Assessing the Responses of Aviation-Related SO2 and NO2 Emissions to COVID-19 Lockdown Regulations in South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Airports
2.2. Data
2.2.1. Sentinel-5P
2.2.2. OMI
2.2.3. Aircraft Statistics
2.3. Statistical Analysis
2.3.1. Ordinary Least Squares (OLS) Trend Analysis
2.3.2. Pettitt’s Test
3. Results
3.1. Aircraft Movement and Airport Imagery
3.1.1. Trends in Aircraft Movements
3.1.2. Satellite Images of OR Tambo and Cape Town International Airports
3.2. NO2 Emissions
3.3. SO2 Emissions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hasnain, A.; Hashmi, M.Z.; Bhatti, U.A.; Nadeem, B.; Wei, G.; Zha, Y.; Sheng, Y. Assessment of Air Pollution before, during and after the COVID-19 Pandemic Lockdown in Nanjing, China. Atmosphere 2021, 12, 743. [Google Scholar] [CrossRef]
- He, G.; Pan, Y.; Tanaka, T. The short-term impacts of COVID-19 lockdown on urban air pollution in China. Nat. Sustain. 2020, 3, 1005–1011. [Google Scholar] [CrossRef]
- Miyazaki, K.; Bowman, K.; Sekiya, T.; Jiang, Z.; Chen, X.; Eskes, H.; Ru, M.; Zhang, Y.; Shindell, D. Air quality response in China linked to the 2019 novel coronavirus (COVID-19) lockdown. Geophys. Res. Lett. 2020, 47, e2020GL089252. [Google Scholar] [CrossRef]
- Zhang, K.; de Leeuw, G.; Yang, Z.; Chen, X.; Jiao, J. The impacts of the COVID-19 lockdown on air quality in the guanzhong basin, China. Remote Sens. 2020, 12, 3042. [Google Scholar] [CrossRef]
- Zheng, B.; Geng, G.; Ciais, P.; Davis, S.J.; Martin, R.V.; Meng, J.; Wu, N.; Chevallier, F.; Broquet, G.; Boersma, F. Satellite-based estimates of decline and rebound in China’s CO2 emissions during COVID-19 pandemic. Sci. Adv. 2020, 6, eabd4998. [Google Scholar] [CrossRef]
- Menut, L.; Bessagnet, B.; Siour, G.; Mailler, S.; Pennel, R.; Cholakian, A. Impact of lockdown measures to combat Covid-19 on air quality over western Europe. Sci. Total Environ. 2020, 741, 140426. [Google Scholar] [CrossRef] [PubMed]
- Evangeliou, N.; Platt, S.M.; Eckhardt, S.; Lund Myhre, C.; Laj, P.; Alados-Arboledas, L.; Backman, J.; Brem, B.T.; Fiebig, M.; Flentje, H. Changes in black carbon emissions over Europe due to COVID-19 lockdowns. Atmos. Chem. Phys. 2021, 21, 2675–2692. [Google Scholar] [CrossRef]
- Skirienė, A.F.; Stasiškienė, Ž. COVID-19 and air pollution: Measuring pandemic impact to air quality in five European countries. Atmosphere 2021, 12, 290. [Google Scholar] [CrossRef]
- Brandao, R.; Foroutan, H. Air Quality in Southeast Brazil during COVID-19 Lockdown: A Combined Satellite and Ground-Based Data Analysis. Atmosphere 2021, 12, 583. [Google Scholar] [CrossRef]
- Nakada, L.Y.K.; Urban, R.C. COVID-19 pandemic: Impacts on the air quality during the partial lockdown in São Paulo state, Brazil. Sci. Total Environ. 2020, 730, 139087. [Google Scholar] [CrossRef] [PubMed]
- Kganyago, M.; Shikwambana, L. Did COVID-19 Lockdown Restrictions have an Impact on Biomass Burning Emissions in Sub-Saharan Africa? Aerosol Air Qual. Res. 2021, 21, 200470. [Google Scholar] [CrossRef]
- Shikwambana, L.; Kganyago, M.; Mhangara, P. Temporal Analysis of Changes in Anthropogenic Emissions and Urban Heat Islands during COVID-19 Restrictions in Gauteng Province, South Africa. Aerosol Air Qual. Res. 2021, 21, 200437. [Google Scholar] [CrossRef]
- Adams, A.M.; Prospero, J.M.; Zhang, C. CALIPSO-derived three-dimensional structure of aerosol over the Atlantic Basin and adjacent continents. J. Clim. 2012, 25, 6862–6879. [Google Scholar] [CrossRef]
- Vadrevu, K.; Lasko, K. Intercomparison of MODIS AQUA and VIIRS I-Band fires and emissions in an agricultural landscape—Implications for air pollution research. Remote Sens. 2018, 10, 978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, L.; Lin, A.; Chen, X.; Zhou, H.; Zhou, Z.; He, P. Assessment of MERRA-2 surface PM2.5 over the Yangtze River Basin: Ground-based verification, spatiotemporal distribution and meteorological dependence. Remote Sens. 2019, 11, 460. [Google Scholar] [CrossRef] [Green Version]
