Regional High-Resolution Benthic Habitat Data from Planet Dove Imagery for Conservation Decision-Making and Marine Planning
Abstract
:1. Introduction
2. Materials and Methods
2.1. PlanetScope Imagery
2.2. Composite Processing
2.3. Extraction of Depth and Surface Reflectance
2.4. Mapping of Geomorphic Zones
2.5. Developing the Classification Scheme
2.6. In Situ Data
2.7. Classification Method
3. Results
3.1. Data Portal
3.2. Accuracy Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burke, L.; Reytar, K.; Spalding, M.; Perry, A. Reefs at Risk Revisited; World Resources Institute: Washington, DC, USA, 2011. [Google Scholar]
- Costanza, R.; Folke, C. Valuing ecosystem services with efficiency, fairness and sustainability as goals. In Nature’s Services: Societal Dependence on Natural Ecosystems; Daily, G.C., Ed.; Island Press: Washington, DC, USA, 1997; pp. 49–70. [Google Scholar]
- Hoegh-Guldberg, O.; Pendleton, L.; Kaup, A. People and the changing nature of coral reefs. Reg. Stud. Mar. Sci. 2019, 30, 100699. [Google Scholar] [CrossRef]
- U.S. Commission on Ocean Policy. An Ocean Blueprint for the 21st Century. U.S.; Commission on Ocean Policy: Washington, DC, USA, 2004. [Google Scholar]
- Spalding, M.; Burke, L.; Wood, S.A.; Ashpole, J.; Hutchison, J.; zu Ermgassen, P. Mapping the global value and distribution of coral reef tourism. Mar. Policy 2017, 82, 104–113. [Google Scholar] [CrossRef]
- Beck, M.W.; Losada, I.J.; Menéndez, P.; Reguero, B.; Díaz-Simal, P.; Fernández, F. The global flood protection savings provided by coral reefs. Nat. Commun. 2018, 9, 2186. [Google Scholar] [CrossRef] [Green Version]
- Ferrario, F.; Beck, M.W.; Storlazzi, C.D.; Micheli, F.; Shepard, C.C.; Airoldi, L. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation. Nat. Commun. 2014, 5, 3794. [Google Scholar] [CrossRef] [PubMed]
- Campagne, C.S.; Salles, J.-M.; Boissery, P.; Deter, J. The seagrass Posidonia oceanica: Ecosystem services identification and economic evaluation of goods and benefits. Mar. Pollut. Bull. 2015, 97, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Tuya, F.; Haroun, R.; Espino, F. Economic assessment of ecosystem services: Monetary value of seagrass meadows for coastal fisheries. Ocean Coast. Manag. 2014, 96, 181–187. [Google Scholar] [CrossRef]
- Dewsbury, B.M.; Bhat, M.; Fourqurean, J. A review of seagrass economic valuations: Gaps and progress in valuation approaches. Ecosyst. Serv. 2016, 18, 68–77. [Google Scholar] [CrossRef]
- Van Hooidonk, R.; Maynard, J.; Tamelander, J.; Gove, J.; Ahmadia, G.; Raymundo, L.; Williams, G.; Heron, S.; Planes, S. Local-scale projections of coral reef futures and implications of the Paris Agreement. Sci. Rep. 2016, 6, 39666. [Google Scholar] [CrossRef] [PubMed]
- Hughes, T.P.; Anderson, K.D.; Connolly, S.R.; Heron, S.F.; Kerry, J.T.; Lough, J.M.; Baird, A.H.; Baum, J.K.; Berumen, M.L.; Bridge, T.C.; et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 2018, 359, 80–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waycott, M.; Duarte, C.M.; Carruthers, T.J.B.; Orth, R.J.; Dennison, W.C.; Olyarnik, S.; Calladine, A.; Fourqurean, J.W.; Heck, K.L.; Hughes, A.R.; et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl. Acad. Sci. USA 2009, 106, 12377–12381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennedy, E.; Perry, C.T.; Halloran, P.; Iglesias-Prieto, R.; Schönberg, C.H.L.; Wisshak, M.; Form, A.U.; Carricart-Ganivet, J.P.; Fine, M.; Eakin, C.M.; et al. Avoiding Coral Reef Functional Collapse Requires Local and Global Action. Curr. Biol. 2013, 23, 912–918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wear, S.L.; Thurber, R.V. Sewage pollution: Mitigation is key for coral reef stewardship. Ann. N. Y. Acad. Sci. 2015, 1355, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Zaneveld, J.R.; Burkepile, D.E.; Shantz, A.; Pritchard, C.E.; McMinds, R.; Payet, J.P.; Welsh, R.; Correa, A.M.S.; Lemoine, N.P.; Rosales, S.; et al. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nat. Commun. 2016, 7, 11833. [Google Scholar] [CrossRef] [PubMed]
- Grech, A.; Chartrand, K.; Erftemeijer, P.; Fonseca, M.; McKenzie, L.; Rasheed, M.; Taylor, H.; Coles, R. A comparison of threats, vulnerabilities and management approaches in global seagrass bioregions. Environ. Res. Lett. 2012, 7. [Google Scholar] [CrossRef]
- Woodhead, A.J.; Hicks, C.C.; Norström, A.V.; Williams, G.J.; Graham, N.A.J. Coral reef ecosystem services in the Anthropocene. Funct. Ecol. 2019. [Google Scholar] [CrossRef] [Green Version]
- Giakoumi, S.; Brown, C.; Katsanevakis, S.; Saunders, M.; Possingham, H. Using threat maps for cost-effective prioritization of actions to conserve coastal habitats. Mar. Policy 2015, 61, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Foo, S.; Asner, G.P. Scaling Up Coral Reef Restoration Using Remote Sensing Technology. Front. Mar. Sci. 2019, 6. [Google Scholar] [CrossRef] [Green Version]
- Purkis, S.J. Remote Sensing Tropical Coral Reefs: The View from Above. Annu. Rev. Mar. Sci. 2018, 10, 149–168. [Google Scholar] [CrossRef] [PubMed]
