’s Democratic Republic. Forestry Law; Government of Lao People’s Democratic Republic: Vientiane, Laos, 2007.
- Rivers, Laos [Shapefile], International Steering Committee for Global Mapping. Laos. Kom Phǣnthī hǣng Sat2013. Available online: http://purl.stanford.edu/st279wr9010 (accessed on 6 September 2021).
- Lei, Y.; Siqueira, P. An Automatic Mosaicking Algorithm for the Generation of a Large-Scale Forest Height Map Using Spaceborne Repeat-Pass InSAR Correlation Magnitude. Remote Sens. 2015, 7, 5639–5659. [Google Scholar] [CrossRef] [Green Version]
- Dubayah, R.; Blair, J.B.; Goetz, S.; Fatoyinbo, L.; Hansen, M.; Healey, S.; Hofton, M.; Hurtt, G.; Kellner, J.; Luthcke, S.; et al. The Global Ecosystem Dynamics Investigation: High-resolution laser ranging of the Earth’s forests and topography. Sci. Remote Sens. 2020, 1, 100002. [Google Scholar] [CrossRef]
- Japan Aerospace Exploration Agency About ALOS—Overview and Objectives. Available online: https://www.eorc.jaxa.jp/ALOS/en/about/about_index.htm (accessed on 24 August 2020).
- JAXA/METI ALOS PALSAR. L1.0 ALOS PALSAR [Data Set]; Alaska Satellite Facility DAAC: Fairbanks, AK, USA, 2009. [CrossRef]
- Japan Aerospace Exploration Agency Generation of Global Forest/Non-forest map Using ALOS/PALSAR. Available online: https://www.eorc.jaxa.jp/ALOS/en/guide/forestmap_oct2010.htm (accessed on 24 August 2020).
- Dubayah, R.; Luthcke, S.; Sabaka, T.; Nicholas, J.; Preaux, S.; Hofton, M. GEDI L3 Gridded Land Surface Metrics; Version 1; ORNL Distributed Active Archive Center: Oak Ridge, TN, USA, 2021. [CrossRef]
- ISCE2 README. Available online: https://github.com/isce-framework/isce2 (accessed on 24 August 2020).
- Rosen, P.A.; Gurrola, E.; Sacco, G.F.; Zebker, H. The InSAR scientific computing environment. In Proceedings of the EUSAR 2012, 9th European Conference on Synthetic Aperture Radar, Nuremberg, Germany, 23–26 April 2012; pp. 730–733. [Google Scholar]
- Gens, R. NASA Shuttle Radar Topography Mission Global 1 Arc Second [Data Set]; NASA JPL: Pasadena, CA, USA, 2015. [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Rowland, J.; Romero, B.; Husak, G.; Michaelsen, J.; Verdin, A. A quasi-global precipitation time series for drought monitoring: U.S. Geological Survey Data Series 832. IEEE Trans. Geosci. Remote Sens. 2014, 832, 4. [Google Scholar]
- Shimada, M.; Itoh, T.; Motooka, T.; Watanabe, M.; Shiraishi, T.; Thapa, R.; Lucas, R. New global forest/non-forest maps from ALOS PALSAR data (2007–2010). Remote Sens. Environ. 2014, 155, 13–31. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, Y.; Siqueira, P.; Treuhaft, R. A physical scattering model of repeat-pass InSAR correlation for vegetation. Waves Random Complex Media 2017, 27, 129–152. [Google Scholar] [CrossRef]
- Simard, M.; Hensley, S.; Lavalle, M.; Dubayah, R.; Pinto, N.; Hofton, M. An empirical assessment of temporal decorrelation using the uninhabited aerial vehicle synthetic aperture radar over forested landscapes. Remote Sens. 2012, 4, 975–986. [Google Scholar] [CrossRef] [Green Version]
- Yang, L. Forest Stand Height Algorithm. Available online: https://github.com/leiyangleon/FSH (accessed on 1 April 2021).
- Lei, Y. (California Institute of Technology, Pasadena, CA, USA). Personal Communication, 2020.