- van der Velde, I.R.; van der Werf, G.R.; Houweling, S.; Eskes, H.J.; Veefkind, J.P.; Borsdorff, T.; Aben, I. Biomass burning combustion efficiency observed from space using measurements of CO and NO2 by the TROPOspheric Monitoring Instrument (TROPOMI). Atmos. Chem. Phys. 2021, 21, 597–616. [Google Scholar] [CrossRef]
- Zheng, Z.; Yang, Z.; Wu, Z.; Marinello, F. Spatial Variation of NO2 and Its Impact Factors in China: An Application of Sentinel-5P Products. Remote Sens. 2019, 11, 1939. [Google Scholar] [CrossRef] [Green Version]
- Lorente, A.; Boersma, K.F.; Eskes, H.J.; Veefkind, J.P.; van Geffen, J.H.G.M.; de Zeeuw, M.B.; Denier van der Gon, H.A.C.; Beirle, S.; Krol, M.C. Quantification of nitrogen oxides emissions from build-up of pollution over Paris with TROPOMI. Sci. Rep. 2019, 9, 20033. [Google Scholar] [CrossRef]
- Lighty, J.S.; Veranth, J.M.; Sarofim, A.F. Combustion aerosols: Factors governing their size and composition and implications to human health. J. Air Waste Manag. Assoc. 2000, 50, 1565–1618. [Google Scholar] [CrossRef]
- FAA. Aviation & Emissions: A Primer; Federal Aviation Administration Office of Environment and Energy, 2005. Available online: https://www.faa.gov/regulations_policies/policy_guidance/envir_policy/media/aeprimer.pdf (accessed on 15 October 2021).
- Thanikasalam, K.; Rahmat, M.; Fahmi, A.M.; Zulkifli, A.; Shawal, N.N.; Ilanchelvi, K.; Ananth, M.; Elayarasan, R. Emissions of piston engine aircraft using aviation gasoline (avgas) and motor gasoline (mogas) as fuel—A review. Proc. IOP Conf. Ser. Mater. Sci. Eng. 2018, 370, 012012. [Google Scholar] [CrossRef]
- Bendtsen, K.M.; Bengtsen, E.; Saber, A.T.; Vogel, U. A review of health effects associated with exposure to jet engine emissions in and around airports. Environ. Health 2021, 20, 10. [Google Scholar] [CrossRef]
- Mhlanga, O. Customer experiences and return patronage in restaurants at OR Tambo International Airport in Johannesburg, South Africa. Afr. J. Hosp. Tour. Leis. 2018, 18, 1–11. [Google Scholar]
- Theys, N.; Hedelt, P.; De Smedt, I.; Lerot, C.; Yu, H.; Vlietinck, J.; Pedergnana, M.; Arellano, S.; Galle, B.; Fernandez, D. Global monitoring of volcanic SO2 degassing with unprecedented resolution from TROPOMI onboard Sentinel-5 Precursor. Sci. Rep. 2019, 9, 2643. [Google Scholar] [CrossRef]
- Tilstra, L.G.; de Graaf, M.; Wang, P.; Stammes, P. In-orbit Earth reflectance validation of TROPOMI on board the Sentinel-5 Precursor satellite. Atmos. Meas. Tech. 2020, 13, 4479–4497. [Google Scholar] [CrossRef]
- Verhoelst, T.; Compernolle, S.; Pinardi, G.; Lambert, J.-C.; Eskes, H.J.; Eichmann, K.-U.; Fjæraa, A.M.; Granville, J.; Niemeijer, S.; Cede, A. Ground-based validation of the Copernicus Sentinel-5p TROPOMI NO2 measurements with the NDACC ZSL-DOAS, MAX-DOAS and Pandonia global networks. Atmos. Meas. Tech. 2021, 14, 481–510. [Google Scholar] [CrossRef]
- Levelt, P.F.; Van Den Oord, G.H.; Dobber, M.R.; Malkki, A.; Visser, H.; De Vries, J.; Stammes, P.; Lundell, J.O.; Saari, H. The ozone monitoring instrument. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1093–1101. [Google Scholar] [CrossRef]
- Hess, A.; Iyer, H.; Malm, W. Linear trend analysis: A comparison of methods. Atmos. Environ. 2001, 35, 5211–5222. [Google Scholar] [CrossRef]
- Pettitt, A.N. A non-parametric approach to the change-point problem. J. R. Stat. Soc. Ser. C (Appl. Stat.) 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Verstraeten, G.; Poesen, J.; Demarée, G.; Salles, C. Long-term (105 years) variability in rain erosivity as derived from 10-min rainfall depth data for Ukkel (Brussels, Belgium): Implications for assessing soil erosion rates. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Pohlert, T. Trend: Non-Parametric Trend Tests and Change-Point Detection, R package version 1.1.4; 2020. Available online: https://cran.r-project.org/web/packages/trend/vignettes/trend.pdf (accessed on 15 October 2021).