- Lyons, M.B.; Roelfsema, C.M.; Kennedy, E.V.; Kovacs, E.M.; Borrego-Acevedo, R.; Markey, K.; Roe, M.; Yuwono, D.M.; Harris, D.L.; Phinn, S.R.; et al. Mapping the world’s coral reefs using a global multiscale earth observation framework. Remote Sens. Ecol. Conserv. 2020, 6, 557–568. [Google Scholar] [CrossRef] [Green Version]
- Prampolini, M.; Angeletti, L.; Castellan, G.; Grande, V.; Le Bas, T.; Taviani, M.; Foglini, F. Benthic Habitat Map of the Southern Adriatic Sea (Mediterranean Sea) from Object-Based Image Analysis of Multi-Source Acoustic Backscatter Data. Remote Sens. 2021, 13, 2913. [Google Scholar] [CrossRef]
- Rende, S.F.; Bosman, A.; Di Mento, R.; Bruno, F.; Lagudi, A.; Irving, A.D.; Dattola, L.; Giambattista, L.D.; Lanera, P.; Proietti, R.; et al. Ultra-High-Resolution Mapping of Posidonia oceanica (L.) Delile Meadows through Acoustic, Optical Data and Object-based Image Classification. J. Mar. Sci. Eng. 2020, 8, 647. [Google Scholar] [CrossRef]
- Janowski, L.; Madricardo, F.; Fogarin, S.; Kruss, A.; Molinaroli, E.; Kubowicz-Grajewska, A.; Tegowski, J. Spatial and Temporal Changes of Tidal Inlet Using Object-Based Image Analysis of Multibeam Echosounder Measurements: A Case from the Lagoon of Venice, Italy. Remote Sens. 2020, 12, 2117. [Google Scholar] [CrossRef]
- Kutser, T.; Hedley, J.; Giardino, C.; Roelfsema, C.; Brando, V.E. Remote sensing of shallow waters—A 50 year retrospective and future directions. Remote Sens. Environ. 2020, 240, 111619. [Google Scholar] [CrossRef]
- Li, J.; Knapp, D.E.; Fabina, N.S.; Kennedy, E.V.; Larsen, K.; Lyons, M.B.; Murray, N.J.; Phinn, S.R.; Roelfsema, C.M.; Asner, G.P. A global coral reef probability map generated using convolutional neural networks. Coral Reefs 2020, 39, 1805–1815. [Google Scholar] [CrossRef]
- Roelfsema, C.; Kovacs, E.; Ortiz, J.C.; Wolff, N.H.; Callaghan, D.; Wettle, M.; Ronan, M.; Hamylton, S.M.; Mumby, P.J.; Phinn, S. Coral reef habitat mapping: A combination of object-based image analysis and eco-logical modelling. Remote Sens. Environ. 2018, 208, 27–41. [Google Scholar] [CrossRef]
- Roelfsema, C.; Kovacs, E.; Roos, P.; Terzano, D.; Lyons, M.; Phinn, S. Use of a semi-automated object-based analysis to map benthic composition, Heron Reef, Southern Great Barrier Reef. Remote Sens. Lett. 2018, 9, 324–333. [Google Scholar] [CrossRef]
- Li, J.; Schill, S.R.; Knapp, D.E.; Asner, G.P. Object-Based Mapping of Coral Reef Habitats Using Planet Dove Satellites. Remote Sens. 2019, 11, 1445. [Google Scholar] [CrossRef] [Green Version]
- Purkis, S.J. Remote sensing coral reefs. In Encyclopedia of Ocean Sciences; Elsevier: Amsterdam, The Netherlands, 2019; pp. 389–396. [Google Scholar]
- Planet Labs. Available online: https://www.planet.com/products/satellite-imagery/files/Planet_Combined_Imagery_Product_Specs_December2017.pdf (accessed on 7 May 2021).
- Poursanidis, D.; Traganos, D.; Chrysoulakis, N.; Reinartz, P. Cubesats Allow High Spatiotemporal Estimates of Satellite-Derived Bathymetry. Remote Sens. 2019, 11, 1299. [Google Scholar] [CrossRef] [Green Version]
- Wicaksono, P.; Lazuardi, W. Assessment of PlanetScope images for benthic habitat and seagrass species mapping in a complex optically shallow water environment. Int. J. Remote Sens. 2018, 39, 5739–5765. [Google Scholar] [CrossRef]
- Asner, G.P.; Martin, R.E.; Mascaro, J. Coral reef atoll assessment in the South China Sea using Planet Dove satellites. Remote Sens. Ecol. Conserv. 2017, 3, 57–65. [Google Scholar] [CrossRef]
- Li, J.; Knapp, D.E.; Schill, S.R.; Roelfsema, C.; Phinn, S.; Silman, M.; Mascaro, J.; Asner, G.P. Adaptive bathymetry estimation for shallow coastal waters using Planet Dove satellites. Remote Sens. Environ. 2019, 232. [Google Scholar] [CrossRef]
- Vanhellemont, Q. Daily metre-scale mapping of water turbidity using CubeSat imagery. Opt. Express 2019, 27, A1372–A1399. [Google Scholar] [CrossRef] [PubMed]
- Cihlar, J.; Manak, D.; D’Iorio, M. Evaluation of compositing algorithms for AVHRR data over land. IEEE Trans. Geosci. Remote Sens. 1994, 32, 427–437. [Google Scholar] [CrossRef]
- Planet Surface Reflectance Version 2.0. Available online: https://assets.planet.com/marketing/PDF/Planet_Surface_Reflectance_Technical_White_Paper.pdf (accessed on 7 May 2021).
- Teillet, P.; Fedosejevs, G.; Thome, K.; Barker, J.L. Impacts of spectral band difference effects on radiometric cross-calibration between satellite sensors in the solar-reflective spectral domain. Remote Sens. Environ. 2007, 110, 393–409. [Google Scholar] [CrossRef]
- Vermote, E. MOD09A1 MODIS/Terra Surface Reflectance 8-Day L3 Global 500 m SIN Grid V006. 2015, Distributed by NASA EOSDIS Land Processes DAAC. Available online: https://doi.org/10.5067/MODIS/MOD09A1.006 (accessed on 19 October 2021).
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef]
- Kington IV, J.D.; Jordahl, K.A.; Kanwar, A.N.; Kapadia, A.; Schönert, M.; Wurster, K. Spatially and Temporally Consistent Smallsat-Derived Basemaps for Analytic Applications. In AGU Fall Meeting Abstracts 2019; Volume 2019, pp. IN13B-0716. Available online: https://hello.planet.com/data/s/MeXxDJfkgMciEEn (accessed on 19 October 2021).
