Fractal-Based Retrieval and Potential Driving Factors of Lake Ice Fractures of Chagan Lake, Northeast China Using Landsat Remote Sensing Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.2.1. Landsat
2.2.2. MODIS LST Products
2.2.3. Climate Records
2.3. Methods
2.3.1. The Extraction of Lake Ice Phenology
2.3.2. The Fractal-Based Auto-Extraction
2.3.3. The Calculation of Fractal Dimension
3. Results
3.1. The Changes of Lake Ice Phenology Derived from LWST
3.1.1. The Changes of MODIS-Derived LWST
3.1.2. The Changes of Lake Ice Phenology
3.2. The Changes of Landsat-Derived Lake Ice Fracture
3.2.1. The Comparison between Auto-Extraction and Visual Interpretation
3.2.2. The Results Based on Landsat Images
3.2.3. The Field Investigation
3.3. The Wind Field of Chagan Lake
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Zhang, G.; Yao, T.; Xie, H.; Yang, K.; Zhu, L.; Shum, C.; Bolch, T.; Yi, S.; Allen, S.; Jiang, L. Response of Tibetan Plateau’s lakes to climate changes: Trend, pattern, and mechanisms. Earth-Sci. Rev. 2020, 208, 103269. [Google Scholar] [CrossRef]
- Pointner, G.; Bartsch, A. Interannual Variability of Lake Ice Backscatter Anomalies on Lake Neyto, Yamal, Russia. GI Forum J. 2020, 8, 47–62. [Google Scholar] [CrossRef]
- Benson, B.J.; Magnuson, J.J.; Jensen, O.P.; Card, V.M.; Hodgkins, G.; Korhonen, J.; Livingstone, D.M.; Stewart, K.M.; Weyhenmeyer, G.A.; Granin, N.G. Extreme events, trends, and variability in Northern Hemisphere lake-ice phenology (1855–2005). Clim. Chang. 2012, 112, 299–323. [Google Scholar] [CrossRef]
- Hampton, S.E.; Galloway, A.W.; Powers, S.M.; Ozersky, T.; Woo, K.H.; Batt, R.D.; Labou, S.G.; O’Reilly, C.M.; Sharma, S.; Lottig, N.R.; et al. Ecology under lake ice. Ecol. Lett. 2017, 20, 98–111. [Google Scholar] [CrossRef]
- Leppäranta, M. Freezing of Lakes and the Evolution of Their Ice Cover; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Woolway, R.I.; Kraemer, B.M.; Lenters, J.D.; Merchant, C.J.; O’Reilly, C.M.; Sharma, S. Global lake responses to climate change. Nat. Rev. Earth Environ. 2020, 1, 388–403. [Google Scholar] [CrossRef]
- Arp, C.D.; Cherry, J.E.; Brown, D.; Bondurant, A.C.; Endres, K.L. Observation-derived ice growth curves show patterns and trends in maximum ice thickness and safe travel duration of Alaskan lakes and rivers. Cryosphere Discuss. 2020, 14, 3595–3609. [Google Scholar] [CrossRef]
- Huang, W.; Li, Z.; Leppäranta, M.; Han, H.; Wang, N. Residual Strain in a Reservoir Ice Cover: Field Investigations, Causes, and Its Role in Estimating Ice Stress. J. Hydraul. Eng. 2018, 144, 04018048. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Li, B.; Li, Z.; Shen, W. A new fracture model for reservoir ice layers in the northeast cold region of China. Constr. Build. Mater. 2018, 191, 795–811. [Google Scholar] [CrossRef]
- Li, W.; Lu, P.; Li, Z.; Zhuang, F.; Lu, Z.; Li, G.Y. Analysis of ice cracks morphology on lake surface of Lake Wuliangsuhai in the winter of 2017–2018. J. Glaciol. Geocryol. 2020, 42, 919–926. [Google Scholar]
- Jeffries, M.O.; Morris, K.; Kozlenko, N. Ice Characteristics and Processes, and Remote Sensing of Frozen Rivers and Lakes. In Remote Sensing in Northern Hydrology: Measuring Environmental Change; Pietroniro, C.R.D.A., Ed.; American Geophysical Union: Washington, DC, USA, 2013. [Google Scholar]
- Gusmeroli, A.; Grosse, G. Ground penetrating radar detection of subsnow slush on ice-covered lakes in interior Alaska. Cryosphere 2012, 6, 1435–1443. [Google Scholar] [CrossRef] [Green Version]
