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Abstract: Forest stand height (FSH), or average canopy height, serves as an important indicator
for forest monitoring. The information provided about above-ground biomass for greenhouse gas
emissions reporting and estimating carbon storage is relevant for reporting for Reducing Emissions
from Deforestation and Forest Degradation (REDD+). A novel forest height estimation method
utilizing a fusion of backscatter and Interferometric Synthetic Aperture Radar (InSAR) data from
JAXA’s Advanced Land Observing Satellite Phased Array type L-band Synthetic Aperture Radar
(ALOS PALSAR) is applied to a use case in Savannakhet, Lao. Compared with LiDAR, the estimated
height from the fusion method had an RMSE of 4.90 m and an R2 of 0.26. These results are comparable
to previous studies using SAR estimation techniques. Despite limitations of data quality and quantity,
the Savannakhet, Lao use case demonstrates the applicability of these techniques utilizing L-band
SAR data for estimating FSH in tropical forests and can be used as a springboard for use of L-band
data from the future NASA-ISRO SAR (NISAR) mission.

Keywords: interferometry; backscatter; MRV; REDD+; ALOS PALSAR; SAR; forest monitoring; Lao

1. Introduction
1.1. REDD+ in Lao PDR

The Lao People’s Democratic Republic (PDR) committed to the REDD+ program
(Reducing Emissions from Deforestation and Forest Degradation plus the sustainable
management of forests, and the conservation and enhancement of forest carbon stocks), in
2007, by joining the Forest Carbon Partnership Facility [1]. A United Nations Framework
Convention on Climate Change (UNFCCC) program, REDD+ aims to provide incentives
for the reduction of emissions caused by deforestation and forest degradation [2]. Through
these incentives for participating member countries, the REDD+ program aims to protect
and enhance the capacity of forests to act as natural carbon sinks [3]. The Forest Reference
Emission Level (FREL) is an integral component of REDD+, providing a baseline for
evaluating the impact of REDD+ activities through changes in emissions [4].

Since 2007, the institutional landscape implementing REDD+ in Lao PDR has evolved.
The Ministry of Agriculture and Forest established the national REDD+ Task Force in
2008 [5], which has since been reorganized into the Department of Forestry (DoF) and
Ministry of Agriculture and Forestry (MAF) [1]. The Ministry of Natural Resources and
Environment (MoNRE) was established in 2011. Currently, the REDD+ Division in the
MoNRE and the REDD+ Office in the MAF are both responsible for REDD+ activities, and
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occupy the same level in the administrative hierarchy [6]. The first Readiness Grant was
signed in 2014, for USD 3.6 million. Lao PDR’s Emission Reduction Program Document
(ER-PD) was accepted in June 2018 at the 18th Carbon Fund Participants Meeting and
proposed to reduce emissions in six provinces by targeting small-scale drivers of forest
degradation, e.g., shifting cultivation [1]. REDD+ action plans have been made for these
six REDD+ pilot provinces [6].

Traditionally, the forest monitoring required for these reports has been accomplished
through field work, but this is challenging due to the cost and time investment required [7],
especially for a country-level initiative. As a result, the most recent guidance includes
recommendations incorporating remote sensing as a mechanism for broad-scale and sus-
tained monitoring efforts [8,9]. Currently, medium resolution optical data are often used.
However, optical data are considered more useful for detecting land cover changes, such as
deforestation, while radar is more suitable for estimating above-ground biomass (AGB) [10].
Lao PDR used remote sensing techniques for mapping land cover types and change detec-
tion along with country-specific allometric equations for the proposed FREL [11]. In 2018,
the UNFCCC secretariat and technical assessment team reviewed Lao PDR’s proposed
FREL and recommended that Lao PDR enhance capacity in remote sensing for forest map-
ping and estimation of forest degradation and subsequent emissions [11]. This article aims
to support those recommendations through investigating a use case of novel L-band SAR
methods for estimating forest stand height (FSH), or mean canopy height, in Savannakhet,
Lao PDR.

1.2. Estimating Forest Stand Height with Remote Sensing

AGB is often used as a proxy measurement of carbon storage or sequestration [7]. The
Intergovernmental Panel on Climate Change (IPCC) suggests two approaches, Biomass
Gain-loss and Stock-Difference, for estimating carbon storage depending on data avail-
ability and technical capacity. AGB is essential for estimating overall biomass for both
approaches [12]. FSH is a key characteristic of vegetation structure that can be used within
allometric equations to estimate AGB [13,14].

Remote sensing is beneficial for forest monitoring as it can cover large areas and
provide regular updates on forest cover and quality [14]. Optical sensors, such as Landsat
7 and 8, have been used for estimating FSH with some success [7,15–17]. Airborne LiDAR
(Light Detection and Ranging) is often used alongside optical data, providing more precise
vertical data to train models using optical data as inputs to estimate forest height [18].
Multiple regression and Random Forest approaches utilizing Landsat and LiDAR were
evaluated for estimating FSH in a temperate forest in British Columbia, Canada, with R2

of 0.61 and root mean square error (RMSE) of 4.18 m and R2 of 0.82 and RMSE 3.17 m
respectively, at a minimum object size of 2.0 ha [19]. Terrestrial LiDAR has also been used
to estimate structure parameters of forests for estimating biomass with high accuracy [20].
Recently, the improved coverage of spaceborne laser data through the Global Ecosystem
Dynamics Investigation (GEDI) mission has allowed for more comprehensive training of
optical datasets, such as Landsat, to estimate FSH, resulting in a global RMSE of 7.08 m
predicted using a Random Forest model at 3 km resolution [21]. Another recent study
utilized Landsat and GEDI to create a global forest height map at 30 m resolution with an
R2 of 0.61 and RMSE of 9.07 m compared with LiDAR [22].

SAR offers potential as compared to optical approaches, as SAR measures vertical
structure as opposed to the ’greenness’ measured by optical sensors [15], tending to saturate
at low AGB levels [23]. In addition, SAR is an active remote sensing system and thus able
to acquire usable data despite cloud cover [24], which is especially important for tropical
regions such as Lao PDR [25]. A variety of methods based on Synthetic Aperture Radar
(SAR) have been developed to take advantage of SAR’s sensitivity to structure [7,26,27].
Multiple linear regressions at 100 m spacing have been utilized to compare the performance
of optical and SAR datasets, resulting in an R2 of 0.15 for European Remote-Sensing Satellite
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1/2 C-band coherence data, 0.08 R2 for Japanese Earth Resources Satellite 1 L-band data,
and 0.26 for Landsat data [28].

Full polarimetric SAR has also been used to derive FSH in a tropical forest and provides
results using machine learning (ML) methods [29], integrating LiDAR data and multiple
polarimetric variables extracted using quad-pol decomposition techniques to achieve an
average R2 equal to 0.7 and RMSE equal to 10 m. This study shows that full polarimetric
data and LiDAR can be used to derive FSH. However, the overall RMSE values are high and,
as expected, the performance of the ML algorithms were highly dependent on the training
data. InSAR-based Random Volume over Ground (RVoG) methods were developed and
enhanced to allow for repeat pass data to be utilized [30]. These techniques have been
continued to be for FSH estimation [31–34]. The method utilized in this study incorporates
the effect of the dielectric change on the target into models previously developed by [31]
and [35]. The InSAR method utilized in this study was developed for situations when data
availability did not allow for the applications of other PolInSAR techniques [33].