- Kazhdan, M.; Bolitho, M.; Hoppe, H. Poisson surface reconstruction. In Proceedings of the Fourth Eurographics Symposium on Geometry Processing (SGP’06) 2006, Eurographics Association, Aire-la-Ville, Switzerland, 26–28 June 2006; pp. 61–70, ISBN 3-905673-36-3. [Google Scholar]
- Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Thompson, D.R.; Hochberg, E.; Asner, G.P.; Green, R.O.; Knapp, D.E.; Gao, B.-C.; Garcia, R.; Gierach, M.; Lee, Z.; Maritorena, S.; et al. Airborne mapping of benthic reflectance spectra with Bayesian linear mixtures. Remote Sens. Environ. 2017, 200, 18–30. [Google Scholar] [CrossRef]
- Li, J.; Fabina, N.S.; Knapp, D.E.; Asner, G.P. The Sensitivity of Multi-spectral Satellite Sensors to Benthic Habitat Change. Remote Sens. 2020, 12, 532. [Google Scholar] [CrossRef] [Green Version]
- Phinn, S.R.; Roelfsema, C.; Mumby, P. Multi-scale, object-based image analysis for mapping geomorphic and ecological zones on coral reefs. Int. J. Remote Sens. 2011, 33, 3768–3797. [Google Scholar] [CrossRef]
- Kennedy, E.V.; Roelfsema, C.; Lyons, M.; Kovacs, E.; Borrego-Acevedo, R.; Roe, M.; Phinn, S.; Larsen, K.; Murray, N.; Yuwono, D.; et al. Reef Cover: A coral reef classification for global habitat mapping from biophysical remote sensing. bioRxiv 2020. [Google Scholar] [CrossRef]
- Strong, J.A.; Clements, A.; Lillis, H.; Galparsoro, I.; Bildstein, T.; Pesch, R. A review of the influence of marine habitat classification schemes on mapping studies: Inherent assumptions, influence on end products, and suggestions for future developments. ICES J. Mar. Sci. 2018, 76, 10–22. [Google Scholar] [CrossRef] [Green Version]
- Nagel, G.W.; Novo, E.M.L.D.M.; Kampel, M. Nanosatellites applied to optical Earth observation: A review. Ambient. Agua—Interdiscip. J. Appl. Sci. 2020, 15. [Google Scholar] [CrossRef]
- eCognition. Available online: www.ecognition.com (accessed on 20 August 2020).
- Baatz, M. Multi resolution segmentation: An optimum approach for high quality multi scale image segmentation. In Proceedings of the Beutrage zum AGIT-Symposium, Salzburg, Heidelberg, 2000; pp. 12–23. [Google Scholar]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef] [Green Version]
- Tiede, D. A new geospatial overlay method for the analysis and visualization of spatial change patterns using object-oriented data modeling concepts. Cartogr. Geogr. Inf. Sci. 2014, 41, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Pontius, R.G., Jr.; Rakshit, R. A review of accuracy assessment for object-based image analysis: From per-pixel to per-polygon approaches. ISPRS J. Photogramm. Remote Sens. 2018, 141, 137–147. [Google Scholar] [CrossRef]
- Andrefouet, S.; Muller-Karger, F.E.; Robinson, J.A.; Kranenburg, C.J.; Torres-Pulliza, D.; Spraggins, S.A.; Murch, B. Global assessment of modern coral reef extent and diversity for regional science and management applications: A view from space. Proc. 10th Int. Coral Reef Symp. 2006, 2, 1732–1745. [Google Scholar]
- IMaRS-USF, IRD (Institut de Recherche pour le Developpement). Millennium Coral Reef Mapping Project. Validated Maps; UNEP World Conservation Monitoring Centre: Cambridge, UK, 2005. [Google Scholar]
- Spalding, M.D.; Ravilious, C.; Green, E.P. World Atlas of Coral Reefs; The University of California Press: Berkeley, CA, USA, 2001; 436p. [Google Scholar]
- Flanders Marine Institute. Polygons Representing Maritime Boundaries of Exclusive Economic Zones. Available online: http://www.marineregions.org (accessed on 1 September 2018).
- Agostini, V.N.; Margles, S.W.; Knowles, J.K.; Schill, S.R.; Bovino, R.J.; Blyther, R.J. Marine zoning in St. Kitts and Nevis: A design for sustainable management in the Caribbean. Ocean Coast. Manag. 2015, 104, 1–10. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Stehman, S.V.; Foody, G.M. Key issues in rigorous accuracy assessment of land cover products. Remote Sens. Environ. 2019, 231, 111199. [Google Scholar] [CrossRef]
- Rwanga, S.S.; Ndambuki, J.M. Accuracy Assessment of Land Use/Land Cover Classification Using Remote Sensing and GIS. Int. J. Geosci. 2017, 08, 611–622. [Google Scholar] [CrossRef] [Green Version]
- Radoux, J.; Bogaert, P. Good Practices for Object-Based Accuracy Assessment. Remote Sens. 2017, 9, 646. [Google Scholar] [CrossRef] [Green Version]
- Asner, G.P.; Vaughn, N.R.; Heckler, J.; Knapp, D.E.; Balzotti, C.; Shafron, E.; Martin, R.E.; Neilson, B.J.; Gove, J.M. Large-scale mapping of live corals to guide reef conservation. Proc. Natl. Acad. Sci. USA 2020, 117, 33711–33718. [Google Scholar] [CrossRef] [PubMed]
- Beyer, H.L.; Kennedy, E.V.; Beger, M.; Chen, C.A.; Cinner, J.E.; Darling, E.S.; Eakin, C.M.; Gates, R.D.; Heron, S.F.; Knowlton, N.; et al. Risk-sensitive planning for conserving coral reefs under rapid climate change. Conserv. Lett. 2018, 11, e12587. [Google Scholar] [CrossRef]
- UNEP-WCMC, WorldFish Centre, WRI, TNC. Global Distribution of Warm-Water Coral Reefs, Compiled from Multiple Sources Including the Millennium Coral Reef Mapping Project. Version 4.0. Includes Contributions from IMaRS-USF and IRD (2005), IMaRS-USF (2005) and Spalding et al. 2001. UN Environment World Conservation Monitoring Centre: Cambridge, UK. 2018. Available online: http://data.unep-wcmc.org/datasets/1 (accessed on 7 May 2021).
