On the Use of Tri-Stereo Pleiades Images for the Morphometric Measurement of Dolines in the Basaltic Plateau of Azrou (Middle Atlas, Morocco)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Satellite Imagery
2.3. DEM Extraction
2.4. Dolines Identification and Morphometric Measurements
2.5. DEM Validation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Melis, M.T.; Mundula, F.; Dessì, F.; Cioni, R.; Funedda, A. Tracing the Boundaries of Cenozoic Volcanic Edifices from Sardinia (Italy): A Geomorphometric Contribution. Earth Surf. Dyn. 2014, 2, 481–492. [Google Scholar] [CrossRef] [Green Version]
- Florinsky, I.V. An Illustrated Introduction to General Geomorphometry. Prog. Phys. Geogr. Earth Environ. 2017, 41, 723–752. [Google Scholar] [CrossRef]
- Vörös, F.; van Wyk de Vries, B.; Karátson, D.; Székely, B. DTM-Based Morphometric Analysis of Scoria Cones of the Chaîne Des Puys (France)—The Classic and a New Approach. Remote Sens. 2021, 13, 1983. [Google Scholar] [CrossRef]
- De Carvalho, O.A.; Guimarães, R.F.; Montgomery, D.R.; Gillespie, A.R.; Trancoso Gomes, R.A.; De Souza Martins, É.; Silva, N.C. Karst Depression Detection Using ASTER, ALOS/PRISM and SRTM-Derived Digital Elevation Models in the Bambuí Group, Brazil. Remote. Sens. 2014, 6, 330–351. [Google Scholar] [CrossRef] [Green Version]
- Mihevc, A.; Mihevc, R. Morphological characteristics and distribution of dolines in Slovenia, a study of a lidar-based doline map of Slovenia. Acta Carsologica 2021, 50, 11–36. [Google Scholar] [CrossRef]
- Öztürk, M.Z.; Şimşek, M.; Şener, M.F.; Utlu, M. GIS based analysis of doline density on Taurus Mountains, Turkey. Environ. Earth Sci. 2018, 77, 1–13. [Google Scholar] [CrossRef]
- Telbisz, T. Lidar-Based Morphometry of Conical Hills in Temperate Karst Areas in Slovenia. Remote Sens. 2021, 13, 2668. [Google Scholar] [CrossRef]
- Theilen-Willige, B.; Malek, H.A.; Charif, A.; El Bchari, F.; Chaïbi, M. Remote Sensing and GIS Contribution to the Investigation of Karst Landscapes in NW-Morocco. Geosciences 2014, 4, 50–72. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Gómez, M.; Liedl, R.; Stefan, C. A New GIS-Based Model for Karst Dolines Mapping Using LiDAR.; Application of a Multidepth Threshold Approach in the Yucatan Karst, Mexico. Remote Sens. 2019, 11, 1147. [Google Scholar] [CrossRef] [Green Version]
- Pisani, L.; De Waele, J. Candidate Cave Entrances in a Planetary Analogue Evaporite Karst (Cordillera de La Sal, Chile): A Remote Sensing Approach and Ground-Truth Reconnaissance. Geomorphology 2021, 389, 107851. [Google Scholar] [CrossRef]
- Chen, H.; Oguchi, T.; Wu, P. Morphometric Analysis of Sinkholes Using a Semi-Automatic Approach in Zhijin County, China. Arab. J. Geosci. 2018, 11, 412. [Google Scholar] [CrossRef] [Green Version]
- Bauer, C. Analysis of Dolines Using Multiple Methods Applied to Airborne Laser Scanning Data. Geomorphology 2015, 250, 78–88. [Google Scholar] [CrossRef]
- Rieg, L.; Klug, C.; Nicholson, L.; Sailer, R. Pléiades Tri-Stereo Data for Glacier Investigations—Examples from the European Alps and the Khumbu Himal. Remote. Sens. 2018, 10, 1563. [Google Scholar] [CrossRef] [Green Version]