Backscatter power has been used as a basis for forest height estimation [36,37] and for
improving estimates that also incorporate optical data [38]. As backscatter tends to saturate
at high AGB levels, the fusion of backscatter and InSAR-based methods was shown to be
valuable in a previous study [39].

InSAR techniques have not been extensively applied to tropical regions, although a
few recent examples exist [40,41]. One study achieved an R2 equal to 0.54 to 0.69 and an
RMSE of 4.65 to 8.44 m at 3 to 12 m over tropical forest [40]. However, it is essential to
prioritize the investigation of methods taking advantage of data that are openly accessible
when considering the needs of end users. Studying the effectiveness of SAR-based methods
in a variety of ecoregions will enable decision makers in countries participating in REDD+
to more confidently implement FSH estimation methodologies that rely on SAR data. This
is especially important in tropical forests, which store up to 3.5 times more carbon than
other forest types and make up over half of the total global terrestrial carbon storage [42,43].

1.3. Area of Interest

Savannakhet Province, located in the southern part of Lao PDR, contains three national
biodiversity conservation areas: Phou Xang He (109,900 hectares), Dong Phou Vieng
(197,000 hectares), and Xe Bang Noun (150,000 hectares) [44]. Clearing land for hydropower
projects, mining, and other economic activities is the main driver of deforestation and
forest degradation in Lao PDR [1]. As of 2000, rich forests still comprised 70 percent of
the province’s total 21,774 square kilometer area [45]. These forests have subsequently
experienced increased fragmentation and deforestation. As of 2010, forest cover only
accounted for 41 percent of the province [46,47]. The study area in Savannakhet, Lao
PDR is comprised of forest, surface water, orchard or plantations, evergreen broad leaf,
mixed forest, urban and built up, cropland, barren, wetlands, grassland, shrubland, and
aquaculture as defined by the SERVIR-Mekong Regional Land Cover Monitoring System
(RLCMS) [48].

This region experiences a tropical monsoon climate, with an average annual rainfall
of 1440 mm [16]. The wet season extends from May to October, and the dry season from
November to April [44]. However, the rainfall is much greater in the eastern region than the
western [45]. To the west, Savannahket’s lowlands are bounded by the Mekong River. To
the east, Savannakhet includes the Annamite Range [45]. The Dongsithouane Production
Forest (PF) (Figure 1) is located in the southwest corner of Savannakhet Province at 16◦33′N
and 104°45′E and is surrounded by the Banghiang River on three sides. The Dongsithuane
PF contains mostly deciduous tree species, primarily from the Dipterocarpaceae family,
with canopy cover ranging from 10 to 70 percent [44]. The median height is 9 m and the
maximum height is 79 m. The map and basic statistics of the LiDAR-based FSH can be
found in Figure 3a. The elevation in this forest ranges from 95 to 265 m [44]. This PF was
part of a successful pilot community forestry project in the 1990s [47]. The 2007 Forestry
Law describes PFs as any forest used for socioeconomic purposes [49].
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Figure 1. LiDAR vegetation height, used as a proxy for ground truth FSH, was available for the Dongsithouane PF located
in Savannakhet Province, Lao PDR. The Dongsithuane PF is surrounded on three sides by the Banghiang River [50]. JAXA’s
ALOS L1 and the annual mosaic products encompass the area covered by LiDAR data. Height estimates were compared
over the crosshatched area. The RLCMS and GLAD datasets were available for the entire crosshatched area. The GEDI L2
availability over the fusion height estimate area can be seen in dark grey in the bottom right.

1.4. Objectives

This study examines the application of an FSH estimation method that combines
backscatter and interferometric SAR (InSAR) techniques to estimate FSH in a tropical
forest in Lao PDR. Previously used to estimate FSH for the state of Maine, U.S. [33,39,51],
this use case demonstrates the applicability of the FSH estimation method in a tropical
region with limited data availability. Basic performance statistics, R2, RMSE, and bias were
used to assess the performance of the backscatter, InSAR, and fusion FSH estimates. This
study provides insight into data acquisition challenges and any advantages in performance
afforded by including InSAR. In addition, this study compares the height estimates with
GEDI L2 Footprint Level Canopy Height, version 1 [52] and the Global Land Analysis and
Discovery (GLAD) Global Forest Canopy Height for 2019 [22].
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2. Materials and Methods
2.1. Data

This study relied on L-band SAR data and LiDAR data to estimate FSH. Datasets
from GEDI and GLAD were used to compare with the estimated forest height output
maps. Ancillary datasets provided essential information about land cover and elevation.
These datasets are summarized with their respective native spatial for the specific scene
investigated and temporal resolutions in Table 1.

Table 1. Summary of datasets.

Dataset Native Spatial Resolution Temporal Resolution Dates Used

ALOS L1 interferograms 30 m 46 days 13 June and 29 July 2009
Annual mosaic 24 m annual 13 June, 30 September and 12 October 2009

LiDAR 30 m - 6–8 February 2009
RLCMS 30 m annual 2009

GLAD 2019 30 m - 2019
GEDI L2 25 m diameter - 2019–2020

SRTM 25 m - 2000

2.1.1. ALOS PALSAR

The Japan Aerospace Exploration Agency (JAXA)’s Advanced Land Observation
Satellite Phased Array type L-Band Synthetic Aperture Radar (ALOS PALSAR) instrument,
launched in 2006, provides the only currently free and open L-band SAR data available [26].
Long wavelength radar, such as L-band, is sensitive to AGB density. The lower frequency
of the approximately 24 cm wavelength decreases attenuation in the canopy, allowing it
to gather information about the larger limbs and tree trunks [27,36]. ALOS-1 has a return
period of 46 days [53].

Six scenes of ALOS PALSAR L-Band SAR level 1.0 raw/unprocessed (ALOS L1)
imagery were downloaded from the Alaska Satellite Facility (ASF) for path 477 orbit 310
as an input for the InSAR technique [54]. The data were collected in fine mode, returning
horizontal transmit horizontal receive (HH) and horizontal transmit vertical receive (HV)
polarizations with a range resolution of 14 to 88 m [53]. The HV polarization was selected
for this study since it is more sensitive than HH to vegetation structure [26,36]. Cross
polarized measurements, such as HV, are the most appropriate choice for measuring
vegetation, since their signal is dominated by the canopy (i.e., volumetric scattering)
rather than the surface. This is because the contrast between H and V components is
less for vegetation than for bare ground [26,27]. As an input to the InSAR technique, HH
polarization creates a relationship between actual and estimated heights that is less linear
than the HV polarization, causing more error in low and high height estimates [33].

The annual mosaic for 2009 was acquired from JAXA. These data provide ortho and
slope corrected backscattering coefficients [55]. The annual mosaic includes data from 13
June, 30 September, and 12 October 2009. The annual mosaic was used as an input for the
backscatter-based height estimation technique. The tile N17E105_09 covers the study area
at a 25 m resolution.