- Spalding, M.D.; Fox, H.; Allen, G.R.; Davidson, N.; Ferdaña, Z.A.; Finlayson, C.; Halpern, B.S.; Jorge, M.A.; Lombana, A.; Lourie, S.A.; et al. Marine Ecoregions of the World: A Bioregionalization of Coastal and Shelf Areas. BioScience 2007, 57, 573–583. [Google Scholar] [CrossRef] [Green Version]
- Anderson, L.; Dahlgren, C.; Knowles, L.; Jupp, L.; Cant-Woodside, S.; Albury-Smith, S.; McKinney-Lambert, C.; Lundy, A. Bahamas Protected Marine Protection Plan for Expanding the Bahamas Marine Protected Areas Network to Meet the Bahamas 2020 Declaration; Bahamas National Trust, Perry Institute for Marine Science, The Nature Conservancy, Bahamas Reef Environmental Educational Foundation: Nassau, Bahamas, 2018; Available online: https://bahamasprotected.com/wp-content/uploads/2018/02/Bahamas-Protected-Marine-Protection-Plan-Exec.-Summary.pdf (accessed on 7 May 2021).
- Flower, J.; Ramdeen, R.; Estep, A.; Thomas, L.R.; Francis, S.; Goldberg, G.; Johnson, A.E.; McClintock, W.; Mendes, S.R.; Mengerink, K.; et al. Marine spatial planning on the Caribbean island of Montserrat: Lessons for data-limited small islands. Conserv. Sci. Pract. 2020, 2. [Google Scholar] [CrossRef]
- Government of Saint Kitts and Nevis. National Maritime Policy and Action Plan. Ministry of Tourism and International Transport. 2015. Available online: https://chm.cbd.int/api/v2013/documents/C0A7116F-F642-2089-08C4-81605C16F1BC/attachments/SKN%20MARITIME%20POLICY%202015.pdf (accessed on 21 May 2021).
- Johnson, A.E.; McClintock, W.; Burton, O.; Burton, W.; Estep, A.; Mengerink, K.; Porter, R.; Tate, S. Marine spatial planning in Barbuda: A social, ecological, geographic, and legal case study. Mar. Policy 2019, 113, 103793. [Google Scholar] [CrossRef]
- Baldwin, K.; Schill, S.; Zenny, N.; Blake, D. Developing ecosystem-based information for marine spatial planning on the Pedro Bank, Jamaica. In Proceedings of the 67th Gulf and Caribbean Fisheries Institute, Bridgetown, Barbados, 3–7 November 2014; pp. 3–7. [Google Scholar]
- SusGren. Developing a Framework for a Comprehensive Marine Multiuse Zoning Plan for the Grenadine Islands. Clifton, Union Island, St. Vincent and the Grenadines. Sustainable Grenadines. 2012. Available online: https://www.ncei.noaa.gov/data/oceans/coris/library/NOAA/CRCP/other/grants/International_FY10_Products/NA10NOS4630054_Multi-use_Zoning_Plan.pdf (accessed on 19 October 2021).
- Romero, T.D.; Tejo, E.D.; Schill, S.R. Zonificación Basada en Ecosistemas en la Bahía de Samaná, República Dominicana. In Proceedings of the 65th Gulf and Caribbean Fisheries Institute, Santa Marta, Colombia, 5–9 November 2012; pp. 128–135. [Google Scholar]
- Bustamante, G.; Canals, P.; Di Carlo, G.; Gomei, M.; Romani, M.; Souan, H.; Vanzella-Khouri, A. Marine protected areas management in the Caribbean and Mediterranean seas: Making them more than paper parks. Aquat. Conserv. Mar. Freshw. Ecosyst. 2014, 24, 153–165. [Google Scholar] [CrossRef]
- Niroumand-Jadidi, M.; Bovolo, F.; Bruzzone, L.; Gege, P. Physics-based Bathymetry and Water Quality Retrieval Using PlanetScope Imagery: Impacts of 2020 COVID-19 Lockdown and 2019 Extreme Flood in the Venice Lagoon. Remote Sens. 2020, 12, 2381. [Google Scholar] [CrossRef]
- Mohamed, H.; Nadaoka, K.; Nakamura, T. Semiautomated Mapping of Benthic Habitats and Seagrass Species Using a Convolutional Neural Network Framework in Shallow Water Environments. Remote Sens. 2020, 12, 4002. [Google Scholar] [CrossRef]
- Traganos, D.; Aggarwal, B.; Poursanidis, D.; Topouzelis, K.; Chrysoulakis, N.; Reinartz, P. Towards Global-Scale Seagrass Mapping and Monitoring Using Sentinel-2 on Google Earth Engine: The Case Study of the Aegean and Ionian Seas. Remote Sens. 2018, 10, 1227. [Google Scholar] [CrossRef] [Green Version]
Spectral bands (nm) (Full width at half maximum (FWHM) and range) | Blue: 470 (455–515) Green: 540 (500–590) Red: 610 (590–670) NIR: 790 (780–860) |
Ground sampling distance | 3.5–4.1 m |
Camera dynamic range | 12-bit |
Signal-to-noise ratio (SNR) | ~80 |
Scene dimension (frame size) | ~20 km × 12 km |
