Comparitive Study of the Geomorphological Characteristics of Valley Networks between Mars and the Qaidam Basin
Abstract
:1. Introduction
2. Geologic Settings of the Qaidam Basin
3. Data and Methods
3.1. Datasets
3.2. Geomorphology Parameters of Valley Network
3.3. Martian Valley Network
4. Results
4.1. Geomorphology Comparison
4.2. Morphometric Parameters
4.3. Statistical Study of the BA and the NCI
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix
References
- Taylor, P.; Caprarelli, G.; Wang, B.Y. Wet Mars implications of revised scaling calculations for Evros Vallis. Aust. J. Earth Sci. 2012, 59, 37–41. [Google Scholar] [CrossRef]
- Hoke, M.R.T.; Hynek, B.M. Roaming zones of precipitation on ancient Mars as recorded in valley networks. J. Geophys. Res. Planets 2009, 114, 2008JE003247. [Google Scholar] [CrossRef] [Green Version]
- Pollack, J.B.; Kasting, J.F.; Richardson, S.M.; Poliakoff, K. The case for a wet, warm climate on early Mars. Icarus 1987, 71, 203–224. [Google Scholar] [CrossRef] [Green Version]
- Malin, M.C. Evidence for Recent Groundwater Seepage and Surface Runoff on Mars. Science 2000, 288, 2330–2335. [Google Scholar] [CrossRef] [Green Version]
- Luo, W. Hypsometric analysis of Margaritifer Sinus and origin of valley networks. J. Geophys. Res. 2002, 107, 5071. [Google Scholar] [CrossRef] [Green Version]
- Irwin, R.P.; Craddock, R.A.; Howard, A.D. Interior channels in Martian valley networks: Discharge and runoff production. Geol. Soc. Am. 2005, 33, 489–492. [Google Scholar] [CrossRef]
- Seybold, H.J.; Kite, E.; Kirchner, J.W. Branching geometry of valley networks on Mars and Earth and its implications for early Martian climate Branching angle. Sci. Adv. 2018, 4, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alemanno, G.; Orofino, V.; Mancarella, F. Global Map of Martian Fluvial Systems: Age and Total Eroded Volume Estimations. Earth Space Sci. 2018, 5, 560–577. [Google Scholar] [CrossRef]
- Hynek, B.M.; Beach, M.; Hoke, M.R.T. Updated global map of Martian valley networks and implications for climate and hydrologic processes. J. Geophys. Res. 2010, 115, E09008. [Google Scholar] [CrossRef]
- Seybold, H.; Rothman, D.H.; Kirchner, J.W. Climate ’ s watermark in the geometry of stream networks. Geophys. Res. Lett. 2017, 44, 2272–2280. [Google Scholar] [CrossRef]
- Chen, S.A.; Michaelides, K.; Grieve, S.W.D.; Singer, M.B. Aridity is expressed in river topography globally. Nature 2019, 573, 573–577. [Google Scholar] [CrossRef] [Green Version]
- Gou, S.; Yue, Z.; Di, K.; Xu, Y. Comparative study between rivers in Tarim Basin in northwest China and Evros Vallis on Mars. Icarus 2019, 328, 127–140. [Google Scholar] [CrossRef]
- Jaumann, R. Interior channels in Martian valleys: Constraints on fluvial erosion by measurements of the Mars Express High Resolution Stereo Camera. Geophys. Res. Lett. 2005, 32, L16203. [Google Scholar] [CrossRef] [Green Version]
- Ying, H.; Song, C.; Bao, J.; Feng, Y.; Hu, C. Paleoclimate change since the Middle Miocene in the northeastern Qaidam basin. Quaternany Sci. 2016, 36, 148–162. [Google Scholar] [CrossRef]
- Jin, X.; Liu, J.; Wang, S.; Xia, W. Vegetation dynamics and their response to groundwater and climate variables in Qaidam Basin, China. Int. J. Remote Sens. 2016, 37, 710–728. [Google Scholar] [CrossRef]
- Xiao, L.; Wang, J.; Dang, Y.; Cheng, Z.; Huang, T.; Zhao, J.; Xu, Y.; Huang, J.; Xiao, Z.; Komatsu, G. A new terrestrial analogue site for Mars research: The Qaidam Basin, Tibetan Plateau (NW China). Earth-Sci. Rev. 2017, 164, 84–101. [Google Scholar] [CrossRef]
- Zhisheng, A.; Kutzbach, J.E.; Prell, W.L.; Porter, S.C. Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since Late Miocene times. Nature 2001, 411, 62–66. [Google Scholar] [CrossRef]
- Wang, E.; Xu, F.Y.; Zhou, J.X.; Wan, J.; Burchfiel, B.C. Eastward migration of the Qaidam basin and its implications for Cenozoic evolution of the Altyn Tagh fault and associated river systems. Bull. Geol. Soc. Am. 2006, 118, 349–365. [Google Scholar] [CrossRef]
- Hengshu, D.; Songgui, W. The study of the evolution of the Mesozoic and Cenozoic structures in the northeast margin of Caidam Basin. Earth Sci. J. China Univ. Geosci. 1991, 16, 533–539. [Google Scholar] [CrossRef]
- Jiazhen, Z.; Enbao, L. Hydrological characteristics of streams in Qaidam basin. Acta Geogr. Sin. 1985, 40. [Google Scholar]
- esri. Available online: https://www.esri.com/en-us/arcgis (accessed on 1 November 2021).