2.1.2. Training and Testing Datasets

The proxy for ground truth FSH dataset used for training and testing both backscatter
and InSAR models was Airborne Laser Scanning (ALS)-based height data acquired 6–8
February 2009 [23,44]. These LiDAR data were compared with vegetation heights acquired
through field data collection conducted for the Dongsithouane Production Forest in Febru-
ary 2009, with an R2 of 0.91. The data were acquired with a sampling density of 1 pulse/m2

by Finnmap and Arbonaut [23] from a Piper PA-31 Navajo aircraft, using a Leica ALS 40
LiDAR scanner with a field of view of 30 degrees. The first and last echoes were used to
create a height map of 30 m resolution over the 25,000 ha Dongsithuane Production Forest
in Savannakhet, Lao PDR [44].
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In addition to the LiDAR testing dataset, two other datasets were used as testing
datasets, i.e., to compare with the backscatter, InSAR, and fusion technique-based height
estimates in this location. GLAD’s Global Canopy Cover dataset for 2019 [22] was used
to compare height estimates over the entire area of the fusion estimate. This dataset
was produced in Google Earth Engine (GEE) based on data from the Landsat series and
incorporating GEDI Level 2 data for calibration and validation [22]. Originally a 30 m
dataset, the GLAD product was resampled to 245 m for this comparison. In addition, GEDI,
space-based LiDAR, was used to compare with the three FSH estimates produced for this
study. The GEDI L2 Footprint Level Canopy Height product was selected. The gridded L3
product is a simple average of all points within 1 km [56] although a more complex method
is being planned, and so utilizing the L2 product was expected to provide greater accuracy
than the gridded L3 product. The footprint of each LiDAR point in the L2 product is 25 m
in diameter [52].

2.1.3. Regional Land Cover Monitoring System

Non-forested areas were masked out of the study area in order to improve the accuracy
of the InSAR method. For example, urban or agricultural areas may introduce large
amounts of phase change between scenes, influencing the model that is created during
FSH estimation [26]. In order to determine which areas of the study area should have the
FSH estimation method applied, the Regional Land Cover Monitoring System (RLCMS) for
the Mekong region [48] was used to identify land cover. These maps have been produced
annually since 1987 to the present. The year 2009 was selected for this project to match
most closely with the LiDAR, proxy ground truth, data.

The RLCMS approach utilizes 18 land cover classes [48]. The study area in Savan-
nakhet, Lao PDR is comprised of 12 land cover classes. Forest, orchard or plantation forest,
evergreen broadleaf, mixed forest and barren land cover classes were included as forest in
the forest/non-forest mask. Including barren land improved the dynamic range, providing
height values of 0. Surface water, urban and built up, cropland, wetlands, grassland,
shrubland, and aquaculture were included as non-forest.

2.1.4. Shuttle Radar Topography Mission

In order to use the InSAR technique, date pairs of ALOS L1 data must be processed into
one interferogram. This is achieved using the NASA Jet Propulsion Laboratory’s Interfero-
metric SAR Scientific Computing Environment (ISCE) v2.4.1 stripmapApp package [57,58].
During this process, the appropriate Shuttle Radar Topography Mission (SRTM) Digital
Elevation Model (DEM) [59] was automatically downloaded and applied from NASA’s
Land Processes Distributed Active Archive Center (LP DAAC) [57] to aid in the geocoding
and coregistration processes. In addition, the DEM was used to remove the topographic
InSAR phase from the apparent interferogram.

2.1.5. CHIRPS

Climate Hazards Group InfraRed Precipitation with Station data were used to assess
the potential impact of weather on dielectric properties across the scene [60]. These data
were acquired at 0.05-degree resolution for the three days up to and including the day of
the sensor observation. See Appendix A for this investigation.

2.2. Methods

This study investigates the fusion of two SAR-based approaches for estimating FSH
(Figure 2). While the backscatter technique has been used to estimate vegetation height,
it has been shown to saturate after about 10 m in height [51]. The InSAR technique
improved some validation statistics when these estimates have been used in tandem with
the backscatter estimates, replacing backscatter estimates above a 10 m threshold [26,33].
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Figure 2. Simplified workflow for estimating forest stand height with ALOS PALSAR L-band data using backscatter and
InSAR methods over Savannakhet, Lao PDR.

2.2.1. Backscatter Technique

The backscatter coefficient, σ0, measured by the ALOS PALSAR sensor is the propor-
tion of power returned to the sensor, as defined in Equation (1). In this equation, Ireceived is
the intensity of power received back at the sensor and Iincident is the intensity of incident
power [27].

σ0 =
Ireceived
Iincident

4πR2 (1)

Backscatter power has a direct relationship with vegetation height [36,51]. As the
height of the vegetation increases, the more scatterers there are, and the greater the
backscatter power received by the sensor [27]. The backscatter technique (Figure 3) for
estimating FSH relies on the assumption that the scattering intensity in a forest stand
increases with vegetation height. However, backscatter loses sensitivity to tree height
with taller forest stands [51], as only the upper canopy returns backscatter in forests with
high biomass [27,36]. This saturation issue can be addressed by incorporating the InSAR
method [33] (see Section 2.2.3).

Figure 3. Workflow for estimating forest stand height with ALOS PALSAR L-band data using a backscatter-based method.

The input for the backscatter estimation employed the annual mosaic for 2009 and
the ground truth proxy LiDAR vegetation height. JAXA radiometrically and geometrically
corrects the annual mosaic [61]. Previous studies have successfully used the JAXA annual
mosaic for estimating vegetation characteristics from backscatter power [33,36]. ISCE v2.4.1
does not support radiometric terrain correction for the ALOS PALSAR sensor, and so
ALOS L1 data could not be used. The ASF Radiometric Terrain Correction (RTC) product
for ALOS PALSAR was investigated in addition to the annual mosaic (Appendix C) but
ultimately was not selected for this analysis as it did not result in a significant improvement
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in results. The JAXA annual mosaic product must be converted from digital numbers (DN)
representing amplitude into γ0 in decibel values γdb using Equation (2) [26]:

γdb = 10 log10[(DN)2]− 83.0. (2)

Then, γdb was transformed into γpw, or backscatter power, using Equation (3) [26]:

γpw = 100.1γdb . (3)

The backscatter datasets were then resampled from 25 to 245 m in ArcMap 10.7 using
the bilinear method. Backscatter contains a lot of noise and is only beneficial for estimating
vegetation height when it is aggregated [36,39]. The 245m resolution was selected to be
comparable to the previous study using the backscatter, InSAR, and Fusion techniques
performed in central Maine, U.S., which utilized a pixel that covered 6 ha [39]. The LiDAR
data were split using a random mask made in ArcMap 10.7 using Create Random Raster.
In total, 70% of the pixels were used for training while 30% were used for testing. The
RLCMS was then used to remove all non-forest areas from the training and testing datasets.
Backscatter layers were made corresponding to the LiDAR training and testing datasets.
The relationship between vegetation height and backscatter power was modeled using
Equation (4) [33,39], simplified from [36]:

γ0 = A(1− e−BhC
v ). (4)

A, B, and C are fitting coefficients. hv is the vegetation height. When fitting the model,
hv is the known vegetation height from the LiDAR training dataset. When the model is
used for estimation, hv is the output FSH. γ0 is the backscatter power from the annual
mosaic. Simple, empirical relationships can often provide results comparable to those
produced by more complex equations [26].

