Improving Estimates of Soil Salt Content by Using Two-Date Image Spectral Changes in Yinbei, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling and Chemical Analysis
2.3. Time-Series Image Collection and Pre-Processing
2.4. Modelling Strategies
2.4.1. Detecting the Two-Date Images Spectral Changes
2.4.2. Two-Date-Based Spectral Index Construction
2.4.3. Random Forest Algorithm
2.5. Statistical Analysis
3. Results
3.1. Characteristics of Soil Properties and Reflectance Spectra
3.2. Optimal Two-Date Satellite Images
3.3. Sensitive Spectral Parameters
3.4. Performance Assessment of Prediction Models Built with Different Inputs
3.5. Map of Soil Salt Contents
4. Discussion
4.1. Characterizing Temporal Changes in Salt-Induced Spectral Information for Improving SSC Estimation
4.2. Robustness of the Model Built with Two-Date-Based Indices
4.3. Uncertainty Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, L.; Ma, F.; Li, J.; Gu, Q.; Yang, S.; Wu, D.; Feng, J.; Ding, J. Characterizing and modeling regional-scale variations in soil salinity in the arid oasis of tarim basin, china. Geoderma 2017, 305, 1–11. [Google Scholar] [CrossRef]
- Metternicht, G.; Zinck, J. Remote sensing of soil salinity: Potentials and constraints. Remote Sens. Environ. 2003, 85, 1–20. [Google Scholar] [CrossRef]
- Teh, S.Y.; Koh, H.L. Climate change and soil salinization: Impact on agriculture, water and food security. Int. J. Agric. For. Plant 2016, 2, 1–9. [Google Scholar]
- Yang, X.; Yu, Y. Estimating soil salinity under various moisture conditions: An experimental study. IEEE Trans. Geosci. Electron. 2017, 55, 2525–2533. [Google Scholar] [CrossRef]
- White, R.P.; Tunstall, D.B.; Henninger, N. An Ecosystem Approach to Drylands: Building Support for New Development Policies; World Resources Institute: Washington, DC, USA, 2002. [Google Scholar]
- Nguyen, K.A.; Liou, Y.A.; Tran, H.P.; Hoang, P.P.; Nguyen, T.H. Soil salinity assessment by using near-infrared channel and vegetation soil salinity index derived from landsat 8 oli data: A case study in the tra vinh province, mekong delta, vietnam. Prog. Earth Planet Sci. 2020, 7, 1. [Google Scholar] [CrossRef] [Green Version]
- Chi, J.; Kim, H.C.; Lee, S.; Crawford, M.M. Deep learning based retrieval algorithm for arctic sea ice concentration from amsr2 passive microwave and modis optical data. Remote Sens. Environ. 2019, 231, 111204. [Google Scholar] [CrossRef]
- Vaudour, E.; Gomez, C.; Fouad, Y.; Lagacherie, P. Sentinel-2 image capacities to predict common topsoil properties of temperate and mediterranean agroecosystems. Remote Sens. Environ. 2019, 223, 21–33. [Google Scholar] [CrossRef]
- Bannari, A.; Al-Ali, Z.M. Assessing climate change impact on soil salinity dynamics between 1987–2017 in arid landscape using landsat tm, etm+ and oli data. Remote Sens. 2020, 12, 2794. [Google Scholar] [CrossRef]
- Fan, X.; Liu, Y.; Tao, J.; Weng, Y. Soil salinity retrieval from advanced multi-spectral sensor with partial least square regression. Remote Sens. 2015, 7, 488–511. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Ding, J.; Yu, D.; Ma, X.; Zhang, Z.; Ge, X.; Teng, D.; Li, X.; Liang, J.; Lizaga, I.; et al. Capability of sentinel-2 msi data for monitoring and mapping of soil salinity in dry and wet seasons in the ebinur lake region, Xinjiang, China. Geoderma 2019, 353, 172–187. [Google Scholar] [CrossRef]
- Alexakis, D.; Daliakopoulos, I.; Panagea, I.; Tsanis, I. Assessing soil salinity using worldview-2 multispectral images in timpaki, crete, greece. Geocarto Int. 2018, 33, 321–338. [Google Scholar] [CrossRef]