- Deilami, K.; Hashim, M. Very High Resolution Optical Satellites for DEM Generation: A Review. EJSR 2011, 49, 542–554. [Google Scholar]
- Sefercik, U.G.; Alkan, M.; Buyuksalih, G.; Jacobsen, K. Generation and Validation of High-Resolution DEMs from Worldview-2 Stereo Data. Photogramm. Rec. 2013, 28, 362–374. [Google Scholar] [CrossRef]
- Bhushan, S.; Shean, D.; Alexandrov, O.; Henderson, S. Automated Digital Elevation Model (DEM) Generation from Very-High-Resolution Planet SkySat Triplet Stereo and Video Imagery. ISPRS J. Photogramm. Remote. Sens. 2021, 173, 151–165. [Google Scholar] [CrossRef]
- Bagnardi, M.; González, P.J.; Hooper, A. High-Resolution Digital Elevation Model from Tri-Stereo Pleiades-1 Satellite Imagery for Lava Flow Volume Estimates at Fogo Volcano. Geophys. Res. Lett. 2016, 43, 6267–6275. [Google Scholar] [CrossRef] [Green Version]
- Gleyzes, M.A.; Perret, L.; Kubik, P. Pleiades System Architecture and Main Performance. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2012, 39, 537–542. [Google Scholar] [CrossRef] [Green Version]
- Panagiotakis, E.; Chrysoulakis, N.; Charalampopoulou, V.; Poursanidis, D. Validation of Pleiades Tri-Stereo DSM in Urban Areas. ISPRS Int. J. Geo-Inf. 2018, 7, 118. [Google Scholar] [CrossRef] [Green Version]
- Antonić, O.; Hatic, D.; Pernar, R. DEM-Based Depth in Sink as an Environmental Estimator. Ecol. Model. 2001, 138, 247–254. [Google Scholar] [CrossRef]
- De Waele, J.; Melis, M.T. Geomorphology and Geomorphological Heritage of the Ifrane-Azrou Region (Middle Atlas, Morocco). Environ. Geol. 2009, 58, 587–599. [Google Scholar] [CrossRef]
- Harmand, C.; Cantagrel, J.M. Le Volcanisme Alcalin Tertiaire et Quaternaire Du Moyen Atlas (Maroc): Chronologie K/Ar et Cadre Géodynamique. J. Afr. Earth Sci. 1984, 2, 51–55. [Google Scholar] [CrossRef]
- Martin, J. Le Moyen Atlas central. Etude géomorphologique. Notes Mémoires Serv. Géologique Maroc 1981, 258, 1–446. [Google Scholar]
- Williams, P. Dolines. In Encyclopedia of Caves and Karst Science; Gunn, J., Ed.; Fitzroy Dearborn: New York, NY, USA, 2004; pp. 628–642. [Google Scholar]
- Menjour, F.; Remmal, T.; Hakdaoui, M.; El Kamel, F.; Lakroud, K.; Amraoui, F.; El-Amrani ERl Hassani, I.-E.; Van Wyk de Vries, B.; Boivin, P. Role of Fracturing in the Organization of the Karst Features of Azrou Plateau (Middle Atlas, Morroco) Studied by Remote Sensing Imagery. J. Indian Soc. Remote. Sens. 2017, 45, 1015–1030. [Google Scholar] [CrossRef]
- Muzirafuti, A.; Boualoul, M.; Barreca, G.; Allaoui, A.; Bouikbane, H.; Lanza, S.; Crupi, A.; Randazzo, G. Fusion of Remote Sensing and Applied Geophysics for Sinkholes Identification in Tabular Middle Atlas of Morocco (the Causse of El Hajeb): Impact on the Protection of Water Resource. Resources 2020, 9, 51. [Google Scholar] [CrossRef]
- Barakat, A.; El Baghdadi, M.; Rais, J.; Aghezzaf, B.; Slassi, M. Assessment of spatial and seasonal water quality variation of Oum Er Rbia River (Morocco) using multivariate statistical techniques. Int. Soil Water Conserv. Res. 2016, 4, 284–292. [Google Scholar] [CrossRef]