A manual iterative process was employed to fit the A, B, and C coefficients in Python.
A total of 20 sets of coefficient values (A, B, and C) were trained and tested using the
training LiDAR data and corresponding backscatter power data (Appendix C). Although
the values of the coefficients can vary a lot over different test sites, starting values were
used from the Maine use case: A = 0.11, B = 0.0622, and C = 1.014 [26,33,39] as well as
determined by using the Python Scipy v1.4.1’s Curve_fit package. This package utilized
non-linear least squares to fit Equation (4) to the LiDAR and backscatter training datasets
and suggest appropriate values for A, B, and C [62]. The best backscatter results were
obtained with the values A = 0.63152915, B = 0.01037093, and C = 0.9223795. Coefficients
generated for different aggregation levels were also explored and, while pixels with areas
less than 6 ha did show a decrease in R2 and RMSE, larger aggregations did not show
improved metrics due to inhomogeneity, thus only the results for these coefficients at the 6
ha pixel size are shown.

2.2.2. Interferometric SAR (InSAR) Technique

The InSAR technique (Figure 4) takes advantage of the height dependence of ran-
dom motion in the apparent InSAR correlation, i.e., the taller the forest, the larger the
wind-induced temporal decorrelation [26,33]. Coherence has been shown to have advan-
tages over backscatter for estimating FSH above 10 m [39]. This is based on temporal
decorrelation, as the changes over time between two scenes causes decorrelation in the
phase between two images, in addition to the temporal decorrelation induced by dielectric
property change [33,63]. Temporal decorrelation has been shown to increase as vegetation
height increases [33,64].

The ALOS L1 scenes were processed using ISCE [57] v2.4.1 [58] into interferograms
for input into the FSH algorithm v1.2 [39,65]. The spatial resolution of the output interfer-
ogram was 30 m. The windows used for range and azimuth multi-looking were 1 and 5,
respectively, as assumed by the FSH software [65]. The window of correlation estimation is
two times the range/azimuth multi-look averaging window, and this is 2× 10 in this case.
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Options to implement rubbersheeting were selected to mitigate ionospheric impacts on
the interferogram.

Figure 4. Workflow for estimating forest stand height with ALOS PALSAR L-band data using an InSAR-based method.

Coherence, γ, is the amount of similarity in phase between two passes of a SAR sensor
over the same location and quantifies the accuracy of the InSAR phase measurements. γ
can range from 0 to 1, where 0 is completely decorrelated and 1 is completely correlated [27].
Coherence is defined by E1 and E2, the signals that the sensor received on pass 1 and pass
2, respectively (Equation (5)) [27,39,51]:

γ0 =
(E1E∗2 )√
〈|E1|2 · |E2|2〉

(5)

γ has three components (Equation (6)):

γ = γgeo · γSNR · γv&t (6)

γgeo is the decorrelation caused by viewing geometry, or look angle difference, between
the two observations. γSNR is the thermal noise inherent to the sensor. γv&t is the coupled
decorrelation caused by scattering due to vegetation and changes in the observed surface
between the two passes attributed to the passes being separated by time.

The relationship between interferometric correlation and in situ vegetation height can
be modeled using an inverse sinc function (Equation (7)) [33]. γHV

v&t is the coherence from
an HV polarized channel of the SAR sensor. hv is the in situ data, which in this case are the
ground truth proxy LiDAR data. Cscene represents the random motion of volume scatterers
while Sscene represents dielectric property changes that can be related to changes in soil
moisture. The upper bound of hv is π*Cscene.

|γHV
v&t| = Sscene sinc(

hv

Cscene
) (7)

This equation assumes that weather and other impacts on Cscene and Sscene are consis-
tent across the entire scene, which may not be the case [39,51]. Please see Appendix A for a
brief investigation into precipitation over the study area.

The quality of the six ALOS L1 scenes available was examined using the mean co-
herence value (Table 2) calculated in ArcMap 10.7 for overall scene, the forest class, and
the forest class over Dongsithuane PF, as determined by the forest/non-forest mask. The
Dongsithuane PF corresponds to the LiDAR data available for the study area. Scenes from
25 April 2008 and 8 June 2007 were not included as there were no scenes within an adequate
time frame to make an interferogram pair. Coherence values below 0.2 indicated poor data
quality for the purposes of the InSAR technique. Ideally the coherence values should be
0.4 or above within forested areas and consistent across the study area [66,67]. Acquisition
dates with a small temporal baseline are preferred. There is an inverse relationship between
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the length of the temporal baseline and the strength of the relationship between coherence
and vegetation height.

Table 2. Mean coherence for interferograms available over the study area.

Date Pairs Overall Forest Class Forest Class in the
Dongsithuane PF Temporal Baseline

8 September 2007 and 9 December 2007 0.16 0.14 0.35 92 days
13 June 2009 and 29 July 2009 0.15 0.20 0.33 46 days

16 June 2010 and 16 September 2010 0.15 0.15 0.35 92 days

Ultimately, the 2009 interferogram was selected as it was acquired closest to the
proxy groundtruth data temporally and had slightly better quality indicated by the mean
coherence value over the forest class in the Dongsithuane Production Forest. However,
consistency across the image is also key to interferogram quality, which is not addressed in
Table 2. In addition, the two interferograms produced with data from 2007 and 2010 did
not produce improved FSH estimates when briefly explored. For this technique, the scenes
selected should avoid severe weather conditions for both dates [33]. This use case serves
as an example of these methods in a challenging scenario, as both scenes were acquired
during the wet season.

2.2.3. Fusion Technique

The FSH algorithm relies on the fusion of the InSAR technique, in order to improve
backscatter-based estimates [26,33,39] (see Figure 5). The FSH estimates from both methods
were combined in ArcGIS 10.7. Where the backscatter-based estimate was 10 m or greater,
the InSAR-based estimate was used. Fusing at a threshold of 10 m was found useful in
the previous use case in the northern-boreal forest in central Maine [33,39], and so that
threshold was used as a starting point for this analysis.

Figure 5. Workflow for fusion of the backscatter and InSAR estimation methods.

2.2.4. Comparisons

The three estimated height maps, based on the backscatter, InSAR, and fusion methods,
were validated with the simple, randomly stratified 30% split of the LiDAR data resampled
to 245m. These three height estimate maps were also compared with height estimates from
GEDI L2 [52] and height estimates from GLAD [22]. The GEDI data were left in point form
and the corresponding pixel values were evaluated. The GLAD data were resampled to
245m from the original resolution (see Table 1). To create a baseline, the agreement between
the comparison products was also investigated. For this comparison, the GEDI data were
again evaluated against the corresponding pixel value for LiDAR and GLAD datasets in
native resolution. The LiDAR product was resampled using the bilinear method to 25 m to
compare with the LiDAR dataset to create a reference point for expected results based on
an optical technique for this study area and period. The metrics used were the coefficient of
determination, R2, as calculated using Scipy v1.4.1’s Linregress function in Python, RMSE,
as calculated using Scikit-learn v0.22.2’s Metrics package, bias, and standard deviation
in Python.
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An exploration was also conducted into using Random Forest (RF) in GEE to estimate
FSH. Three tests were completed with the following inputs: (1) backscatter and interfero-
gram, (2) Landsat 7 bands 1–3 and 5–7, and (3) both SAR and optical inputs. Please see
Appendix D. This exploration found the backscatter power from the ALOS annual mosaic
to have the greatest importance to the RF model.