- Chen, H.; Ma, Y.; Zhu, A.; Wang, Z.; Zhao, G.; Wei, Y. Soil salinity inversion based on differentiated fusion of satellite image and ground spectra. Int. J. Appl. Earth Obs. 2021, 101, 102360. [Google Scholar] [CrossRef]
- Hill, J.; Schütt, B. Mapping complex patterns of erosion and stability in dry mediterranean ecosystems. Remote Sens. Environ. 2000, 74, 557–569. [Google Scholar] [CrossRef]
- Muller, S.J.; Van Niekerk, A. Identification of worldview-2 spectral and spatial factors in detecting salt accumulation in cultivated fields. Geoderma 2016, 273, 1–11. [Google Scholar] [CrossRef]
- McBratney, A.B.; Santos, M.M.; Minasny, B. On digital soil mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
- Bai, L.; Wang, C.; Zang, S.; Zhang, Y.; Hao, Q.; Wu, Y. Remote sensing of soil alkalinity and salinity in the wuyu’er-shuangyang river basin, northeast china. Remote Sens. 2016, 8, 163. [Google Scholar] [CrossRef] [Green Version]
- Bannari, A.; El-Battay, A.; Bannari, R.; Rhinane, H. Sentinel-msi vnir and swir bands sensitivity analysis for soil salinity discrimination in an arid landscape. Remote Sens. 2018, 10, 855. [Google Scholar] [CrossRef] [Green Version]
- Davis, E.; Wang, C.; Dow, K. Comparing sentinel-2 msi and landsat 8 oli in soil salinity detection: A case study of agricultural lands in coastal north carolina. Int. J. Remote Sens. 2019, 40, 6134–6153. [Google Scholar] [CrossRef]
- Ekercin, S.; Ormeci, C. Estimating soil salinity using satellite remote sensing data and real-time field sampling. Environ. Eng. Sci. 2008, 25, 981–988. [Google Scholar] [CrossRef]
- Abbas, A.; Khan, S.; Hussain, N.; Hanjra, M.A.; Akbar, S. Characterizing soil salinity in irrigated agriculture using a remote sensing approach. Phys. Chem. Earth Parts A/B/C 2013, 55, 43–52. [Google Scholar] [CrossRef]
- Bannari, A.; El-Battay, A.; Hameid, N.; Tashtoush, F. Salt-affected soil mapping in an arid environment using semi-empirical model and landsat-oli data. Adv. Atmos. Remote Sens. 2017, 06, 260–291. [Google Scholar] [CrossRef] [Green Version]
- Gorji, T.; Sertel, E.; Tanik, A. Monitoring soil salinity via remote sensing technology under data scarce conditions: A case study from turkey. Ecol. Indic. 2017, 74, 384–391. [Google Scholar] [CrossRef]
- Sidike, A.; Zhao, S.; Wen, Y. Estimating soil salinity in pingluo county of china using quickbird data and soil reflectance spectra. Int. J. Appl. Earth Obs. 2014, 26, 156–175. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, F.; Ding, J.; Kung, H.T.; Latif, A.; Johnson, V.C. Estimation of soil salt content (ssc) in the ebinur lake wetland national nature reserve (elwnnr), northwest china, based on a bootstrap-bp neural network model and optimal spectral indices. Sci. Total Environ. 2018, 615, 918–930. [Google Scholar] [CrossRef]
- Abdullah, A.Y.M.; Biswas, R.K.; Chowdhury, A.I.; Billah, S.M. Modeling soil salinity using direct and indirect measurement techniques: A comparative analysis. Environ. Dev. 2019, 29, 67–80. [Google Scholar] [CrossRef]
- Chi, Y.; Sun, J.; Liu, W.; Wang, J.; Zhao, M. Mapping coastal wetland soil salinity in different seasons using an improved comprehensive land surface factor system. Ecol. Indic. 2019, 107, 105517. [Google Scholar] [CrossRef]
- Guo, B.; Zang, W.; Zhang, R. Soil salizanation information in the yellow river delta based on feature surface models using landsat 8 oli data. IEEE Access 2020, 8, 94394–94403. [Google Scholar] [CrossRef]