- Siqueria, P. Forest Mapping and Monitoring with SAR Data Pt. 4: Forest Stand Height. NASA Applied Remote Sensing TrainingWebinar. Available online: https://arset.gsfc.nasa.gov/land/webinars/forest-mapping-sar (accessed on 21 May 2020).
- Hamadi, A.; Borderies, P.; Albinet, C.; Koleck, T.; Villard, L.; Ho Tong Minh, D.; Le Toan, T.; Burban, B. Temporal Coherence of Tropical Forests at P-Band: Dry and Rainy Seasons. IEEE Geosci. Remote Sens. Lett. 2015, 12, 557–561. [Google Scholar] [CrossRef]
- Small, D. Flattening gamma: Radiometric terrain correction for SAR imagery. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3081–3093. [Google Scholar] [CrossRef]
- Behari, J. Microwave Dielectric Behavior of Wet Soils; Springer: Berlin/Heidelberg, Germany, 2005; Volume 8. [Google Scholar] [CrossRef]
- Zhou, X.; Chang, N.B.; Li, S. Applications of SAR Interferometry in Earth and Environmental Science Research. Sensors 2009, 9, 1876–1912. [Google Scholar] [CrossRef] [Green Version]
- Gens, R. ASF Radiometric Terrain Corrected Products: Algorithm Theoretical Basis Document; Alaska Satellite Facility: Fairbanks, AK, USA, 2015.
Dataset | Native Spatial Resolution | Temporal Resolution | Dates Used |
---|---|---|---|
ALOS L1 interferograms | 30 m | 46 days | 13 June and 29 July 2009 |
Annual mosaic | 24 m | annual | 13 June, 30 September and 12 October 2009 |
LiDAR | 30 m | - | 6–8 February 2009 |
RLCMS | 30 m | annual | 2009 |
GLAD 2019 | 30 m | - | 2019 |
GEDI L2 | 25 m diameter | - | 2019–2020 |
SRTM | 25 m | - | 2000 |
Date Pairs | Overall | Forest Class | Forest Class in the Dongsithuane PF | Temporal Baseline |
---|---|---|---|---|
8 September 2007 and 9 December 2007 | 0.16 | 0.14 | 0.35 | 92 days |
13 June 2009 and 29 July 2009 | 0.15 | 0.20 | 0.33 | 46 days |
16 June 2010 and 16 September 2010 | 0.15 | 0.15 | 0.35 | 92 days |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parache, H.B.; Mayer, T.; Herndon, K.E.; Flores-Anderson, A.I.; Lei, Y.; Nguyen, Q.; Kunlamai, T.; Griffin, R. Estimating Forest Stand Height in Savannakhet, Lao PDR Using InSAR and Backscatter Methods with L-Band SAR Data. Remote Sens. 2021, 13, 4516. https://doi.org/10.3390/rs13224516
Parache HB, Mayer T, Herndon KE, Flores-Anderson AI, Lei Y, Nguyen Q, Kunlamai T, Griffin R. Estimating Forest Stand Height in Savannakhet, Lao PDR Using InSAR and Backscatter Methods with L-Band SAR Data. Remote Sensing. 2021; 13(22):4516. https://doi.org/10.3390/rs13224516
Chicago/Turabian StyleParache, Helen Blue, Timothy Mayer, Kelsey E. Herndon, Africa Ixmucane Flores-Anderson, Yang Lei, Quyen Nguyen, Thannarot Kunlamai, and Robert Griffin. 2021. "Estimating Forest Stand Height in Savannakhet, Lao PDR Using InSAR and Backscatter Methods with L-Band SAR Data" Remote Sensing 13, no. 22: 4516. https://doi.org/10.3390/rs13224516
APA StyleParache, H. B., Mayer, T., Herndon, K. E., Flores-Anderson, A. I., Lei, Y., Nguyen, Q., Kunlamai, T., & Griffin, R. (2021). Estimating Forest Stand Height in Savannakhet, Lao PDR Using InSAR and Backscatter Methods with L-Band SAR Data. Remote Sensing, 13(22), 4516. https://doi.org/10.3390/rs13224516