- Mandelbrot, B.B. The Fractal Geometry of Nature; W.H. Freeman and Company: New York, NY, USA, 1982. [Google Scholar]
- Mandelbrot, B.B. An Introduction to Multifractal Distribution Functions. In Random Fluctuations and Pattern Growth: Experiments and Models; Stanley, H.E., Ostrowsky, N., Eds.; NATO ASI Series (Series E: Applied Sciences); Springer: Dordrecht, The Netherlands, 1988; Volume 157. [Google Scholar]
- Sun, W.; Xu, G.; Gong, P.; Liang, S. Fractal analysis of remotely sensed images: A review of methods and applications. Int. J. Remote Sens. 2007, 27, 4963–4990. [Google Scholar] [CrossRef]
- Hibler, W.D., III. Sea ice fracturing on the large scale. Eng. Fract. Mech. 2001, 68, 2013–2043. [Google Scholar] [CrossRef]
- Nomura, D.; Aoki, S.; Simizu, D.; Iida, T. Influence of Sea Ice Crack Formation on the Spatial Distribution of Nutrients and Microalgae in Flooded Antarctic Multiyear Ice. J. Geophys. Res. Ocean. 2018, 123, 939–951. [Google Scholar] [CrossRef]
- Deng, Y.; Li, Z.; Li, Z.; Wang, J. The experiment of fracture mechanics characteristics of Yellow River Ice. Cold Reg. Sci. Technol. 2019, 168, 102896. [Google Scholar] [CrossRef]
- Mendoza, P.A.; Musselman, K.N.; Revuelto, J.; Deems, J.S.; López-Moreno, J.I.; McPhee, J. Interannual and Seasonal Variability of Snow Depth Scaling Behavior in a Subalpine Catchment. Water Resour. Res. 2020, 56, e2020WR027343. [Google Scholar] [CrossRef]
- Emetc, V.; Tregoning, P.; Morlighem, M.; Borstad, C.; Sambridge, M. A statistical fracture model for Antarctic ice shelves and glaciers. Cryosphere 2018, 12, 3187–3213. [Google Scholar] [CrossRef] [Green Version]
- Lam, N.S.N. Description and Measurement of Landsat TM Images Using Fractals. Photogramm. Eng. Remote Sens. 1990, 56, 187–195. [Google Scholar]
- Brown, L.C.; Duguay, C.R. The response and role of ice cover in lake-climate interactions. Prog. Phys. Geogr. Earth Environ. 2010, 34, 671–704. [Google Scholar] [CrossRef]
- Wang, X.; Qiu, Y.; Juha, L.J.; Xie, P.; Cheng, B.; Liang, W. Comparison to Changes of Lake Ice Phenology and Air Temperature over Northern Europe, Tibetan Plateau and Mongolian Plateau. IOP Conf. Ser. Earth Environ. Sci. 2020, 502, 012033. [Google Scholar] [CrossRef]
- Guo, L.; Zheng, H.; Wu, Y.; Zhang, T.; Wen, M.; Fan, L.; Zhang, B. Responses of Lake Ice Phenology to Climate Change at Tibetan Plateau. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3856–3861. [Google Scholar] [CrossRef]
- Yang, Q.; Song, K.S.; Wen, Z.D.; Hao, X.H.; Fang, C. Recent trends of ice phenology for eight large lakes using MODIS products in Northeast China. Int. J. Remote Sens. 2019, 40, 5388–5410. [Google Scholar] [CrossRef]
- Graf, R.; Tomczyk, A.M. The Impact of Cumulative Negative Air Temperature Degree-Days on the Appearance of Ice Cover on a River in Relation to Atmospheric Circulation. Atmosphere 2018, 9, 204. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Song, K.; Hao, X.; Wen, Z.; Tan, Y.; Li, W. Investigation of spatial and temporal variability of river ice phenology and thickness across Songhua River Basin, northeast China. Cryosphere 2020, 14, 3581–3593. [Google Scholar] [CrossRef]
- Duguay, C.R.; Bernier, M.; Gauthier, Y.; Kouraev, A. Remote sensing of lake and river ice. Remote Sens. Cryosphere 2015. [Google Scholar] [CrossRef]