- Han, L.; Liu, D.; Cheng, G.; Zhang, G.; Wang, L. Spatial distribution and genesis of salt on the saline playa at qehan lake, inner mongolia, china. Catena 2019, 177, 22–30. [Google Scholar] [CrossRef]
- Taghizadeh-Mehrjardi, R.; Minasny, B.; Sarmadian, F.; Malone, B. Digital mapping of soil salinity in ardakan region, central iran. Geoderma 2014, 213, 15–28. [Google Scholar] [CrossRef]
- Zovko, M.; Romić, D.; Colombo, C.; Di Iorio, E.; Romić, M.; Buttafuoco, G.; Castrignanò, A. A geostatistical vis-nir spectroscopy index to assess the incipient soil salinization in the neretva river valley, croatia. Geoderma 2018, 332, 60–72. [Google Scholar] [CrossRef]
- Rossel, R.V.; Fouad, Y.; Walter, C. Using a digital camera to measure soil organic carbon and iron contents. Biosyst. Eng. 2008, 100, 149–159. [Google Scholar] [CrossRef]
- Wadoux, A.M.C.; Minasny, B.; McBratney, A.B. Machine learning for digital soil mapping: Applications, challenges and suggested solutions. Earth-Sci. Rev. 2020, 210, 103359. [Google Scholar] [CrossRef]
- Boonprong, S.; Cao, C.; Chen, W.; Bao, S. Random forest variable importance spectral indices scheme for burnt forest recovery monitoring—Multilevel rf-vimp. Remote Sens. 2018, 10, 807. [Google Scholar] [CrossRef] [Green Version]
- Dou, X.; Wang, X.; Liu, H.; Zhang, X.; Meng, L.; Pan, Y.; Yu, Z.; Cui, Y. Prediction of soil organic matter using multi-temporal satellite images in the songnen plain, china. Geoderma 2019, 356, 113896. [Google Scholar] [CrossRef]
- Allbed, A.; Kumar, L.; Aldakheel, Y.Y. Assessing soil salinity using soil salinity and vegetation indices derived from ikonos high-spatial resolution imageries: Applications in a date palm dominated region. Geoderma 2014, 230–231, 1–8. [Google Scholar] [CrossRef]
- Peng, J.; Biswas, A.; Jiang, Q.; Zhao, R.; Hu, J.; Hu, B.; Shi, Z. Estimating soil salinity from remote sensing and terrain data in southern xinjiang province, china. Geoderma 2019, 337, 1309–1319. [Google Scholar] [CrossRef]
- Judkins, G.; Myint, S. Spatial variation of soil salinity in the mexicali valley, mexico: Application of a practical method for agricultural monitoring. Environ. Manag. 2012, 50, 478–489. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Saberioon, M.; Ben-Dor, E.; Viscarra Rossel, R.A.; Boruvka, L. Modelling potentially toxic elements in forest soils with vis-nir spectra and learning algorithms. Environ. Pollut. 2020, 267, 115574. [Google Scholar] [CrossRef]
- Hong, Y.; Chen, S.; Chen, Y.; Linderman, M.; Mouazen, A.M.; Liu, Y.; Guo, L.; Yu, L.; Liu, Y.; Cheng, H. Comparing laboratory and airborne hyperspectral data for the estimation and mapping of topsoil organic carbon: Feature selection coupled with random forest. Soil Tillage Res. 2020, 199, 104589. [Google Scholar] [CrossRef]
- Yuan, F.; Lu, X.L.; Lu, F. Distribution characteristics of salty soil in northern yinchuan plain based on wet. South–North Water Transf. Water Sci. Technol. 2013, 11, 6. [Google Scholar]
- Wang, H.; Liu, W.J.; Wang, B. Protective cultivation technique model and its implementation benefit analysis in salt—Alkali area of upper and middle reaches of yellow river—Taking example for protective cultivation demonstration project in pingluo county of ningxia. Acta Agric. Jiangxi 2011, 23, 155–159. [Google Scholar]
- ESA. Sentinel-2 Spectral Response Functions (s2-srf)—Sentinel-2 Msi Document Library User Guides—Sentinel Online. Available online: https://earth.Esa.Int/web/sentinel/user-guides/sentinel-2-msi/document-library/-/asset_publisher/wk0tkajiisar/content/sentinel-2a-spectral-responses (accessed on 20 November 2020).