Geometric accuracy (horizontal) | ~10 m |
Structure | Benthic Cover | |
---|---|---|
Type | Level 1 | Level 2 |
Hardbottom Reef | Reef | Coral/Algae (Fringing and Patch) |
Reef Crest | ||
Reef Back (Inner flat) | ||
Reef Fore (Outer flat) | ||
Spur and Groove | ||
Boulders and Rocks | ||
Hardbottom (Non-reef) | Hardbottom | Hardbottom with Dense Algae |
Hardbottom with Sparse Algae | ||
Unconsolidated sediment | Seagrass | Dense Seagrass |
Sparse Seagrass | ||
Sand | Sand | |
Muddy bottom | Muddy Bottom/Estuarine | |
Dredged |
Issue/Problem | Solution |
---|---|
Areas > 20 m depth did not have accurate bathymetry data, only RGB spectral values. | Employ a classification approach using only RGB values and subsequent manual editing where needed. |
Shallow reef features around the reef crest needed more detail and accuracy. | Use geomorphic zones as “parental guidance” and object-specific range and thresholding to refine and improve the boundaries for reef crest, fore reef, and back reef features. |
Seagrass features classified into dense and sparse beds. | Use object-specific range and thresholding of RGB values within lagoon areas to separate sparse and dense seagrass beds. |
Hardbottom features in deeper areas needed more detail and accuracy. | Use object-specific range and thresholding of RGB values to separate sparse and dense algae hardbottom. |
Removing objects that were less than the minimum mapping unit. | Objects with less or equal to area threshold were dissolved by majority length of the common border of the neighboring objects. |
Missing reef areas. | Search for missing reefs using an object-specific range and thresholding detection method to refine and improve reef boundaries. |
Benthic Habitat Class | Total Area (km2) | Within Protected/Managed Area (km2) | |
Coral Reefs | Reef Crest | 70.23 | 23.86 (34%) |
Fore Reef | 295.27 | 102.93 (35%) | |
Back Reef | 265.18 | 103.35 (39%) | |
Coral/Algae | 9075.27 | 1662.10 (18%) | |
Spur and Groove Reef | 666.88 | 146.66 (22%) | |
Total Coral | 10,372.82 (5%) | 2038.89 (20%) | |
Seagrass | Dense Seagrass | 24,673.02 | 3593.69 (15%) |
Sparse Seagrass | 63,497.27 | 7853.34 (12%) | |
Total Seagrass | 88,170.29 (43%) | 11,447.03 (13%) | |
Hardbottom | Hardbottom Dense Algae | 13,670.71 | 3222.88 (24%) |
Hardbottom Sparse Algae | 16,198.26 | 3436.14 (21%) | |
Total Hardbottom | 29,868.97 (15%) | 6659.02 (22%) | |
Other | Sand | 74,273.75 | 10,807.40 (15%) |
Muddy Bottom | 930.90 | 353.85 (38%) | |
Boulders and Rocks | 13.06 | 0.99 (8%) | |
Dredged | 46.43 | 4.53 (10%) | |
Total Other | 75,264.13 (37%) | 11,116.78 (15%) |
Reef Crest | Fore Reef | Back Reef | Coral/Algae | Spur and Groove | Coral Reef Totals | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Country/ Territory | Total km2 | P/M % | Total km2 | P/M % | Total km2 | P/M % | Total km2 | P/M % | Total km2 | P/M % | Total km2 | P/M % |
Anguilla | 0.28 | 0.14 (49%) | 1.44 | 0.68 (47%) | 1.31 | 0.77 (59%) | 10.28 | 3.02 (29%) | 1.54 | 0.16 (11%) | 14.85 | 4.77 (32%) |
Antigua and Barbuda | 0.75 | 0.70 (93%) | 3.69 | 3.47 (94%) | 3.99 | 3.78 (95%) | 100.47 | 42.65 (42%) | 5.05 | 3.74 (74%) | 113.95 | 54.34 (48%) |
The Bahamas | 27.26 | 5.14 (19%) | 104.65 | 22.61 (22%) | 95.91 | 23.40 (24%) | 5035.50 | 457.95 (9%) | 267.90 | 23.66 (9%) | 5531.22 | 532.76 (10%) |
Barbados | 1.24 | 0.00 (0%) | 4.72 | 0.00 (0%) | 4.50 | 0.00 (0%) | 17.99 | 0.93 (5%) | 1.43 | 0.08 (6%) | 29.88 | 1.00 (3%) |
British Virgin Islands | 0.95 | 0.10 (11%) | 2.61 | 0.34 (13%) | 2.42 | 0.31 (13%) | 88.28 | 12.44 (14%) | 0.41 | 0.17 (42%) | 94.66 | 13.36 (14%) |
Cayman Islands | 1.38 | 0.93 (67%) | 6.77 | 4.50 (66%) | 5.05 | 3.20 (63%) | 22.84 | 16.68 (73%) | 27.94 | 16.47 (59%) | 63.98 | 41.77 (65%) |
Cuba | 13.43 | 4.83 (36%) | 71.70 | 24.41 (34%) | 59.27 | 22.09 (37%) | 1890.02 | 411.23 (22%) | 191.89 | 53.05 (28%) | 2226.32 | 515.62 (23%) |
Dominica | 0.01 | 0.00 (0%) | 0.06 | 0.00 (0%) | 0.05 | 0.00 (0%) | 11.42 | 0.75 (7%) | 0.00 | N/A | 11.54 | 0.75 (7%) |