- Poli, D.; Remondino, F.; Angiuli, E.; Agugiaro, G. Radiometric and Geometric Evaluation of GeoEye-1, WorldView-2 and Pléiades-1A Stereo Images for 3D Information Extraction. ISPRS J. Photogramm. Remote Sens. 2015, 100, 35–47. [Google Scholar] [CrossRef]
- Vacca, A.; Loddo, S.; Melis, M.T.; Funedda, A.; Puddu, R.; Verona, M.; Fanni, S.; Fantola, F.; Madrau, S.; Marrone, V.A.; et al. A GIS Based Method for Soil Mapping in Sardinia, Italy: A Geomatic Approach. J. Environ. Manag. 2014, 138, 87–96. [Google Scholar] [CrossRef] [PubMed]
- David, F. Constructing confidence sets using rank statistics. J. Am. Stat. Assoc. 1972, 67, 687–690. [Google Scholar]
- Titus, T.N.; Wynne, J.J.; Malaska, M.J.; Agha-Mohammadi, A.; Buhler, P.B.; Alexander, E.C.; Ashley, J.W.; Azua-Bustos, A.; Boston, P.J.; Buczkowski, D.L.; et al. A Roadmap for Planetary Caves Science and Exploration. Nat. Astron. 2021, 5, 524–525. [Google Scholar] [CrossRef]
- Titus, T.; Wynne, J.J.; Boston, P.; de Leon, P.; Demirel-Floyd, C.; Jones, H.; Sauro, F.; Uckert, K.; Aghamohammadi, A.; Alexander, C.; et al. Science and Technology Requirements to Explore Caves in Our Solar System. Bull. AAS 2021, 53, 167. [Google Scholar] [CrossRef]
- Scaioni, M.; Giommi, P.; Brunetti, M.T.; Carli, C.; Cerroni, P.; Cremonese, G.; Forlani, G.; Gamba, P.; Lavagna, M.; Melis, M.T.; et al. The “Moon Mapping” Project to Promote Cooperation between Students of Italy and China. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 71–78. [Google Scholar] [CrossRef] [Green Version]
Morphometric Parameters | Processing |
---|---|
Minimum elevation (Z_Min) | Measured on the topographic surface surrounded by the shape |
Maximum elevation (Z_Max) | “ |
Minimum slope | Measured on the sinkhole slope raster |
Maximum slope | “ |
Depth (m) | Difference between maximum and minimum elevation |
Maximum axis (m) | Measured using the bounding box of the shape |
Minimum axis (m) | “ |
Azimuth of the maximum axis (deg) | Angular value in degrees from geographic North |
Perimeter (m) | Linear measure of the shape |
2D Surface (m2) | Area of the shape |
3D Surface (m2) | Area of the topographic surface of the sinkhole |
Volume (m3) | Measured from the topographic surface and the shape of each sinkhole |
Product ID | Processing Level |
---|---|
DS_PHR1A_201810251114401_FR1_PX_W006N33_1108_01721 | SENSOR |
DS_PHR1A_201810251114039_FR1_PX_W006N33_1109_01574 | SENSOR |
DS_PHR1A_201810251115071_FR1_PX_W006N33_1109_01646 | SENSOR |
DS_PHR1A_201908191122060_FR1_PX_W006N33_1206_02715 | ORTHO |
DS_PHR1B_201907131107426_FR1_PX_W006N33_1216_00866 | ORTHO |
DS_PHR1A_201908191122060_FR1_PX_W006N33_1108_00986 | ORTHO |
DS_PHR1B_201907131107426_FR1_PX_W006N33_1116_00824 | ORTHO |
DS_PHR1A_201906281122179_FR1_PX_W006N33_0910_02480 | ORTHO |
DS_PHR1A_201908191122494_FR1_PX_W006N33_0904_01190 | ORTHO |
TYPE | Doline ID | Depth_Field (m) | Z_Min (m) | Z_Max (m) | Z_Mean (m) | 2D_Surf. (m2) | Perimeter (m) | Depth_DEM (m) | ΔD (m) | |ΔD| (m) |
---|---|---|---|---|---|---|---|---|---|---|
bowl | 251 | 17 | 1881 | 1892 | 1890 | 7733 | 264 | 11 | −6 | 6 |
bowl | 252 | 9 | 1883 | 1894 | 1890 | 12,457 | 350 | 11 | 2 | 2 |
bowl | 1 | 28 | 1899 | 1920 | 1912 | 9203 | 263 | 21 | −7 | 7 |