- Duguay, C.R.; Prowse, T.D.; Bonsal, B.R.; Brown, R.D.; Lacroix, M.P.; Ménard, P. Recent trends in Canadian lake ice cover. Hydrol. Process. 2006, 20, 781–801. [Google Scholar] [CrossRef]
- Sharma, S.; Meyer, M.F.; Culpepper, J.; Yang, X.; Hampton, S.; Berger, S.A.; Brousil, M.R.; Fradkin, S.C.; Higgins, S.N.; Jankowski, K.J.; et al. Integrating Perspectives to Understand Lake Ice Dynamics in a Changing World. J. Geophys. Res. Biogeosci. 2020, 125, e2020JG005799. [Google Scholar] [CrossRef]
- Duan, H.; Zhang, Y.; Zhang, B.; Song, K.; Wang, Z. Assessment of chlorophyll-a concentration and trophic state for Lake Chagan using Landsat TM and field spectral data. Environ. Monit. Assess. 2007, 129, 295–308. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, G.; Zhang, J.; Xu, Y.J.; Wu, Y.; Wu, Y.; Sun, G.; Chen, Y.; Ma, H. Effects of Irrigation Discharge on Salinity of a Large Freshwater Lake: A Case Study in Chagan Lake, Northeast China. Water 2020, 12, 2112. [Google Scholar] [CrossRef]
- Song, K.; Wang, Z.; Blackwell, J.; Zhang, B.; Li, F.; Zhang, Y.; Jiang, G. Water quality monitoring using Landsat Themate Mapper data with empirical algorithms in Chagan Lake, China. J. Appl. Remote Sens. 2011, 5, 3506. [Google Scholar] [CrossRef]
- Liu, X.; Chen, L.; Zhang, G.; Zhang, J.; Wu, Y.; Ju, H. Spatiotemporal dynamics of succession and growth limitation of phytoplankton for nutrients and light in a large shallow lake. Water Res. 2021, 194, 116910. [Google Scholar] [CrossRef]
- Wen, Z.; Song, K.; Shang, Y.; Lyu, L.; Yang, Q.; Fang, C.; Du, J.; Li, S.; Liu, G.; Zhang, B.; et al. Variability of chlorophyll and the influence factors during winter in seasonally ice-covered lakes. J. Environ. Manag. 2020, 276, 111338. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, G.; Xu, Y.J.; Wu, Y.; Liu, Y.; Zhang, H. Assessment of water quality of best water management practices in lake adjacent to the high-latitude agricultural areas, China. Environ. Sci. Pollut. Res. Int. 2020, 27, 3338–3349. [Google Scholar] [CrossRef]
- Guillevic, P.; Göttsche, F.; Nickeson, J.; Hulley, G.; Ghent, D.; Yu, Y.; Trigo, I.; Hook, S.; Sobrino, J.A.; Remedios, J.; et al. Land Surface Temperature Product Validation Best Practice Protocol. Version 1.1. In Best Practice for SatelliteDerived Land Product Validation; Guillevic, P., Göttsche, F., Nickeson, J., Román, M., Eds.; Land Product Validation Subgroup (WGCV/CEOS): Washington, DC, USA, 2018; p. 58. [Google Scholar] [CrossRef]
- Du, J.; Jacinthe, P.A.; Zhou, H.; Xiang, X.; Zhao, B.; Wang, M.; Song, K. Monitoring of water surface temperature of Eurasian large lakes using MODIS land surface temperature product. Hydrol. Process. 2020, 34, 3582–3595. [Google Scholar] [CrossRef]
- Song, K.; Wang, M.; Du, J.; Yuan, Y.; Ma, J.; Wang, M.; Mu, G. Spatiotemporal Variations of Lake Surface Temperature across the Tibetan Plateau Using MODIS LST Product. Remote Sens. 2016, 8, 854. [Google Scholar] [CrossRef] [Green Version]
- Livingstone, D.M.; Adrian, R.; Blenckner, T.; George, G.; Weyhenmeyer, G.A. Lake Ice Phenology. In The Impact of Climate Change on European Lakes; George, G., Ed.; Springer: Berlin, Germany, 2010. [Google Scholar] [CrossRef]
- Duan, S.; Li, Z.; Li, H.; Göttsche, F.M.; Wu, H.; Zhao, W.; Leng, P.; Zhang, X.; Coll, C. Validation of Collection 6 MODIS land surface temperature product using in situ measurements. Remote Sens. Environ. 2019, 225, 16–29. [Google Scholar] [CrossRef] [Green Version]