- Sibanda, M.; Mutanga, O.; Rouget, M. Examining the potential of sentinel-2 msi spectral resolution in quantifying above ground biomass across different fertilizer treatments. ISPRS J. Photogramm. 2015, 110, 55–65. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, X.; Xu, M.; Shao, S.; Wang, X.; Liu, W.; Wu, D.; Ma, Y.; Bao, Y.; Zhang, X.; et al. Hyper-temporal remote sensing data in bare soil period and terrain attributes for digital soil mapping in the black soil regions of China. Catena 2020, 184, 104259. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, Y.; Jia, K.; Gao, X.; Zhang, X. Spectral characteristics and salinization information prediction of different soil salt crusts. Trans. CSAE 2018, 49, 325–333. [Google Scholar]
- Singh, S.; Talwar, R. Response of fuzzy clustering on different threshold determination algorithms in spectral change vector analysis over western himalaya, india. J. Mt. Sci. 2017, 14, 1391–1404. [Google Scholar] [CrossRef]
- Chen, J.; Gong, P.; He, C.; Pu, R.; Shi, P. Land-use/land-cover change detection using improved change-vector analysis. Photogramm. Eng. Remote Sens. 2003, 69, 369–379. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Archer, K.J.; Kimes, R.V. Empirical characterization of random forest variable importance measures. Comput. Stat. Data Anal. 2008, 52, 2249–2260. [Google Scholar] [CrossRef]
- Grömping, U. Variable importance assessment in regression: Linear regression versus random forest. Am. Stat. 2009, 63, 308–319. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, X.; Bai, J.; Wang, D.; Wang, W.; Guan, Y. Estimating the spatial distribution of soil total nitrogen and available potassium in coastal wetland soils in the yellow river delta by incorporating multi-source data. Ecol. Indic. 2020, 111, 106002. [Google Scholar] [CrossRef]
- Andrade, R.; Faria, W.M.; Silva, S.H.G.; Chakraborty, S.; Weindorf, D.C.; Mesquita, L.F.; Guilherme, L.R.G.; Curi, N. Prediction of soil fertility via portable x-ray fluorescence (pxrf) spectrometry and soil texture in the brazilian coastal plains. Geoderma 2020, 357, 113960. [Google Scholar] [CrossRef]
- Bannari, A.; Hameid Mohamed Musa, N.; Abuelgasim, A.; El-Battay, A. Sentinel-msi and landsat-oli data quality characterization for high temporal frequency monitoring of soil salinity dynamic in an arid landscape. IEEE J. STARS 2020, 13, 2434–2450. [Google Scholar] [CrossRef]
- Jin, P.; Li, P.; Wang, Q.; Pu, Z. Developing and applying novel spectral feature parameters for classifying soil salt types in arid land. Ecol. Indic. 2015, 54, 116–123. [Google Scholar] [CrossRef]
- Shrestha, R. Relating soil electrical conductivity to remote sensing and other soil properties for assessing soil salinity in northeast thailand. Land Degrad. Dev. 2006, 17, 677–689. [Google Scholar] [CrossRef]
- Çelik, M.Y.; Aygün, A. The effect of salt crystallization on degradation of volcanic building stones by sodium sulfates and sodium chlorides. Bull. Eng. Geol. Environ. 2019, 78, 3509–3529. [Google Scholar] [CrossRef]
- Kamburov, S.; Schmidt, H.; Voigt, W.; Balarew, C. Similarities and peculiarities between the crystal structures of the hydrates of sodium sulfate and selenate. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2014, 70, 714–722. [Google Scholar] [CrossRef]
