Proximal Gamma-Ray Spectroscopy: An Effective Tool to Discern Rain from Irrigation
Abstract
:1. Introduction
2. Background
3. Materials and Methods
3.1. Rationale
3.2. Experimental Site
3.3. Experimental Setup
4. Results and Discussions
4.1. SWC Estimation
4.2. Irrigation and Rain Discrimination
5. Conclusions
- The simultaneous observation in a gamma spectrum of a transient increase in the 214Pb signal, coupled with a decrease in the 40K signal, is an effective proxy for rainfall, while a decrease in both 214Pb and 40K signals is a reliable fingerprint for irrigation;
- During a total of 102 rainy days and 23 irrigated days, we were able to discern rain and irrigation without observing any false positive or false negative. Even low rain rates (~1 mm/h) were distinguishable from the gamma background at 1σ level. The rain-induced increase in the 214Pb signal was clearly discernible from both environmental (diurnal oscillations) and statistical fluctuations;
- After a single calibration, the PGRS station successfully measured, in real time, the SWC at a field scale level for both tomato (T2017 campaign) and maize (M2020 campaign) crops for a total of ~9000 h. Due to the remote-controlled data taking, the PGRS station required on-site maintenance interventions only on a few occasions due to extraordinary weather events.;
- The accuracy of the PGRS technique was demonstrated through the validation of measurements by comparing SWCγ and SWCg estimates. The results from the two methods proved compatible within 1σ, and the regression line exhibited a slope and an intercept compatible at 1σ level with 1 and 0, respectively. The accuracy extended through bare and vegetated soil conditions, and through different crops (tomato and maize), showing the effectiveness of the correction adopted for the shielding effect of the BWC.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Abbreviation | Description |
BWC | Biomass Water Content, i.e., amount of water (in mm) contained in vegetation |
CRNS | Cosmic-Ray Neutron Sensing, a method of measuring the SWC through the detection of low-energy neutrons |
FOV | Field of View, i.e., the effective range from which the instrument can receive a signal |
PGRS | Proximal Gamma-Ray Spectroscopy, a technique of measuring the SWC through the detection of gamma rays emitted by the decay process of radioactive elements |
Wilting point, i.e., the minimum percentage of water content of the soil required by the plant to not wilt | |
Field capacity, i.e., the maximum water-to-soil ratio that does not trigger water drainage | |
Saturation, i.e., maximum water capacity (in %) of the soil, including water interested by draining | |
Hydraulic conductivity, a way of quantifying the ease for a fluid to move in the soil | |
SWCg | Volumetric Soil Water Content estimated from gravimetric measurements |
SWCγ | Volumetric Soil Water Content estimated from PGRS measurements |
Gravimetric Soil Water Content estimated from gravimetric measurements | |
Gravimetric Soil Water Content estimated from PGRS measurements | |
Gamma count rate produced from the 40K decay with photopeak at energy 1.46 MeV | |
Gamma count rate produced from the 214Pb decay with photopeak at energy 295 keV | |
Parameter determined by the ratio between the mass attenuation coefficients for the solid component of the soil and its water | |
Count rate attenuation function, which expresses the correction (due to the presence of BWC) that must be accounted for during the SWC derivation | |
Rain rate, i.e., the amount of water accumulated by rain on the ground in a unit of time |
References
- FAO. The State of Food and Agriculture 2020. Overcoming Water Challenges in Agriculture; FAO: Rome, Italy, 2020. [Google Scholar]