Dominican Republic | 4.82 | 2.87 (60%) | 19.93 | 12.30 (62%) | 17.58 | 11.38 (65%) | 308.76 | 171.21 (55%) | 10.43 | 7.73 (74%) | 361.52 | 205.50 (57%) |
Grenada | 0.61 | 0.00 (0%) | 2.70 | 0.00 (0%) | 2.43 | 0.00 (0%) | 38.11 | 3.78 (10%) | 0.00 | N/A | 43.85 | 3.78 (9%) |
Guadeloupe | 1.68 | 1.68 (100%) | 7.80 | 7.80 (100%) | 6.74 | 6.74 (100%) | 85.75 | 85.75 (100%) | 16.21 | 16.21 (100%) | 118.18 | 118.18 (100%) |
Haiti * | 5.05 | 2.49 (49%) | 14.93 | 6.01 (40%) | 17.37 | 10.26 (59%) | 250.70 | 85.08 (34%) | 28.07 | 11.74 (42%) | 316.12 | 115.59 (37%) |
Jamaica | 3.02 | 0.84 (28%) | 13.62 | 4.38 (32%) | 10.85 | 3.34 (31%) | 277.95 | 85.30 (31%) | 56.91 | 5.22 (9%) | 362.35 | 99.07 (27%) |
Martinique | 0.97 | 0.97 (100%) | 3.44 | 3.44 (100%) | 4.77 | 4.77 (100%) | 43.90 | 43.90 (100%) | 0.00 | N/A | 53.07 | 53.07 (100%) |
Montserrat | 0.00 | N/A | 0.00 | N/A | 0.00 | N/A | 0.92 | 0.00 (0%) | 0.00 | N/A | 0.92 | 0.00 (0%) |
Puerto Rico | 1.71 | 0.88 (51%) | 6.65 | 4.56 (69%) | 5.54 | 3.50 (63%) | 247.50 | 67.18 (27%) | 7.26 | 3.23 (44%) | 268.67 | 79.36 (30%) |
Saba | 0.00 | N/A | 0.00 | N/A | 0.00 | N/A | 31.90 | 31.90 (100%) | 0.00 | N/A | 31.90 | 31.90 (100%) |
Saint Barthelemy | 0.03 | 0.03 (100%) | 0.058 | 0.06 (100%) | 0.09 | 0.09 (100%) | 4.77 | 4.77 (100%) | 0.04 | 0.04 (100%) | 4.98 | 4.98 (100%) |
Saint Kitts and Nevis | 0.14 | 0.14 (100%) | 1.00 | 1.00 (100%) | 1.40 | 1.40 (100%) | 62.06 | 59.57 (96%) | 2.86 | 2.85 (100%) | 67.46 | 64.96 (96%) |
Saint Lucia | 0.18 | 0.10 (55%) | 0.47 | 0.33 (70%) | 0.53 | 0.33 (63%) | 11.98 | 2.40 (20%) | 0.00 | N/A | 13.16 | 3.16 (24%) |
Saint Martin | 0.10 | 0.10 (100%) | 0.77 | 0.77 (100%) | 0.41 | 0.41 (100%) | 7.15 | 7.15 (100%) | 0.00 | N/A | 8.44 | 8.44 (100%) |
Saint Vincent and the Grenadines | 0.59 | 0.40 (68%) | 2.94 | 1.69 (58%) | 3.35 | 2.19 (65%) | 29.89 | 14.13 (47%) | 0.064 | 0.049 (77%) | 36.84 | 18.46 (50%) |
Sint Eustatius | 0.00 | N/A | 0.00 | N/A | 0.002 | 0.002 (100%) | 1.16 | 1.03 (89%) | 0.00 | N/A | 1.16 | 1.03 (89%) |
Sint Maarten | 0.003 | 0.0005 (16%) | 0.003 | 0.00 (0%) | 0.005 | 0.003 (63%) | 2.34 | 0.22 (9%) | 0.00 | N/A | 2.35 | 0.22 (9%) |
Turks and Caicos | 5.24 | 0.82 (16%) | 23.01 | 2.44 (11%) | 19.54 | 3.54 (18%) | 430.26 | 11.97 (3%) | 45.85 | 0.55 (1%) | 523.89 | 19.32 (4%) |
U.S. Virgin Islands | 0.78 | 0.71 (91%) | 2.31 | 2.13 (92%) | 2.09 | 1.84 (88%) | 63.37 | 41.13 (65%) | 3.02 | 1.69 (56%) | 71.57 | 47.49 (66%) |
Dense Seagrass | Sparse Seagrass | Seagrass Totals | ||||
---|---|---|---|---|---|---|
Country/Territory | Total km2 | P/M % | Total km2 | P/M % | Total km2 | P/M % |
Anguilla | 3.33 | 0.74 (22%) | 29.40 | 2.63 (9%) | 32.73 | 3.37 (10%) |
Antigua and Barbuda | 59.37 | 32.33 (54%) | 78.45 | 58.73 (75%) | 137.82 | 91.06 (66%) |
The Bahamas | 13,976.29 | 938.68 (7%) | 39,953.61 | 3228.70 (8%) | 53,929.90 | 4167.38 (8%) |
Barbados | 0.006 | 0.00 (0%) | 0.08 | 0.00 (0%) | 0.09 | 0.00 (0%) |
British Virgin Islands | 40.29 | 1.29 (3%) | 20.87 | 0.97 (5%) | 61.16 | 2.26 (4%) |
Cayman Islands | 21.38 | 14.25 (67%) | 64.04 | 22.31 (35%) | 85.42 | 36.56 (43%) |
Cuba | 8863.09 | 2089.41 (24%) | 20,387.09 | 3479.97 (17%) | 29,250.19 | 5569.39 (19%) |
Dominica | 10.06 | 0.48 (5%) | 0.12 | 0.00 (0%) | 10.18 | 0.48 (5%) |
Dominican Republic | 128.30 | 91.92 (72%) | 494.35 | 303.43 (61%) | 622.65 | 395.35 (63%) |
Grenada | 16.16 | 2.76 (17%) | 16.99 | 3.26 (19%) | 33.15 | 6.02 (18%) |
Guadeloupe | 93.37 | 93.37 (100%) | 66.20 | 66.20 (100%) | 159.57 | 159.57 (100%) |
Haiti * | 229.76 | 125.01 (54%) | 575.15 | 291.60 (51%) | 804.91 | 416.61 (52%) |
Jamaica | 102.71 | 78.95 (77%) | 322.76 | 175.35 (54%) | 425.47 | 254.30 (60%) |
Martinique | 8.90 | 8.90 (100%) | 63.47 | 63.47 (100%) | 72.37 | 72.37 (100%) |
Montserrat | 0.31 | 0.00 (0%) | 0.00 | N/A | 0.31 | 0.00 (0%) |
Puerto Rico | 254.92 | 17.99 (7%) | 139.85 | 32.18 (23%) | 394.77 | 50.17 (13%) |
Saba | 0.02 | 0.02 (100%) | 0.00 | N/A | 0.02 | 0.02 (100%) |
Saint Barthelemy | 0.45 | 0.45 (100%) | 1.91 | 1.91 (100%) | 2.36 | 2.36 (100%) |
Saint Kitts and Nevis | 27.49 | 27.38 (100%) | 2.91 | 2.91 (100%) | 30.40 | 30.29 (100%) |