- Minns, C.K.; Shuter, B.J.; Davidson, A.; Wang, S. Factors influencing peak summer surface water temperature in Canada’s large lakes. Can. J. Fish. Aquat. Sci. 2018, 75, 1005–1018. [Google Scholar] [CrossRef] [Green Version]
- Weeks, W.F.; Assu, A. Fracture of lake and sea ice. In Fracture of Nonmetals and Composites; Elsevier Inc.: Amsterdam, The Netherlands, 1972. [Google Scholar]
- Ding, Y.; Zhang, H.; Luo, X.; Dai, H. Blind image quality assessment based on fractal description of natural scenes. Electron. Lett. 2015, 51, 338–339. [Google Scholar] [CrossRef]
- Pentland, A.P. Fractal-based descriptions of natural scenes. IEEE Trans. Pattern Anal. Mach. Intell. 1984, PAMI-6, 661–674. [Google Scholar] [CrossRef]
- Magnuson, J.J.; Robertson, D.M.; Benson, B.J.; Wynne, R.H.; Livingstone, D.M.; Arai, T.; Assel, R.A.; Barry, R.G.; Card, V.; Kuusisto, E.; et al. Historical trends in lake and river ice cover in the Northern Hemisphere. Science 2000, 289, 1743–1746. [Google Scholar] [CrossRef] [Green Version]
Cold Season | December | January | February | March | Total |
---|---|---|---|---|---|
2013 | 1 | 0 | 0 | 1 | 2 |
2014 | 1 | 1 | 2 | 1 | 5 |
2015 | 1 | 1 | 1 | 1 | 4 |
2016 | 1 | 2 | 2 | 0 | 5 |
2017 | 1 | 2 | 2 | 2 | 7 |
2018 | 1 | 2 | 2 | 2 | 7 |
2019 | 1 | 2 | 2 | 1 | 6 |
2020 | 2 | 2 | 1 | 1 | 6 |
Code | Station Name | Latitude (°) | Longitude (°) | Elevation (m) |
---|---|---|---|---|
50945 | Da’an | 45.5005 | 124.267 | 137.4 |
50948 | Qian’an | 44.998 | 124.011 | 146.3 |
50949 | Qianguo | 45.1117 | 124.823 | 134.7 |
Cold Season | FUD | BUD | ICD (day) |
---|---|---|---|
2014 | 2013/11/17 | 2014/03/22 | 126 |
2015 | 2014/11/17 | 2015/04/07 | 142 |
2016 | 2015/11/09 | 2016/03/19 | 131 |
2017 | 2016/10/31 | 2017/03/30 | 151 |
2018 | 2017/11/17 | 2018/04/18 | 153 |
2019 | 2018/11/17 | 2019/03/22 | 126 |
2020 | 2019/11/17 | 2020/03/29 | 134 |
2021 | 2020/11/16 | 2021/03/30 | 135 |
Means | 11/13 | 04/01 | 140.44 |
Date | Angle | Length (m) | ||
---|---|---|---|---|
Landsat | Visual | Landsat | Visual | |
2018-12-08 | 335°45′56″ | 339°24′05″ | 21,101.99 | 22,063.61 |
2018-01-25 | 335°34′49″ | 338°31′27″ | 21,052.78 | 23,199.51 |
2019-02-16 | 335°24′26″ | 338°09′25″ | 21,183.98 | 24,906.53 |
2019-03-14 | 335°09′06″ | 336°18′26″ | 21,227.53 | 22,179.47 |
R2 | 0.96 | 0.98 | ||
MAE | 3.99% | 2.48% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, X.; Yang, Q.; Shi, X.; Liu, X.; Huang, W.; Chen, L.; Ma, Y. Fractal-Based Retrieval and Potential Driving Factors of Lake Ice Fractures of Chagan Lake, Northeast China Using Landsat Remote Sensing Images. Remote Sens. 2021, 13, 4233. https://doi.org/10.3390/rs13214233
Hao X, Yang Q, Shi X, Liu X, Huang W, Chen L, Ma Y. Fractal-Based Retrieval and Potential Driving Factors of Lake Ice Fractures of Chagan Lake, Northeast China Using Landsat Remote Sensing Images. Remote Sensing. 2021; 13(21):4233. https://doi.org/10.3390/rs13214233
Chicago/Turabian StyleHao, Xiaohua, Qian Yang, Xiaoguang Shi, Xuemei Liu, Wenfeng Huang, Liwen Chen, and Yue Ma. 2021. "Fractal-Based Retrieval and Potential Driving Factors of Lake Ice Fractures of Chagan Lake, Northeast China Using Landsat Remote Sensing Images" Remote Sensing 13, no. 21: 4233. https://doi.org/10.3390/rs13214233
APA StyleHao, X., Yang, Q., Shi, X., Liu, X., Huang, W., Chen, L., & Ma, Y. (2021). Fractal-Based Retrieval and Potential Driving Factors of Lake Ice Fractures of Chagan Lake, Northeast China Using Landsat Remote Sensing Images. Remote Sensing, 13(21), 4233. https://doi.org/10.3390/rs13214233