- United Nations. Transforming our world: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Simionesei, L.; Ramos, T.B.; Palma, J.; Oliveira, A.R.; Neves, R. IrrigaSys: A web-based irrigation decision support system based on open source data and technology. Comput. Electron. Agric. 2020, 178, 105822. [Google Scholar] [CrossRef]
- Wang, W.; Cui, Y.; Luo, Y.; Li, Z.; Tan, J. Web-based decision support system for canal irrigation management. Comput. Electron. Agric. 2019, 161, 312–321. [Google Scholar] [CrossRef]
- Dari, J.; Quintana-Seguí, P.; Escorihuela, M.J.; Stefan, V.; Brocca, L.; Morbidelli, R. Detecting and mapping irrigated areas in a Mediterranean environment by using remote sensing soil moisture and a land surface model. J. Hydrol. 2021, 596, 126129. [Google Scholar] [CrossRef]
- Jalilvand, E.; Tajrishy, M.; Ghazi Zadeh Hashemi, S.A.; Brocca, L. Quantification of irrigation water using remote sensing of soil moisture in a semi-arid region. Remote Sens. Environ. 2019, 231, 111226. [Google Scholar] [CrossRef]
- Strati, V.; Albéri, M.; Anconelli, S.; Baldoncini, M.; Bittelli, M.; Bottardi, C.; Chiarelli, E.; Fabbri, B.; Guidi, V.; Raptis, K.; et al. Modelling Soil Water Content in a Tomato Field: Proximal Gamma Ray Spectroscopy and Soil–Crop System Models. Agriculture 2018, 8, 60. [Google Scholar] [CrossRef] [Green Version]
- Filippucci, P.; Tarpanelli, A.; Massari, C.; Serafini, A.; Strati, V.; Alberi, M.; Raptis, K.G.C.; Mantovani, F.; Brocca, L. Soil moisture as a potential variable for tracking and quantifying irrigation: A case study with proximal gamma-ray spectroscopy data. Adv. Water Resour. 2020, 136, 103502. [Google Scholar] [CrossRef]
- Bottardi, C.; Albéri, M.; Baldoncini, M.; Chiarelli, E.; Montuschi, M.; Raptis, K.G.C.; Serafini, A.; Strati, V.; Mantovani, F. Rain rate and radon daughters’ activity. Atmos. Environ. 2020, 238, 117728. [Google Scholar] [CrossRef]
- Toková, L.; Igaz, D.; Aydin, E. Measurement of Volumetric Water Content by Gravimetric and Time Domain Reflectometry Methods at Field Experiment with Biochar and N Fertilizer. Acta Hortic. Regiotect. 2019, 22, 61–64. [Google Scholar] [CrossRef] [Green Version]
- Pätzold, S.; Leenen, M.; Heggemann, T.W. Proximal Mobile Gamma Spectrometry as Tool for Precision Farming and Field Experimentation. Soil Syst. 2020, 4, 31. [Google Scholar] [CrossRef]
- Tan, X.; Zhang, L.; He, C.; Zhu, Y.; Han, Z.; Li, X. Applicability of cosmic-ray neutron sensor for measuring soil moisture at the agricultural-pastoral ecotone in northwest China. Sci. China Earth Sci. 2020, 63, 15. [Google Scholar] [CrossRef]
- Zhu, X.; Shao, M.a.; Zeng, C.; Jia, X.; Huang, L.; Zhang, Y.; Zhu, J. Application of cosmic-ray neutron sensing to monitor soil water content in an alpine meadow ecosystem on the northern Tibetan Plateau. J. Hydrol. 2016, 536, 247–254. [Google Scholar] [CrossRef]
- Andreasen, M.; Jensen, K.H.; Desilets, D.; Franz, T.E.; Zreda, M.; Bogena, H.R.; Looms, M.C.J.V.Z.J. Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone J. 2017, 16, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Siebert, S.; Kummu, M.; Porkka, M.; Döll, P.; Ramankutty, N.; Scanlon, B.R. A global data set of the extent of irrigated land from 1900 to 2005. Hydrol. Earth Syst. Sci. 2015, 19, 1521–1545. [Google Scholar] [CrossRef] [Green Version]
- Deines, J.M.; Kendall, A.D.; Hyndman, D.W. Annual Irrigation Dynamics in the US. Northern High Plains Derived from Landsat Satellite Data. Geophys. Res. Lett. 2017, 44, 9350–9360. [Google Scholar] [CrossRef]
- Xie, Y.; Lark, T.J. Mapping annual irrigation from Landsat imagery and environmental variables across the conterminous United States. Remote Sens. Environ. 2021, 260, 112445. [Google Scholar] [CrossRef]