3. Results

Estimated FSH maps for each method and the distribution of pixels at each height
interval are shown in Figure 6. Inset maps of the difference between the LiDAR FSH
and the FSH estimated by each method highlight the differences in the estimations. The
backscatter, InSAR, and fusion-based FSH estimates are compared in a kernel density plot
with the GEDI, GLAD, and LiDAR-based heights as well as through the error metrics:
R2, RMSE, and bias (Figure 7). Heights above 13 m, the category including the greatest
area for all three estimation methods, are distributed spatially in approximately the same
locations, although a pixel-by-pixel inspection reveals that the methods do not produce
exactly the same results. The distribution of pixels by height is very different for between
the backscatter and InSAR methods.

The median of the backscatter-based FSH estimate is equal to 11. The backscatter-
based FSH sample distribution, with a kurtosis value close to zero and skewness value
above one, is not too peaked but is negatively skewed. The backscatter-based estimate has
a greater maximum than the InSAR-based estimate: 49 m. This tall height may indicate
greater uncertainty in the estimate as the backscatter-based techniques can saturate for
higher tree heights, increasing uncertainty for higher trees. The backscatter-based estimate
compared with the testing LiDAR had an R2 equal to 0.26 and an RMSE equal to 4.90 m
(Figure 7).

The median of the InSAR-based FSH estimate is equal to 11. The distribution of the
InSAR-based FSH estimate is very negatively skewed and peaked, due to the large amount
of area identified as having a height of 14 m (Figure 6). This saturation is likely due to low
Cscene values, which occur when the InSAR data quality is not optimal. For this estimation,
the area within 14 m is over three times larger than the second largest height category,
10 m Figure 6. This cap on estimated height at 14 m can also be seen in Figure 7, where
InSAR-based heights are compared with testing LiDAR, GLAD, and GEDI heights. The
InSAR-based estimate compared with the testing LiDAR had an R2 equal to 0.19 and an
RMSE equal to 3.46 m (Figure 7).

The fusion map of the backscatter and InSAR-based estimates also had a median equal
to 11. Due to the 10 m threshold, the fusion-based estimate is very negatively skewed
and peaked (Figure 6). This threshold caused the large area of forest identified as 14 m in
height from the InSAR-based method to be included in the fusion estimate. Fine-tuning
the threshold for this forest type was not pursued, as the InSAR-based heights saturated
before the backscatter-based heights in this study area.

In addition to being compared with the LiDAR testing data, the backscatter, InSAR,
and fusion-based estimates were compared with GEDI and GLAD products (Figure 7).
The backscatter-based estimate performed better in R2 when compared to airborne LiDAR
and GEDI products (R2 = 0.26 for both) than when compared with the GLAD Global
Canopy Cover product (R2 = 0.13). The InSAR-based estimate performed better in R2 when
compared to airborne LiDAR and GLAD products (R2 = 0.19 for both) than when compared
with the GEDI L2 product (R2 = 0.02). The fusion map performed best when compared
with GLAD (R2 = 0.19), similarly well when compared with LiDAR (R2 = 0.18), and poorly
when compared to GEDI (R2 = 0.04). FSH maps from the comparison products along with
basic statistics can be found in Figure A3. The LiDAR had a median height of 9 m, while
the GEDI had a median height equal to 11 m, and the GLAD a median height equal to
4 m. While the GLAD identifies many areas of lower forest height, many of these areas
correspond with non-forest areas. The GLAD and GEDI products were also compared with
the LiDAR in order to provide a baseline of performance with established products, these
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results can be seen in Figure A2. It should be noted that GLAD reports the Global Canopy
Cover metrics at a 30 m resolution with an R2 of 0.61 and an RMSE of 9.07 m compared
with their validation LiDAR [22].

Figure 6. The estimated FSH maps and distributions over the study area produced by each method: (a) backscatter,
(b) InSAR, and (c) fusion. The difference between the estimated heights from each method and the proxy ground truth
height in the LiDAR area is included in the inset.
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Figure 7. Density plots comparing LiDAR height with backscatter-based, InSAR-based, and fusion-
based height estimates.

4. Discussion

Although the R2 and RMSE were improved for the backscatter-based method as
compared to the InSAR-based and fusion methods, the maximum heights were not well
represented. The backscatter method was slightly more successful in predicting taller
forest stands. The distribution of backscatter, InSAR, and fusion height estimates over
the Dongsithuane PF, in addition to other comparison products (Figure 6), illustrate to
what extent each dataset represents the actual spread of tree heights at that location.
These distributions provide an indication of the performance of the estimation methods
in capturing the distribution of the ground truth heights. The similarity between the
distributions over the entire study area and the area covered by ground truth data indicates
that if a product underestimates or overestimates over the LiDAR area, it may do the same
across the whole study area. As LiDAR was the proxy ground truth data, the more closely
a method captures the spread of the LiDAR height estimates, the more confidence in the
results of that method. This comparison of the spread indicates that InSAR and fusion
techniques do not capture the taller forest stands. A brief investigation into linear equations
relating backscatter to FSH did not yield improved results (Appendix C).

Although the InSAR method was intended to compliment the backscatter method,
as backscatter-based estimates are not accurate above 10 m in height, in this case the
InSAR-based, and thus fusion-based, estimate actually saturated at a lower height than the
backscatter-based method due to the poor data quality and low availability of InSAR at
this site. GLAD and GEDI-based heights also have a range more similar to the LiDAR than
the InSAR and fusion-based methods, with a maximum of 30 m estimates. Thus, while
the InSAR method may add value to FSH estimation, in this use case the tallest quartile
of forest stands are not captured well. In addition, the negative skew of the InSAR-based
estimates indicate that the InSAR data quality is low.
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Based on the error metrics R2 and RMSE when compared with the proxy groundtruth
LiDAR data, the InSAR method performed better in this use case. However, these statistics
do not tell the whole story. Based on the density plots and the metrics of the backscatter
and InSAR-based height estimates when compared with other products, the backscatter
performs better overall. Compared with LiDAR, the fusion method had an improved RMSE
and only a negligible decrease in R2. Between the two use cases, the R2 tended to perform
better for the use case in central Maine, U.S. [33,39,51], while the RMSE tended to perform
better for the Lao PDR use case when compared with LiDAR data. For backscatter, the R2

performed worse and the RMSE performed better for Lao PDR compared to the central
Maine use case, with an R2 of 0.2 and 0.4, respectively, and an RMSE of 4.9 and 6.12 m,
respectively [39]. For InSAR, the R2 performed comparably and the RMSE performed
better for the Lao PDR use case compared to the Maine use case, with an R2 of 0.19 and
0.17. The fused R2 performed worse for the Lao PDR use case, presumably because the
backscatter R2 performed poorly. The fused RMSE performed better for the Lao PDR use
case than the Maine use case. The low R2 and high RMSE for the Lao PDR use case in
comparison to the central Maine, U.S. use case could be due to a lack of dynamic range in
tree heights in the Lao PDR training dataset. In other words, the majority of the training
data was available for trees less than 9 m in height, thus the InSAR method may not have
been an appropriate choice for capturing taller tree stands.