- Gou, S.; Yue, Z.; Di, K.; Xu, Y. Quantitative comparison of morphometric and hydrological characteristics of valley networks between Evros Vallis on Mars and Kaidu River in Tarim Basin as terrestrial analog. Yaogan Xuebao/J. Remote Sens. 2018. [Google Scholar] [CrossRef]
- Ray, K.; Linsley, J.; Max, A.K.; Joseph, L.H.P. Applied Hydrology; Tata McGraw-Hill Education: New York, NY, USA, 1949. [Google Scholar]
- Magesh, N.S.; Jitheshlal, K.V.; Chandrasekar, N.; Jini, K.V. Geographical information system-based morphometric analysis of Bharathapuzha river basin, Kerala, India. Appl. Water Sci. 2013, 3, 467–477. [Google Scholar] [CrossRef] [Green Version]
- Strahler, A.N. Quantitative analysis of watershed geomorphology. Eos, Trans. Am. Geophys. Union 1957, 38, 913–920. [Google Scholar] [CrossRef] [Green Version]
- Horton, R.E. Erosional development of streams and their drainage basins; Hydrophysical approach to quantitative morphology. Bull. Geol. Soc. Am. 1945, 56, 275–370. [Google Scholar] [CrossRef] [Green Version]
- Journal, I.; Geomatics, O.F. Watershed characteristics of Kundah sub basin using Remote Sensing and GIS techniques. Int. J. Geomatics Geosci. 2011, 2, 311. [Google Scholar]
- Howard, A.D. Optimal Angles of Stream Junction: Geometric, Stability to Capture, and Minimum Power Criteria. Water Resour. Res. 1971, 7, 863–873. [Google Scholar] [CrossRef]
- Roy, A.G. Optimal Angular Geometry Models of River Branching. Geogr. Anal. 1983, 15, 87–96. [Google Scholar] [CrossRef]
- Carr, M.H. The Martian drainage system and the origin of valley networks and fretted channels. J. Geophys. Res. 1995, 100, 7479. [Google Scholar] [CrossRef] [Green Version]
- Orofino, V.; Alemanno, G.; Di Achille, G.; Mancarella, F. Estimate of the water flow duration in large Martian fluvial systems. Planet. Space Sci. 2018, 163, 83–96. [Google Scholar] [CrossRef]
- Turbet, M.; Forget, F.; Head, J.W.; Wordsworth, R. 3D modelling of the climatic impact of outflow channel formation events on early Mars. Icarus 2017, 288, 10–36. [Google Scholar] [CrossRef] [Green Version]
- Halevy, I.; Iii, J.W.H. Episodic warming of early Mars by punctuated volcanism. Nat. Geosci. 2014, 7, 865–868. [Google Scholar] [CrossRef]
- Cang, X.; Luo, W. Noachian climatic conditions on Mars inferred from valley network junction angles. Earth Planet. Sci. Lett. 2019, 526, 115768. [Google Scholar] [CrossRef]
- Grau Galofre, A.; Jellinek, A.M.; Osinski, G.R. Valley formation on early Mars by subglacial and fluvial erosion. Nat. Geosci. 2020, 13, 663–668. [Google Scholar] [CrossRef]
- Grau Galofre, A.; Bahia, R.S.; Jellinek, A.M.; Whipple, K.X.; Gallo, R. Did Martian valley networks substantially modify the landscape? Earth Planet. Sci. Lett. 2020, 547, 116482. [Google Scholar] [CrossRef]
- Goudge, T.A.; Fassett, C.I.; Head, J.W.; Mustard, J.F.; Aureli, K.L. Insights into surface runoff on early Mars from paleolake basin morphology and stratigraphy. Geology 2016, 44. [Google Scholar] [CrossRef]
- Fassett, C.I.; Iii, J.W.H. Valley network-fed, open-basin lakes on Mars: Distribution and implications for Noachian surface and subsurface hydrology. Icarus 2008, 198, 37–56. [Google Scholar] [CrossRef] [Green Version]
- Carr, M.H.; Chuang, F.C. Martian drainage densities. J. Geophys. Res. E Planets 1997, 102, 9145–9152. [Google Scholar] [CrossRef]
- Abrahams, A.D.; Ponczynski, J.J. Drainage density in relation to precipitation intensity in the U.S.A. J. Hydrol. 1984, 75, 383–388. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Bouley, S.; Ansan, V.; Mangold, N.; Masson, P.; Neukum, G. Fluvial morphology of Naktong Vallis, Mars: A late activity with multiple processes. Planet. Space Sci. 2009, 57, 982–999. [Google Scholar] [CrossRef]