- Ozdogan, M.; Yang, Y.; Allez, G.; Cervantes, C. Remote Sensing of Irrigated Agriculture: Opportunities and Challenges. Remote Sens. 2010, 2, 2274–2304. [Google Scholar] [CrossRef] [Green Version]
- Karthikeyan, L.; Chawla, I.; Mishra, A.K. A review of remote sensing applications in agriculture for food security: Crop growth and yield, irrigation, and crop losses. J. Hydrol. 2020, 586, 124905. [Google Scholar] [CrossRef]
- Salmon, J.M.; Friedl, M.A.; Frolking, S.; Wisser, D.; Douglas, E.M. Global rain-fed, irrigated, and paddy croplands: A new high resolution map derived from remote sensing, crop inventories and climate data. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 321–334. [Google Scholar] [CrossRef]
- Brocca, L.; Tarpanelli, A.; Filippucci, P.; Dorigo, W.; Zaussinger, F.; Gruber, A.; Fernández-Prieto, D. How much water is used for irrigation? A new approach exploiting coarse resolution satellite soil moisture products. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 752–766. [Google Scholar] [CrossRef]
- Patiris, D.L.; Pensieri, S.; Tsabaris, C.; Bozzano, R.; Androulakaki, E.G.; Anagnostou, M.N.; Alexakis, S. Rainfall Investigation by Means of Marine In Situ Gamma-ray Spectrometry in Ligurian Sea, Mediterranean Sea, Italy. J. Mar. Sci. Eng. 2021, 9, 903. [Google Scholar] [CrossRef]
- Tsabaris, C.; Androulakaki, E.G.; Ballas, D.; Alexakis, S.; Perivoliotis, L.; Iona, A. Radioactivity Monitoring at North Aegean Sea Integrating In-Situ Sensor in an Ocean Observing Platform. J. Mar. Sci. Eng. 2021, 9, 77. [Google Scholar] [CrossRef]
- Grasty, R.L. Radon emanation and soil moisture effects on airborne gamma-ray measurements. Geophysics 1997, 62, 7. [Google Scholar] [CrossRef]
- Baldoncini, M.; Albéri, M.; Bottardi, C.; Chiarelli, E.; Raptis, K.G.C.; Strati, V.; Mantovani, F. Investigating the potentialities of Monte Carlo simulation for assessing soil water content via proximal gamma-ray spectroscopy. J. Environ. Radioact. 2018, 192, 105–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldoncini, M.; Albéri, M.; Bottardi, C.; Chiarelli, E.; Raptis, K.G.C.; Strati, V.; Mantovani, F. Biomass water content effect on soil moisture assessment via proximal gamma-ray spectroscopy. Geoderma 2019, 335, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Meade, K.A.; Cooper, M.; Beavis, W.D. Modeling biomass accumulation in maize kernels. Field Crops Res. 2013, 151, 92–100. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 12. [Google Scholar] [CrossRef] [Green Version]
- Giannerini, G.; Genovesi, R. Irrinet: IT services for farm water management, a large scale implementation in Italy. In Proceedings of the EFITA 2011 Conference Proceedings, Prague, Czech Republic, 11–14 July 2011. [Google Scholar]
- Mannini, P.; Genovesi, R.; Letterio, T. IRRINET: Large Scale DSS Application for On-farm Irrigation Scheduling. Procedia Environ. Sci. 2013, 19, 823–829. [Google Scholar] [CrossRef] [Green Version]
- Munaretto, S.; Battilani, A. Irrigation water governance in practice: The case of the Canale Emiliano Romagnolo district, Italy. Water Policy 2014, 16, 578–594. [Google Scholar] [CrossRef]
- IAEA. Guidelines for Radioelement Mapping Using Gamma Ray Spectrometry Data; Nuclear Fuel Materials Section: Vienna, Austria, 2003. [Google Scholar]
- Wilkening, M. Radon in the Environment; Elsevier: Amsterdam, The Netherlands, 1990. [Google Scholar]
- Perrier, F.; Girault, F. Harmonic response of soil radon-222 flux and concentration induced by barometric oscillations. Geophys. J. Int. 2013, 195, 945–971. [Google Scholar] [CrossRef] [Green Version]