4.1. Limitations

The main limitation associated with the Lao PDR use case is availability and quality
of the ALOS PALSAR data. First, there were only three scene pairs available covering the
study area in Savannakhet, Lao PDR. This means that low coherence interferograms could
not be avoided. Coherence above 0.2, which is consistent across the scene, is recommended
for the InSAR approach [66,67]. For example, the selected pair from 2009 had a mean
coherence of 0.33 over the forest class in the Dongsithuane Production Forest and a mean
coherence of 0.15 overall. Many areas of random phase were located in forested areas
where it is desirable to estimate forest stand height. The decorrelated phase in these areas
can contribute to poor forest height estimates [39]. Diurnal and seasonal trends have an
impact on the moisture fluctuation and thus the dielectric properties of the surface [68]. All
three available image pairs had one or both scenes falling within the wet season, which
may have introduced dielectric changes that caused coherence to be low. To mitigate the
impacts of seasonal changes, both scenes selected for the final analysis were within the
same season. Similarly, the times that these two scenes were taken were within one minute
of each other, approximately 15:38 and 15:37 for the center of the scene, and so the diurnal
impacts should be minimized. However, investigating a study area with both dates in the
dry season would make the conclusions more robust.

Another limitation is the availability and characteristics of the LiDAR data. The
LiDAR heights were only available over the Dongsithuane Production Forest, and not
distributed across the entire study area, which could cause uncertainties when applying
the InSAR and backscatter models created using the training LiDAR data across the larger
study area. In addition, with a median equal to 9 m, the majority of the Dongsithuane
Production Forest is less than 10 m in height. Thus, InSAR method may not be optimally
tuned for this location. However, while the backscatter method is more appropriate for
estimating FSH below 10 m, the quality of the SAR data available for this study period may
be negatively impacted by the weather causing greater uncertainty.

Topography causes geometric distortions in SAR data, such as foreshortening and
layover, and can impact the radiometric measurement of backscatter [27,69]. The greater
topographic variety along the eastern edge of the study area, which raises into foothills
along the Annamite Mountain Range, may negatively impact the results. However, the
area covered with proxy ground truth data where the estimation model is created, and
evaluated, should not be impacted as this is a low lying area.
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Finally, the backscatter method did not perform as well as previous work utilizing
JAXA’s ALOS PALSAR annual mosaic for estimating vegetation height [36,39]. This could
be due to the limited quality of the input data. However, the outputs may be improved
through additional iterations of manual adjustment of the coefficients for Equation (4).
Equation (4) is a simplification of an equation developed for AGB estimation by [36].
Further investigation into this more complex equation could improve height estimation
based the backscatter products for this study area.

4.2. Future Work

This use case defines a pathway forward for applying this method to tropical forests,
informed by the limitations and challenges encountered in the Savannakhet, Lao PDR
use case. Although objectively low, the error metrics of this method are reasonable as
compared to other studies described in Section 1.2. In addition, statistics such as RMSE
will appear to perform better for global study areas compared to provincial study areas as
included in this work. The results suggest that, with the future launch of NASA-ISRO SAR
(NISAR) and its shorter revisit time and greater availability of recent data, the limitations
associated with the data are expected to be reduced and thus the benefits of this method
will be more readily realized. The workflow outlined in this and the previous case study in
central Maine [26,33] can be used as a springboard for integrating L-band data from the
future NASA-ISRO SAR (NISAR) mission into remote sensing methods utilized for forest
monitoring and REDD+ reporting efforts.

As part of the Second Biomass Retrieval Inter-comparison eXercise (BRIX-2) being
conducted in advance of the NISAR launch, our team is leading an effort to implement
improvements to the FSH algorithm. These improvements include incorporating more up
to date, and denser time series of data, by using ALOS 2. More data may eliminate poor
performance issues in two ways, first by allowing for poor quality data to be discarded, and
second by allowing a time series of estimates to be utilized. In addition, with the shorter
temporal baseline of ALOS 2, the impact of weather on dielectric properties between pairs
may decrease. In addition, a pair with both images acquired within the dry season, when
there is assumed to be less moisture fluctuation, may be available. Another improvement
is the integration of GEDI as a training dataset, which will make this algorithm more
feasible for testing globally. The Cscene and Sscene parameters from the inversion model
(Equation (7) are assumed to be constant across the entire image; however, the precipitation
patterns are quite different from west to east across the province. Lei et al. (2019) intend
to segment the scene to allow for more accurate estimations [39]. The improvements will
make an effort towards reaching the pixel size of less than 1 ha that the BRIX-2 activity
requires. These suggested improvements will also make this method more applicable for
REDD+ reporting. For example, the Intergovernmental Panel on Climate Change (IPCC)
good practice recommendations include having a time series of data [12]. While the IPCC
does not proscribe specific levels of precision, accuracy and levels of bias [12], quantifying
the uncertainty of this method and resulting AGB estimates is imperative considering the
potential implementers of this method.

As additional L-band data becomes available, the performance of SAR-based methods
can be investigated in additional study areas. These use cases could explore the capacity of
the FSH algorithm in regions with even greater topographic variety, such as the Himalayas,
various forest types, etc. Additionally, use cases with optimal input data should be ex-
amined, for example focusing on forest stands with average heights above 10 m, regions
with a greater availability of higher quality SAR data, and incorporating the algorithm
improvements discussed above.
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AGB Above-Ground Biomass
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ALS Airborne Laser Scanning
ASF Alaska Satellite Facility
CHIRPS Climate Hazards Group InfraRed Precipitation with Stations
DEM Digital Elevation Model
FREL Forest Reference Emission Levels
FSH Forest Stand Height
GEDI Global Ecosystem Dynamics Investigation
GLAD Global Land Analysis and Discovery
GEE Google Earth Engine
IPCC Intergovernmental Panel on Climate Change
InSAR Interferometric SAR
ISCE Interferometric SAR Computing Environment
JAXA Japan Aerospace Exploration Agency
LiDAR Light Detection And Ranging
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NISAR NASA-ISRO Synthetic Aperture Radar
PDR People’s Democratic Republic
PALSAR Phased Array type L-band Synthetic Aperture Radar
REDD Reducing Emissions from Deforestation and Forest Degradation
RF Random Forest
RLCMS Regional Land Cover Monitoring System
RMSE Root Mean Square Error
SAR Synthetic Aperture Radar
SRTM Shuttle Radar Topography Mission

Appendix A. Precipitation Investigation

To obtain a sense of the precipitation that may have impacted the quality of the
interferogram used for this analysis, Climate Hazards Group InfraRed Precipitation with
Station data were used [60]. These data were acquired at 0.05-degree resolution for 11–13
June and 27–29 July 2009, following [33]. Precipitation measurements were in mm/day.
The dates of both scenes utilized in the study fall within the monsoon season. Statistics,
including mean, maximum, minimum, and standard deviation of the accumulation of
precipitation, were calculated for two days prior to as well as during the day of acquisition
of the ALOS L1 data (Table A1). Theoretically, there will be a moisture-induced dielectric
impact on the phase for the July 29th scene as compared to the June 13th scene due to the
variability in precipitation expected during a monsoon study period.