Saint Lucia | 13.62 | 3.96 (29%) | 0.00 | N/A | 13.62 | 3.96 (29%) |
Saint Martin | 6.59 | 6.59 (100%) | 11.08 | 11.08 (100%) | 17.67 | 17.67 (100%) |
Saint Vincent and the Grenadines | 14.64 | 3.56 (24%) | 11.69 | 7.19 (62%) | 26.33 | 10.75 (41%) |
Sint Eustatius | 0.00 | N/A | 0.00 | N/A | 0.00 | N/A |
Sint Maarten | 2.36 | 0.01 (0.3%) | 9.10 | 0.14 (2%) | 11.46 | 0.15 (1%) |
Turks and Caicos | 773.53 | 36.84 (5%) | 1204.34 | 67.96 (6%) | 1977.88 | 104.80 (5%) |
U.S. Virgin Islands | 26.10 | 18.81 (72%) | 43.78 | 33.34 (76%) | 69.88 | 52.14 (75%) |
Hardbottom Dense Algae | Hardbottom Sparse Algae | Hardbottom Totals | ||||
---|---|---|---|---|---|---|
Country/Territory |
Total km2 | P/M % |
Total km2 | P/M % |
Total km2 | P/M % |
Anguilla | 111.96 | 7.35 (7%) | 75.34 | 9.30 (12%) | 187.30 | 16.66 (9%) |
Antigua and Barbuda | 414.16 | 43.18 (10%) | 597.25 | 36.40 (6%) | 1011.41 | 79.58 (8%) |
The Bahamas | 6192.81 | 841.05 (14%) | 7754.22 | 927.84 (12%) | 13,947.03 | 1768.88 (13%) |
Barbados | 13.05 | 0.18 (1%) | 21.94 | 0.84 (4%) | 34.98 | 1.03 (3%) |
British Virgin Islands | 237.43 | 7.37 (3%) | 498.94 | 18.25 (4%) | 736.37 | 25.63 (3%) |
Cayman Islands | 4.89 | 2.46 (50%) | 27.56 | 14.34 (52%) | 32.45 | 16.80 (52%) |
Cuba | 951.51 | 186.99 (20%) | 1386.20 | 443.03 (32%) | 2337.71 | 630.02 (27%) |
Dominica | 10.52 | 0.11 (1%) | 0.04 | 0.02 (54%) | 10.56 | 0.13 (1%) |
Dominican Republic | 923.72 | 547.95 (59%) | 1146.58 | 529.27 (46%) | 2070.30 | 1077.23 (52%) |
Grenada | 16.55 | 2.75 (17%) | 67.90 | 6.93 (10%) | 84.45 | 9.68 (11%) |
Guadeloupe | 144.83 | 144.83 (100%) | 148.46 | 148.46 (100%) | 293.29 | 293.29 (100%) |
Haiti * | 667.91 | 176.18 (27%) | 888.55 | 192.57 (22%) | 1556.46 | 368.75 (24%) |
Jamaica | 1950.42 | 313.08 (16%) | 2068.46 | 477.35 (23%) | 4018.88 | 790.43 (20%) |
Martinique | 77.23 | 77.23 (100%) | 68.55 | 68.55 (100%) | 145.78 | 145.78 (100%) |
Montserrat | 8.55 | 0.00 (0%) | 10.47 | 0.00 (0%) | 19.02 | 0.00 (0%) |
Puerto Rico | 714.80 | 168.10 (24%) | 440.12 | 159.83 (36%) | 1154.92 | 327.94 (28%) |
Saba | 449.02 | 449.02 (100%) | 173.26 | 173.26 (100%) | 622.28 | 622.28 (100%) |
Saint Barthelemy | 53.21 | 53.21 (100%) | 45.49 | 45.49 (100%) | 98.71 | 98.71 (100%) |
Saint Kitts and Nevis | 73.20 | 46.23 (63%) | 95.14 | 50.36 (53%) | 168.34 | 96.59 (57%) |
Saint Lucia | 68.84 | 7.30 (11%) | 8.73 | 0.06 (0.7%) | 73.57 | 7.36 (10%) |
Saint Martin | 39.37 | 39.37 (100%) | 36.32 | 36.32 (100%) | 75.68 | 75.68 (100%) |
Saint Vincent and the Grenadines | 11.41 | 2.17 (19%) | 139.75 | 21.15 (15%) | 151.16 | 23.32 (15%) |
Sint Eustatius | 6.45 | 6.00 (93%) | 5.58 | 4.08 (73%) | 12.03 | 10.08 (84%) |
Sint Maarten | 31.30 | 7.91 (25%) | 23.40 | 8.68 (37%) | 54.71 | 16.58 (30%) |
Turks and Caicos | 323.03 | 2.13 (0.7%) | 352.96 | 0.83 (0.2%) | 675.98 | 2.96 (0.4%) |
U.S. Virgin Islands | 178.55 | 90.72 (51%) | 117.06 | 62.91 (54%) | 295.60 | 153.63 (52%) |
Sand | Muddy Bottom | Boulders and Rocks | ||||
---|---|---|---|---|---|---|
Country/Territory | Total km2 | P/M % | Total km2 | P/M % | Total km2 | P/M % |
Anguilla | 211.83 | 7.50 (4%) | 2.31 | 0.08 (3%) | 0.006 | 0.00 (0%) |
Antigua and Barbuda | 1001.03 | 105.89 (11%) | 8.07 | 6.90 (85%) | 0.24 | 0.00 (0%) |
The Bahamas | 44,988.89 | 4465.90 (10%) | 513.93 | 174.69 (34%) | 0.00 | N/A |
Barbados | 57.33 | 0.83 (1%) | 0.006 | 0.00 (0%) | 0.00 | N/A |
British Virgin Islands | 965.34 | 11.85 (1%) | 0.35 | 0.08 (24%) | 0.00 | N/A |
Cayman Islands | 29.81 | 19.18 (64%) | 0.89 | 0.0001 (0.01%) | 0.00 | N/A |
Cuba | 19,190.40 | 3430.29 (18%) | 193.99 | 57.96 (30%) | 0.00 | N/A |
Dominica | 63.14 | 3.62 (6%) | 0.00 | N/A | 4.54 | 0.23 (5%) |
Dominican Republic | 870.34 | 618.25 (71%) | 112.74 | 59.16 (52%) | 0.00 | N/A |
Grenada | 61.10 | 3.86 (6%) | 0.00 | N/A | 2.60 | 0.13 (5%) |
Guadeloupe | 356.96 | 356.96 (100%) | 0.78 | 0.78 (100%) | 0.10 | 0.10 (100%) |
Haiti * | 746.02 | 285.19 (38%) | 24.25 | 23.44 (97%) | 0.00 | N/A |
Jamaica | 1567.86 | 275.19 (18%) | 19.75 | 6.03 (31%) | 0.00 | N/A |