- Zhang, F.; Xiong, H.; Ding, J.; Xia, Q. Characteristics of laboratory-field measured spectra responding to alkalinized soil and conversion. Trans. CSAE 2012, 28, 101–107. [Google Scholar]
- Liu, F.R.; Li, L.R. Current status of cultivated soil salinization in yinbei irrigation district of ningxia and its prevention countermeasures. Ningxia J. Agric. For. Sci. Technol. 2008, 2, 63–64. [Google Scholar]
- Panda, B.C. Remote Sensing: Principle and Application; Viva Books Pvt Ltd.: New Delhi, India, 2005. [Google Scholar]
- Day, A.D.; Ludeke, K.L. Soil alkalinity. In Plant Nutrients in Desert Environments; Springer: Berlin/Heidelberg, Germany, 1993; pp. 35–37. [Google Scholar]
- López-Granados, F.; Jurado-Expósito, M.; Peña-Barragán, J.M.; García-Torres, L. Using geostatistical and remote sensing approaches for mapping soil properties. Eur. J. Agron. 2005, 23, 279–289. [Google Scholar] [CrossRef]
- Stoner, E.R. Physicochemical, Site, and Bidirectional Reflectance Factor Characteristics of Uniformly-Moist Soils; Purdue University: West Lafayette, IN, USA, 1979. [Google Scholar]
- Masoud, A.A.; Koike, K.; Atwia, M.G.; El-Horiny, M.M.; Gemail, K.S. Mapping soil salinity using spectral mixture analysis of landsat 8 oli images to identify factors influencing salinization in an arid region. Int. J. Appl. Earth Obs. 2019, 83, 101944. [Google Scholar] [CrossRef]
- Kahaer, Y.; Tashpolat, N.; Shi, Q.; Liu, S. Possibility of zhuhai-1 hyperspectral imagery for monitoring salinized soil moisture content using fractional order differentially optimized spectral indices. Water 2020, 12, 3360. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, B.; Shen, Q.; Yao, Y.; Zhang, S.; Wei, H.; Yao, R.; Zhang, Y. Estimation of soil salt and ion contents based on hyperspectral remote sensing data: A case study of baidunzi basin, China. Water 2021, 13, 559. [Google Scholar] [CrossRef]
- Weng, Y.; Gong, P.; Zhu, Z. Soil salt content estimation in the yellow river delta with satellite hyperspectral data. Can. J. Remote Sens. 2008, 34, 259–270. [Google Scholar]
- Ji, W.; Li, S.; Chen, S.; Shi, Z.; Rossel, R.A.V.; Mouazen, A.M. Prediction of soil attributes using the chinese soil spectral library and standardized spectra recorded at field conditions. Soil Till. Res. 2016, 155, 492–500. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, H.; Shi, T.; Chen, Y.; Jiang, Q.; Linderman, M. Prediction of soil organic carbon stock by laboratory spectral data and airborne hyperspectral images. Geoderma 2019, 337, 32–41. [Google Scholar] [CrossRef]
- Pessoa, L.G.M.; Freire, M.B.G.D.S.; Wilcox, B.P.; Green, C.H.M.; De Araújo, R.J.T.; De Araújo Filho, J.C. Spectral reflectance characteristics of soils in northeastern brazil as influenced by salinity levels. Environ. Monit. Assess. 2016, 188, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Brus, D.; Kempen, B.; Heuvelink, G. Sampling for validation of digital soil maps. Eur. J. Soil Sci. 2011, 62, 394–407. [Google Scholar] [CrossRef]
- Wadoux, A.M.J.C.; Brus, D.J.; Heuvelink, G.B.M. Sampling design optimization for soil mapping with random forest. Geoderma 2019, 355, 113913. [Google Scholar] [CrossRef]