Change in the dielectric property involves factors beyond weather, as soil type also has
a large impact on how moisture is held [70]. Small changes in soil moisture content, even if
only a few percentage points, can make large changes in the dielectric constant. In turn
these will make large phase differences as shown in interferograms [71]. Thus, even though
there may not have been precipitation on June 13, it would be necessary to examine the
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days before as well to see if the soil could be saturated from previous precipitation events.
Furthermore, there is some uncertainty from using the CHIRPS dataset as it incorporates
gauge and satellite data to estimate precipitation in an area. This means that in areas that
do not have a lot of available gauge data there may be more uncertainty. In addition,
the gauge data comes with its own uncertainties depending on methods used for water
collection. Perhaps most importantly, these data for July 29th show that the moisture has
greater variation across the scene. This suggests that the dielectric constant is also not
evenly distributed across the scene.

Table A1. Accumulated precipitation from CHIRPS for the area of the fusion-based FSH estimate.

11–13 June 2009 27–29 July 2009

Mean 5.8 36.5 mm/day
Maximum 13.0 23.0 mm/day
Minimum 0 57.5 mm/day

Standard Deviation 2.5 6.2 mm/day

Appendix B. Fitting Coefficients for Backscatter Approach

A manual iterative process was employed to fit the A, B, and C coefficients in Google
Colaboratory. This script can be found on GitHub: https://github.com/HBaldwin3
/CaseStudy_FSH_LaoPDR, accessed on 6 September 2021.

Appendix C. Alternative Backscatter Approach

Two alternatives were briefly explored for the backscatter approach. First, the ASF
RTC was examined for use instead of the ALOS PALSAR mosaic. The ASF RTC product is
in γ0 [72]. Based on this small exploration, it is preferable to use the JAXA ALOS PALSAR
annual mosaic over the ASF RTC product. Based on the validation and comparison efforts,
the ASF RTC product tended to underestimate tree height. R2 and RMSE were calculated
in Google Colaboratory for the FSH estimates created using the ASF RTC product and
JAXA annual mosaic. This script can be found in GitHub https://github.com/HBaldwin3
/CaseStudy_FSH_LaoPDR, accessed on 6 September 2021.

Second, a linear regression based on the training LiDAR data and corresponding
backscatter was used to create a location-specific relationship between backscatter from the
annual ALOS PALSAR mosaic and the training LiDAR dataset:

γ0 = 0.0033(hv + 0.0182) (A1)

where γ0 was the backscatter from ALOS PALSAR and hv was the estimated FSH. Equa-
tion (A1) was then applied to the JAXA ALOS PALSAR mosaic. The more complex equation
ultimately used in the full analysis performed better than the linear equation in R2 and
RMSE (Table A2).

Finally, the height values from both the backscatter produced FSH estimate maps
were compared with the LiDAR testing dataset. R2 and RMSE were calculated for the
FSH estimates created using the ASF RTC product and JAXA annual mosaic (Table A2).
Ultimately, the JAXA annual mosaic using Equation (4) [33] was used to incorporate in
the fusion product. The more complex equation based on [33] performed slightly better
than the simple linear regression approach. However, the time required to iteratively fit
the coefficients for this equation may negate the small increase in accuracy.

Table A2. Error metrics for FSH estimated with backscatter, comparing approaches and products.

Backscatter Product Approach R2 RMSE (m) Bias (m) Compared to

Annual mosaic [33] 0.26 4.9 0.18 testing LiDAR
ASF RTC [33] 0.12 6.3 −1.84 testing LiDAR

Annual mosaic Linear 0.23 7.05 0.42 testing LiDAR

https://github.com/HBaldwin3/CaseStudy_FSH_LaoPDR
https://github.com/HBaldwin3/CaseStudy_FSH_LaoPDR
https://github.com/HBaldwin3/CaseStudy_FSH_LaoPDR
https://github.com/HBaldwin3/CaseStudy_FSH_LaoPDR
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Appendix D. Random Forest Comparison

Three models were trained in GEE. The first utilized only Landsat 7 data. The second
utilized the same backscatter and interferogram products used for this study. The third
utilized both. The same LiDAR training data were used for all of the models. These models
were not tested with the LiDAR or other data. However, the importance of each variable
was tested. For both approaches including SAR data, the backscatter power from the
annual ALOS PALSAR mosaic was found to have the greatest importance. The importance
of the model utilizing all inputs is shown in Figure A1.

Figure A1. The importance for each variable included in the random forest investigation including
both optical and SAR inputs.

Appendix E. Comparison Products

R2, RMSE, and bias were calculated for the height estimates based on the InSAR,
backscatter, and fused methods compared to the portion of LiDAR reserved for testing
(Figure 7). In addition, the height estimation maps were compared with the GEDI L2
canopy and GLAD height products. Finally, the GLAD [22] product was compared to the
LiDAR and GEDI L2 available in the study area (Figure A2). The aim of this comparison
was to provide a baseline of performance considering the limited training and validation
data in the area, including the limited amount of GEDI points.

Figure A2. The estimated FSH maps and distributions over the study area for the comparison data
products: LiDAR and GEDI L2.
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Figure A3. The estimated FSH maps and distributions over the study area for the comparison data products: (a) LiDAR,
(b) GEDI L2, and (c) GLAD.
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Appendix F. Scripts and Data

All scripts and data used for this case study can be found through the GitHub page:
https://github.com/HBaldwin3/CaseStudy_FSH_LaoPDR, accessed on 6 September 2021.
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online: http://purl.stanford.edu/st279wr9010 (accessed on 6 September 2021).

51. Lei, Y.; Siqueira, P. An Automatic Mosaicking Algorithm for the Generation of a Large-Scale Forest Height Map Using Spaceborne
Repeat-Pass InSAR Correlation Magnitude. Remote Sens. 2015, 7, 5639–5659. [CrossRef]