Martinique | 134.54 | 134.54 (100%) | 1.44 | 1.44 (100%) | 0.35 | 0.35 (100%) |
Montserrat | 7.81 | 0.00 (0%) | 0.00 | N/A | 0.91 | 0.00 (0%) |
Puerto Rico | 1326.55 | 320.94 (24%) | 16.14 | 6.45 (40%) | 0.00 | N/A |
Saba | 246.35 | 246.35 (100%) | 0.00 | N/A | 0.00 | N/A |
Saint Barthelemy | 43.25 | 43.25 (100%) | 0.14 | 0.14 (100%) | 0.00 | N/A |
Saint Kitts and Nevis | 137.70 | 120.52 (88%) | 2.16 | 0.001 (0.06%) | 0.00 | N/A |
Saint Lucia | 116.61 | 24.92 (21%) | 0.00 | N/A | 0.35 | 0.12 (35%) |
Saint Martin | 85.26 | 85.26 (100%) | 6.43 | 6.43 (100%) | 0.01 | 0.01 (100%) |
Saint Vincent and the Grenadines | 47.86 | 17.52 (37%) | 0.05 | 0.05 (100%) | 3.89 | 0.0006 (0.02%) |
Sint Eustatius | 3.06 | 2.52 (82%) | 0.00 | N/A | 0.06 | 0.04 (66%) |
Sint Maarten | 42.44 | 11.91 (28%) | 2.29 | 0.00 (0%) | 0.00 | N/A |
Turks and Caicos | 2746.52 | 102.62 (4%) | 23.06 | 8.18 (35%) | 0.00 | N/A |
U.S. Virgin Islands | 225.74 | 110.63 (49%) | 2.14 | 2.04 (95%) | 0.00 | N/A |
Observed Class (Reference) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Predicted Class (Map) | Boulders and Rocks | Coral/ Algae | Hard-Bottom Dense Algae | Hard-Bottom Sparse Algae | Muddy Bottom | Sand | Seagrass Dense | Seagrass Sparse | User’s Accuracy | |
Boulders and Rocks | 0.04 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 85.7% | |
Coral/ Algae | 0.02 | 5.75 | 1.13 | 0.33 | 0.00 | 0.16 | 0.27 | 0.17 | 73.5% | |
Hardbottom Dense Algae | 0.06 | 1.16 | 16.11 | 1.27 | 0.00 | 0.35 | 0.41 | 0.70 | 80.4% | |
Hardbottom Sparse Algae | 0.13 | 1.27 | 1.65 | 11.42 | 0.00 | 2.92 | 0.63 | 4.19 | 51.4% | |
Muddy Bottom | 0.00 | 0.00 | 0.00 | 0.00 | 0.65 | 0.00 | 0.00 | 0.09 | 87.5% | |
Sand | 0.17 | 1.62 | 0.46 | 0.40 | 0.29 | 26.94 | 1.04 | 0.75 | 85.0% | |
Seagrass Dense | 0.03 | 0.21 | 0.27 | 0.04 | 0.01 | 0.09 | 4.52 | 0.31 | 82.3% | |
Seagrass Sparse | 0.00 | 1.13 | 0.35 | 0.91 | 0.35 | 0.61 | 1.95 | 6.67 | 55.8% | |
Producer’s Accuracy | 9.2% | 51.6% | 80.7% | 79.4% | 50.1% | 86.8% | 51.3% | 51.8% |
Boulders and Rocks | Coral/Algae | Hardbottom Algae | Muddy Bottom | Sand | Seagrass | User’s Accuracy | |
---|---|---|---|---|---|---|---|
Boulders and Rocks | 0.04 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 85.7% |
Coral/Algae | 0.02 | 5.75 | 1.46 | 0.00 | 0.16 | 0.44 | 73.5% |
Hardbottom Algae | 0.16 | 2.43 | 32.69 | 0.00 | 2.35 | 4.62 | 77.4% |
Muddy Bottom | 0.00 | 0.00 | 0.00 | 0.65 | 0.00 | 0.09 | 87.5% |
Sand | 0.17 | 1.62 | 0.87 | 0.29 | 26.94 | 1.79 | 85.0% |
Seagrass | 0.05 | 1.08 | 1.35 | 0.24 | 0.53 | 14.19 | 81.4% |
Producer’s Accuracy | 9.2% | 52.8% | 90.0% | 55.3% | 89.9% | 67.1% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schill, S.R.; McNulty, V.P.; Pollock, F.J.; Lüthje, F.; Li, J.; Knapp, D.E.; Kington, J.D.; McDonald, T.; Raber, G.T.; Escovar-Fadul, X.; et al. Regional High-Resolution Benthic Habitat Data from Planet Dove Imagery for Conservation Decision-Making and Marine Planning. Remote Sens. 2021, 13, 4215. https://doi.org/10.3390/rs13214215
Schill SR, McNulty VP, Pollock FJ, Lüthje F, Li J, Knapp DE, Kington JD, McDonald T, Raber GT, Escovar-Fadul X, et al. Regional High-Resolution Benthic Habitat Data from Planet Dove Imagery for Conservation Decision-Making and Marine Planning. Remote Sensing. 2021; 13(21):4215. https://doi.org/10.3390/rs13214215
Chicago/Turabian StyleSchill, Steven R., Valerie Pietsch McNulty, F. Joseph Pollock, Fritjof Lüthje, Jiwei Li, David E. Knapp, Joe D. Kington, Trevor McDonald, George T. Raber, Ximena Escovar-Fadul, and et al. 2021. "Regional High-Resolution Benthic Habitat Data from Planet Dove Imagery for Conservation Decision-Making and Marine Planning" Remote Sensing 13, no. 21: 4215. https://doi.org/10.3390/rs13214215
APA StyleSchill, S. R., McNulty, V. P., Pollock, F. J., Lüthje, F., Li, J., Knapp, D. E., Kington, J. D., McDonald, T., Raber, G. T., Escovar-Fadul, X., & Asner, G. P. (2021). Regional High-Resolution Benthic Habitat Data from Planet Dove Imagery for Conservation Decision-Making and Marine Planning. Remote Sensing, 13(21), 4215. https://doi.org/10.3390/rs13214215