- Grimm, R.; Behrens, T.; Märker, M.; Elsenbeer, H. Soil organic carbon concentrations and stocks on barro colorado island—Digital soil mapping using random forests analysis. Geoderma 2008, 146, 102–113. [Google Scholar] [CrossRef]
- Xu, L.; Saatchi, S.S.; Yang, Y.; Yu, Y.; White, L. Performance of non-parametric algorithms for spatial mapping of tropical forest structure. Carbon Bal. Manag. 2016, 11, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhang, F.; Wang, C.; Wu, S.; Liu, J.; Xu, A.; Pan, K.; Pan, X. Estimating the soil salinity over partially vegetated surfaces from multispectral remote sensing image using non-negative matrix factorization. Geoderma 2019, 354, 113887. [Google Scholar] [CrossRef]
Band Acronym | B1 | B2 | B3 | B4 | B5 | B6 | B7 | B8 | B8a | B9 | B10 | B11 | B12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Band centre/nm | 443 | 490 | 560 | 665 | 705 | 740 | 775 | 842 | 865 | 940 | 1375 | 1610 | 2190 |
Band width/nm | 20 | 65 | 35 | 30 | 15 | 15 | 20 | 115 | 20 | 20 | 30 | 90 | 180 |
Number | Input Variables | Data Sources |
---|---|---|
1 | Sensitive spectral bands | The simultaneous image |
2 | Optimal two-date-based indices | The two-date images |
3 | Sensitive spectral bands and optimal two-date-based spectral indices | The two-date images |
Index Abbreviation | Calculation Image | Equation |
---|---|---|
Dij | t0, t1 | Bi − Bj |
Rij | t0, t1 | Bi/Bj |
NDij | t0, t1 | (Bi − Bj)/(Bi + Bj) |
tanimj | t0, t1 | (kim − kmj)/(1 + kim·kmj) |
Band Acronym | B2 | B3 | B4 | B5 | B6 | B7 | B8 | B8a | B11 | B12 |
---|---|---|---|---|---|---|---|---|---|---|
SSC | 0.49 * | 0.46 | 0.47 | 0.47 | 0.48 | 0.48 * | 0.49 ** | 0.49 ** | 0.50 ** | 0.41 * |
Number | Satellite Platform | Capture Time of Two-Date Images | Optimal Inputs | R2 | RPD |
---|---|---|---|---|---|
1 | Sentinel-2_MSI data | October 2017 and April 2018 | B2, B8, B8a, B11, B12, and ND8a8a | 0.79 | 1.45 |
2 | November 2017 and April 2018 | B2, B8, B8a, B11, B12, and D22 | 0.85 | 2.43 | |
3 | January 2018 and April 2018 | B2, B8, B8a, B11, B12, D22, and D28a | 0.87 | 2.72 | |
4 | February 2018 and April 2018 | B2, B8, B8a, B11, B12, D22, and D28a | 0.82 | 1.93 | |
5 | March 2018 and April 2018 | B2, B8, B8a, B11, B12, and tan28a11 | 0.82 | 1.82 | |
6 | Landsat-8_OLI data | April 2018 | B4, B5, B6, and B7 | 0.72 | 1.25 |
7 | December 2017 and April 2018 | B4, B5, B6, B7, and D55 | 0.81 | 1.91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Chen, Y.; Wang, M.; Wang, S.; Li, K.; Li, Y. Improving Estimates of Soil Salt Content by Using Two-Date Image Spectral Changes in Yinbei, China. Remote Sens. 2021, 13, 4165. https://doi.org/10.3390/rs13204165
Xu X, Chen Y, Wang M, Wang S, Li K, Li Y. Improving Estimates of Soil Salt Content by Using Two-Date Image Spectral Changes in Yinbei, China. Remote Sensing. 2021; 13(20):4165. https://doi.org/10.3390/rs13204165
Chicago/Turabian StyleXu, Xibo, Yunhao Chen, Mingguo Wang, Sijia Wang, Kangning Li, and Yongguang Li. 2021. "Improving Estimates of Soil Salt Content by Using Two-Date Image Spectral Changes in Yinbei, China" Remote Sensing 13, no. 20: 4165. https://doi.org/10.3390/rs13204165
APA StyleXu, X., Chen, Y., Wang, M., Wang, S., Li, K., & Li, Y. (2021). Improving Estimates of Soil Salt Content by Using Two-Date Image Spectral Changes in Yinbei, China. Remote Sensing, 13(20), 4165. https://doi.org/10.3390/rs13204165