52. Dubayah, R.; Blair, J.B.; Goetz, S.; Fatoyinbo, L.; Hansen, M.; Healey, S.; Hofton, M.; Hurtt, G.; Kellner, J.; Luthcke, S.; et al. The
Global Ecosystem Dynamics Investigation: High-resolution laser ranging of the Earth’s forests and topography. Sci. Remote Sens.
2020, 1, 100002. [CrossRef]

http://dx.doi.org/10.1186/s13021-017-0078-9
http://www.ncbi.nlm.nih.gov/pubmed/28417324
http://dx.doi.org/10.1016/S0378-1127(99)00278-9
http://dx.doi.org/10.1016/j.isprsjprs.2020.11.008
http://dx.doi.org/10.1109/TGRS.2011.2174367
http://dx.doi.org/10.1109/TGRS.2015.2409066
http://dx.doi.org/10.3390/rs61110252
http://dx.doi.org/10.1109/JSTARS.2013.2253448
http://dx.doi.org/10.1109/36.551931
http://dx.doi.org/10.3390/rs8060522
http://dx.doi.org/10.3390/rs70404442
http://dx.doi.org/10.3390/rs11151740
http://dx.doi.org/10.1109/TGRS.2018.2860590
http://dx.doi.org/10.3390/rs11182105
http://dx.doi.org/10.3390/rs10081277
http://dx.doi.org/10.1126/science.1201609
http://www.ncbi.nlm.nih.gov/pubmed/21764754
http://dx.doi.org/10.1016/j.rse.2012.11.006
http://dx.doi.org/10.1016/j.jag.2019.101979
http://purl.stanford.edu/st279wr9010
http://dx.doi.org/10.3390/rs70505639
http://dx.doi.org/10.1016/j.srs.2020.100002


Remote Sens. 2021, 13, 4516 22 of 22

53. Japan Aerospace Exploration Agency About ALOS—Overview and Objectives. Available online: https://www.eorc.jaxa.jp/
ALOS/en/about/about_index.htm (accessed on 24 August 2020).

54. JAXA/METI ALOS PALSAR. L1.0 ALOS PALSAR [Data Set]; Alaska Satellite Facility DAAC: Fairbanks, AK, USA, 2009. [CrossRef]
55. Japan Aerospace Exploration Agency Generation of Global Forest/Non-forest map Using ALOS/PALSAR. Available online:

https://www.eorc.jaxa.jp/ALOS/en/guide/forestmap_oct2010.htm (accessed on 24 August 2020).
56. Dubayah, R.; Luthcke, S.; Sabaka, T.; Nicholas, J.; Preaux, S.; Hofton, M. GEDI L3 Gridded Land Surface Metrics; Version 1; ORNL

Distributed Active Archive Center: Oak Ridge, TN, USA, 2021. [CrossRef]
57. ISCE2 README. Available online: https://github.com/isce-framework/isce2 (accessed on 24 August 2020).
58. Rosen, P.A.; Gurrola, E.; Sacco, G.F.; Zebker, H. The InSAR scientific computing environment. In Proceedings of the EUSAR 2012,

9th European Conference on Synthetic Aperture Radar, Nuremberg, Germany, 23–26 April 2012; pp. 730–733.
59. Gens, R. NASA Shuttle Radar Topography Mission Global 1 Arc Second [Data Set]; NASA JPL: Pasadena, CA, USA, 2015. [CrossRef]
60. Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Rowland, J.; Romero, B.; Husak, G.; Michaelsen, J.; Verdin, A.

A quasi-global precipitation time series for drought monitoring: U.S. Geological Survey Data Series 832. IEEE Trans. Geosci.
Remote Sens. 2014, 832, 4.

61. Shimada, M.; Itoh, T.; Motooka, T.; Watanabe, M.; Shiraishi, T.; Thapa, R.; Lucas, R. New global forest/non-forest maps from
ALOS PALSAR data (2007–2010). Remote Sens. Environ. 2014, 155, 13–31. [CrossRef]

62. Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser,
W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272.
[CrossRef] [PubMed]

63. Lei, Y.; Siqueira, P.; Treuhaft, R. A physical scattering model of repeat-pass InSAR correlation for vegetation. Waves Random
Complex Media 2017, 27, 129–152. [CrossRef]

64. Simard, M.; Hensley, S.; Lavalle, M.; Dubayah, R.; Pinto, N.; Hofton, M. An empirical assessment of temporal decorrelation using
the uninhabited aerial vehicle synthetic aperture radar over forested landscapes. Remote Sens. 2012, 4, 975–986. [CrossRef]

65. Yang, L. Forest Stand Height Algorithm. Available online: https://github.com/leiyangleon/FSH (accessed on 1 April 2021).
66. Lei, Y. (California Institute of Technology, Pasadena, CA, USA). Personal Communication, 2020.
67. Siqueria, P. Forest Mapping and Monitoring with SAR Data Pt. 4: Forest Stand Height. NASA Applied Remote Sensing

TrainingWebinar. Available online: https://arset.gsfc.nasa.gov/land/webinars/forest-mapping-sar (accessed on 21 May 2020).
68. Hamadi, A.; Borderies, P.; Albinet, C.; Koleck, T.; Villard, L.; Ho Tong Minh, D.; Le Toan, T.; Burban, B. Temporal Coherence of

Tropical Forests at P-Band: Dry and Rainy Seasons. IEEE Geosci. Remote Sens. Lett. 2015, 12, 557–561. [CrossRef]
69. Small, D. Flattening gamma: Radiometric terrain correction for SAR imagery. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3081–3093.

[CrossRef]
70. Behari, J. Microwave Dielectric Behavior of Wet Soils; Springer: Berlin/Heidelberg, Germany, 2005; Volume 8. [CrossRef]
71. Zhou, X.; Chang, N.B.; Li, S. Applications of SAR Interferometry in Earth and Environmental Science Research. Sensors 2009,

9, 1876–1912. [CrossRef]
72. Gens, R. ASF Radiometric Terrain Corrected Products: Algorithm Theoretical Basis Document; Alaska Satellite Facility: Fairbanks, AK,

USA, 2015.

https://www.eorc.jaxa.jp/ALOS/en/about/about_index.htm
https://www.eorc.jaxa.jp/ALOS/en/about/about_index.htm
http://dx.doi.org/10.5067/J4JVCFDDPEW1
https://www.eorc.jaxa.jp/ALOS/en/guide/forestmap_oct2010.htm
http://dx.doi.org/10.3334/ORNLDAAC/1865
https://github.com/isce-framework/isce2
http://dx.doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003
http://dx.doi.org/10.1016/j.rse.2014.04.014
http://dx.doi.org/10.1038/s41592-019-0686-2
http://www.ncbi.nlm.nih.gov/pubmed/32015543
http://dx.doi.org/10.1080/17455030.2016.1209594
http://dx.doi.org/10.3390/rs4040975
https://github.com/leiyangleon/FSH
https://arset.gsfc.nasa.gov/land/webinars/forest-mapping-sar
http://dx.doi.org/10.1109/LGRS.2014.2350513
http://dx.doi.org/10.1109/TGRS.2011.2120616
http://dx.doi.org/10.1007/1-4020-3288-9
http://dx.doi.org/10.3390/s90301876

	Introduction
	REDD+ in Lao PDR
	Estimating Forest Stand Height with Remote Sensing
	Area of Interest
	Objectives

	Materials and Methods
	Data
	ALOS PALSAR
	Training and Testing Datasets
	Regional Land Cover Monitoring System
	Shuttle Radar Topography Mission
	CHIRPS

	Methods
	Backscatter Technique
	Interferometric SAR (InSAR) Technique
	Fusion Technique
	Comparisons


	Results
	Discussion
	Limitations
	Future Work

	Precipitation Investigation
	Fitting Coefficients for Backscatter Approach
	Alternative Backscatter Approach
	Random Forest Comparison
	Comparison Products
	Scripts and Data
	References