- Masiol, M.; Harrison, R.M. Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: A review. Atmos. Environ. 2014, 95, 409–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prather, M.; Sausen, R.; Grossman, A.S.; Haywood, J.M.; Rind, D.; Subbaraya, B.H. Potential Climate Change from Aviation. In Aviation and the Global Atmosphere: A Special Report of the Intergovernmental Panel on Climate Change 185; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Lee, D.S.; Fahey, D.W.; Forster, P.M.; Newton, P.J.; Wit, R.C.; Lim, L.L.; Owen, B.; Sausen, R. Aviation and global climate change in the 21st century. Atmos. Environ. 2009, 43, 3520–3537. [Google Scholar] [CrossRef] [Green Version]
- Shikwambana, L.; Ncipha, X.; Sangeetha, S.K.; Sivakumar, V.; Mhangara, P. Qualitative Study on the Observations of Emissions, Transport and the Influence of Climatic Factors from Sugarcane Burning: A South African Perspective. Int. J. Environ. Res. Public Health 2021, 18, 7672. [Google Scholar] [CrossRef]
Sensor/Data | Spatial Resolution | Product | Units |
---|---|---|---|
Sentinel-5P (TROPOMI) | 7 × 3.5 km | NO2 | mol/m2 |
OMI | 13 × 13 km | Planetary Boundary Layer SO2 | DU |
Arrival | Departure | ||||||
---|---|---|---|---|---|---|---|
Years | Min | Mean | Max | Min | Mean | Max | |
FAOR | 2018 | 781,595.00 | 880,730.33 | 940,961.00 | 784,112.00 | 886,621.50 | 1,009,869.00 |
2019 | 793,796.00 | 900,365.67 | 952,600.00 | 792,482.00 | 905,084.58 | 1,034,224.00 | |
2020 | 3895.00 | 900,365.67 | 930,276.00 | 4194.00 | 905,084.58 | 841,474.00 | |
2021 | 174,544.00 | 291,487.86 | 390,833.00 | 175,150.00 | 287,380.29 | 386,736.00 | |
FACT | 2018 | 3587.00 | 3917.58 | 4314.00 | 3669.00 | 4160.08 | 4518.00 |
2019 | 2882.00 | 3757.67 | 4190.00 | 3588.00 | 3918.00 | 4317.00 | |
2020 | 136.00 | 1913.92 | 4028.00 | 136.00 | 1910.75 | 4030.00 | |
2021 | 1516.00 | 2351.14 | 3107.00 | 1513.00 | 2352.86 | 3111.00 |
Arrival | Departure | ||||||
---|---|---|---|---|---|---|---|
Flight Type | U* | p-Value | Change Point | U* | p-Value | Change Point | |
FAOR | International | 450 | 6.533 × 10−7 | 2020-01-01 | 450 | 6.533 × 10−7 | 2020-01-01 |
Regional | 456 | 4.375 × 10−7 | 2019-12-01 | 456 | 4.375 × 10−7 | 2019-12-01 | |
Domestic | 442 | 1.106 × 10−6 | 2020-02-01 | 442 | 1.106 × 10−6 | 2020-02-01 | |
FACT | International | 432 | 2.107 × 10−6 | 2020/03/01 | 432 | 2.107 × 10−6 | 2020/03/01 |
Regional | 442 | 1.106 × 10−6 | 2020/02/01 | 442 | 1.106 × 10−6 | 2020/02/01 | |
Domestic | 444 | 9.703 × 10−7 | 2020/01/01 | 444 | 9.703 × 10−7 | 2020/01/01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shikwambana, L.; Kganyago, M. Assessing the Responses of Aviation-Related SO2 and NO2 Emissions to COVID-19 Lockdown Regulations in South Africa. Remote Sens. 2021, 13, 4156. https://doi.org/10.3390/rs13204156
Shikwambana L, Kganyago M. Assessing the Responses of Aviation-Related SO2 and NO2 Emissions to COVID-19 Lockdown Regulations in South Africa. Remote Sensing. 2021; 13(20):4156. https://doi.org/10.3390/rs13204156
Chicago/Turabian StyleShikwambana, Lerato, and Mahlatse Kganyago. 2021. "Assessing the Responses of Aviation-Related SO2 and NO2 Emissions to COVID-19 Lockdown Regulations in South Africa" Remote Sensing 13, no. 20: 4156. https://doi.org/10.3390/rs13204156
APA StyleShikwambana, L., & Kganyago, M. (2021). Assessing the Responses of Aviation-Related SO2 and NO2 Emissions to COVID-19 Lockdown Regulations in South Africa. Remote Sensing, 13(20), 4156. https://doi.org/10.3390/rs13204156