Stream | Mangya | Bayin River | Yuqia River | Geermu River | Dulan River |
---|---|---|---|---|---|
Site of QB | Northwest | East | Northeast | Southeast | Southeast |
Water source | Precipitation | Precipitation and groundwater | Melted ice | Groundwater | Groundwater |
Annual precipitation (mm) | <25 | 35–250 | 25–200 | 25–300 | 25–300 |
Annual runoff depth (mm) | 15.1 | 0–60 | 0–50 | 0–100 | 0–75 |
Evaporation (mm) | 1800 | 1000–1800 | 1000–2000 | 1000–2000 | 1000–2000 |
Stream length (km) | 152.6 | 200 | 175 | 323 | 57.8 |
Drainage area (km2) | 1955 | 7281 | 2139 | 18,648 | 1107 |
Drainage density (km−1) | 0.08 | 0.03 | 0.08 | 0.02 | 0.05 |
Parameters | Formula/Definition | Potential Indications |
---|---|---|
Drainage area (A) | Area of the drainage basin | Discharge and stream environment |
Stream order (u) | Stream hierarchical order | Scale-dependent, larger map scale with more orders of stream revealed |
Stream length (L) | Length of the stream from the source in the watershed to the outlet | Low slope with a shorter length than a high slope |
Stream frequency (FS) | N is the total number of all the stream segments and A is the area of the drainage basin | The influence of rainfall and the physiography of the region |
Stream slope | , H is the elevation of the end and the head/source of the stream, D is the distance between the end and the head/source | Flow velocity and stream power, the steeper the slope, the faster the velocity of flow |
Branching angle (Ψ) | , ψ1 and ψ2 are the two contributions | Narrower in an arid area than in a humid area |
Drainage density (Dd) | , Ltotal means the total length of the integral stream and A is the drainage area of the basin | Soil permeability and underlying rock type affect the runoff in a watershed |
Bifurcation ratio (Rb) | , Nu is the stream number of the stream order, u, and Nu+1 is the stream number of the next higher order, u+1 | Highly stable for different environments |
Normalized concavity index (NCI) | is the elevation difference of upstream to downstream | The shape of a stream is controlled by the climate |
Parameters | Evros Vallis | Naktong and Others | Alba Patera | Mangya—High | Mangya—Low |
---|---|---|---|---|---|
Stream length (km) | 9050 | 2563 | 2708 | 1526 | 486 |
Area (km2) | 149,700 | 22,200 | 35,473 | 1955 | 1332 |
Stream number | 1063 | 327 | 216 | 914 | 234 |
Stream frequency | 0.0071 | 0.0147 | 0.0061 | 0.4675 | 0.1757 |
Drainage density (km−1) | 0.0605 | 0.1155 | 0.0763 | 0.7806 | 0.3649 |
Fractal dimension | 1.63 | 1.55 | 1.36 | 1.7 | 2.0 |
Stream order | 6 | 6 | 4 | 5 | 3 |
Slope (m/km) | 3.7 | 2.3 | 18.2 | 33.3 | 27.5 |
Branching angle (°) | 56–74 | 50–66 | 39–56 | 39–57 | 39–57 |
NCI | −0.74 | −0.62 | −0.47 | −0.62 | −0.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Xu, Y.; Li, B. Comparitive Study of the Geomorphological Characteristics of Valley Networks between Mars and the Qaidam Basin. Remote Sens. 2021, 13, 4471. https://doi.org/10.3390/rs13214471
Chen L, Xu Y, Li B. Comparitive Study of the Geomorphological Characteristics of Valley Networks between Mars and the Qaidam Basin. Remote Sensing. 2021; 13(21):4471. https://doi.org/10.3390/rs13214471
Chicago/Turabian StyleChen, Lu, Yi Xu, and Bo Li. 2021. "Comparitive Study of the Geomorphological Characteristics of Valley Networks between Mars and the Qaidam Basin" Remote Sensing 13, no. 21: 4471. https://doi.org/10.3390/rs13214471
APA StyleChen, L., Xu, Y., & Li, B. (2021). Comparitive Study of the Geomorphological Characteristics of Valley Networks between Mars and the Qaidam Basin. Remote Sensing, 13(21), 4471. https://doi.org/10.3390/rs13214471