- Greenfield, M.; Domondon, A.; Okamoto, N.; Watanabe, I. Variation in γ-ray count rates as a monitor of precipitation rates, radon concentrations, and tectonic activity. J. Appl. Phys. 2002, 91, 1628–1633. [Google Scholar] [CrossRef]
- Serafini, A.; Albéri, M.; Chiarelli, E.; Montuschi, M.; Raptis, K.G.C.; Strati, V.; Mantovani, F. Discriminating irrigation and rainfall with proximal gamma-ray spectroscopy. In Proceedings of the 2020 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Trento, Italy, 4–6 November 2020; pp. 191–195. [Google Scholar]
Parameter | Value |
---|---|
Sand [%] | 45 |
Silt [%] | 40 |
Clay [%] | 15 |
Soil textural class | Loamy |
Soil bulk density [kg/m3] | 1345 |
Organic matter [%] | 1.26 |
Wilting Point () [m3/m3] | 0.09 |
Field Capacity () [m3/m3] | 0.32 |
Saturation () [m3/m3] | 0.48 |
[cm/day] | 23 |
T2017 | M2020 | |
---|---|---|
Start data taking [DD/MM/YYYY] | 04/04/2017 | 05/03/2020 |
End data taking [DD/MM/YYYY] | 02/11/2017 | 31/08/2020 |
Effective hours of acquisition | 4871 | 3981 |
Effective hours/total hours [%] | 95 | 92 |
Type of crop | Tomato (Solanum lycopersicum) | Maize (Zea mays) |
Plant density [plants/m2] | 3.5 | 7.4 |
Planting-sowing date [DD/MM/YYYY] | 23/05/2017 | 25/03/2020 |
Harvesting date [DD/MM/YYYY] | 14/09/2017 | 02/09/2020 |
Total rainwater [mm] | 404 | 228 |
Total irrigation water [mm] | 350 | 210 |
Date of Sampling [DD/MM/YYYY] | SWCg [m3/m3] | SWCγ [m3/m3] | ||
---|---|---|---|---|
Bare soil | T2017 | 18/09/2017 | 0.219 ± 0.011 | 0.219 ± 0.023 |
21/09/2017 | 0.237 ± 0.015 | 0.245 ± 0.023 | ||
M2020 | 06/04/2020 | 0.235 ± 0.028 | 0.238 ± 0.023 | |
Vegetated soil | T2017 | 24/07/2017 | 0.167 ± 0.028 | 0.161 ± 0.023 |
26/07/2017 | 0.265 ± 0.028 | 0.231 ± 0.023 | ||
28/07/2017 | 0.189 ± 0.029 | 0.166 ± 0.023 | ||
M2020 | 08/05/2020 | 0.225 ± 0.027 | 0.221 ± 0.023 | |
28/05/2020 | 0.180 ± 0.022 | 0.182 ± 0.023 | ||
08/06/2020 | 0.246 ± 0.030 | 0.272 ± 0.023 | ||
22/06/2020 | 0.168 ± 0.020 | 0.172 ± 0.023 | ||
22/07/2020 | 0.171 ± 0.020 | 0.185 ± 0.023 | ||
11/08/2020 | 0.234 ± 0.028 | 0.286 ± 0.023 |
Event | Start Date and Time | Duration [h] | Total Water [mm] | ΔSWCγ [%] | |
---|---|---|---|---|---|
Rain | 16/04/2017, 23:15 | 4.00 | 8.3 | +70 | +130 |
10/08/2017, 13:45 | 1.00 | 13 | +36 | +103 | |
06/10/2017, 16:45 | 3.75 | 19 | +85 | +187 | |
30/03/2020, 19:45 | 5.50 | 8.4 | +36 | +238 | |
08/06/2020, 17:45 | 1.25 | 9.2 | +28 | +130 | |
30/08/2020, 03:30 | 1.25 | 9.4 | +48 | +102 | |
Irrigation | 19/06/2017, 15:45 | 1.50 | 15 | +33 | −16 |
26/06/2017, 09:45 | 2.25 | 25 | +59 | −33 | |
05/07/2017, 09:45 | 2.25 | 30 | +91 | −45 | |
07/05/2020, 07:30 | 0.50 | 20 | +45 | −41 | |
25/06/2020, 10:30 | 0.75 | 30 | +65 | −34 | |
30/06/2020, 11:15 | 1.00 | 40 | +64 | −19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serafini, A.; Albéri, M.; Amoretti, M.; Anconelli, S.; Bucchi, E.; Caselli, S.; Chiarelli, E.; Cicala, L.; Colonna, T.; De Cesare, M.; et al. Proximal Gamma-Ray Spectroscopy: An Effective Tool to Discern Rain from Irrigation. Remote Sens. 2021, 13, 4103. https://doi.org/10.3390/rs13204103
Serafini A, Albéri M, Amoretti M, Anconelli S, Bucchi E, Caselli S, Chiarelli E, Cicala L, Colonna T, De Cesare M, et al. Proximal Gamma-Ray Spectroscopy: An Effective Tool to Discern Rain from Irrigation. Remote Sensing. 2021; 13(20):4103. https://doi.org/10.3390/rs13204103
Chicago/Turabian StyleSerafini, Andrea, Matteo Albéri, Michele Amoretti, Stefano Anconelli, Enrico Bucchi, Stefano Caselli, Enrico Chiarelli, Luca Cicala, Tommaso Colonna, Mario De Cesare, and et al. 2021. "Proximal Gamma-Ray Spectroscopy: An Effective Tool to Discern Rain from Irrigation" Remote Sensing 13, no. 20: 4103. https://doi.org/10.3390/rs13204103