bowl | 5 | 11 | 1916 | 1928 | 1924 | 5529 | 199 | 12 | 1 | 1 |
bowl | 30 | 9 | 1912 | 1917 | 1915 | 2068 | 99 | 5 | −4 | 4 |
bowl | 34 | 10 | 1870 | 1883 | 1878 | 16,217 | 392 | 12 | 2 | 2 |
bowl | 37 | 6 | 1883 | 1888 | 1887 | 4197 | 168 | 5 | 0 | 0 |
bowl | 104 | 4 | 1961 | 1966 | 1964 | 7986 | 263 | 5 | 1 | 1 |
bowl | 105 | 10 | 1948 | 1957 | 1953 | 3863 | 157 | 9 | −2 | 2 |
bowl | 174 | 26 | 1862 | 1892 | 1881 | 13,461 | 332 | 29 | 3 | 3 |
bowl | 219 | 11 | 1910 | 1919 | 1915 | 3896 | 162 | 9 | −2 | 2 |
bowl | 237 | 27 | 1924 | 1948 | 1939 | 10,926 | 291 | 24 | −4 | 4 |
bowl | 283 | 7 | 1890 | 1896 | 1893 | 5338 | 200 | 7 | 0 | 0 |
bowl | 297 | 3 | 1886 | 1889 | 1887 | 11,237 | 319 | 3 | 0 | 0 |
bowl | 300 | 5 | 1884 | 1887 | 1886 | 2466 | 114 | 3 | −2 | 2 |
bowl | 316 | 17 | 1949 | 1970 | 1960 | 12,961 | 331 | 21 | 4 | 4 |
bowl | 257 | 67 | 1851 | 1911 | 1890 | 48,579 | 662 | 60 | −7 | 7 |
bowl | 35 | 15 | 1871 | 1892 | 1884 | 35,182 | 601 | 21 | 6 | 6 |
flat | 12 | 22 | 1883 | 1907 | 1898 | 13,071 | 330 | 24 | 2 | 2 |
flat | 19 | 8 | 1863 | 1868 | 1866 | 1852 | 89 | 4 | −3 | 3 |
flat | 244 | 9 | 1874 | 1883 | 1880 | 4950 | 184 | 8 | −1 | 1 |
flat | 245 | 6 | 1877 | 1881 | 1879 | 2201 | 104 | 4 | −1 | 1 |
flat | 246 | 8 | 1878 | 1883 | 1882 | 2742 | 124 | 5 | −3 | 3 |
flat | 247 | 6 | 1879 | 1884 | 1882 | 2361 | 109 | 5 | −2 | 2 |
flat | 249 | 10 | 1871 | 1885 | 1881 | 8500 | 267 | 14 | 3 | 3 |
flat | 250 | 6 | 1881 | 1886 | 1884 | 3518 | 147 | 5 | 0 | 0 |
flat | 254 | 14 | 1891 | 1904 | 1900 | 6326 | 215 | 13 | −1 | 1 |
flat | 255 | 12 | 1895 | 1904 | 1902 | 4767 | 179 | 10 | −2 | 2 |
flat | 256 | 30 | 1888 | 1900 | 1895 | 6280 | 212 | 12 | −18 | 18 |
flat | 2012 | 4 | 1882 | 1885 | 1883 | 1589 | 79 | 3 | −1 | 1 |
flat | 2013 | 1 | 1883 | 1884 | 1884 | 989 | 49 | 1 | 0 | 0 |
flat | 2021 | 2 | 1931 | 1934 | 1932 | 1234 | 152 | 3 | 1 | 1 |
flat | 2 | 19 | 1905 | 1920 | 1914 | 4775 | 178 | 15 | −5 | 5 |
flat | 8 | 8 | 1912 | 1922 | 1917 | 6097 | 212 | 10 | 2 | 2 |
flat | 9 | 1 | 1920 | 1922 | 1921 | 1999 | 98 | 2 | 1 | 1 |
flat | 36 | 12 | 1882 | 1891 | 1888 | 4563 | 176 | 9 | −3 | 3 |
flat | 39 | 5 | 1881 | 1885 | 1884 | 4882 | 186 | 4 | −1 | 1 |
flat | 43 | 20 | 1946 | 1967 | 1959 | 9814 | 278 | 20 | 0 | 0 |
flat | 77 | 6 | 1949 | 1954 | 1951 | 2896 | 128 | 5 | −1 | 1 |
flat | 78 | 6 | 1969 | 1977 | 1972 | 6351 | 221 | 8 | 2 | 2 |
flat | 175 | 9 | 1889 | 1898 | 1893 | 7343 | 239 | 9 | 0 | 0 |
flat | 176 | 6 | 1889 | 1901 | 1892 | 13,176 | 346 | 12 | 6 | 6 |
flat | 177 | 10 | 1887 | 1901 | 1896 | 13,329 | 345 | 13 | 4 | 4 |
flat | 178 | 18 | 1879 | 1898 | 1891 | 10,657 | 294 | 19 | 1 | 1 |
flat | 186 | 6 | 1884 | 1892 | 1888 | 6969 | 235 | 8 | 2 | 2 |
flat | 187 | 15 | 1891 | 1908 | 1902 | 8438 | 256 | 17 | 2 | 2 |
flat | 189 | 13 | 1887 | 1901 | 1896 | 12,078 | 325 | 13 | 0 | 0 |
flat | 190 | 15 | 1881 | 1897 | 1891 | 9044 | 267 | 16 | 1 | 1 |
flat | 196 | 10 | 1951 | 1962 | 1958 | 7308 | 283 | 11 | 1 | 1 |
flat | 197 | 26 | 1944 | 1966 | 1958 | 7655 | 236 | 22 | −4 | 4 |
flat | 210 | 2 | 1972 | 1973 | 1972 | 1790 | 89 | 2 | 0 | 0 |
flat | 214 | 13 | 1910 | 1924 | 1918 | 7224 | 239 | 14 | 1 | 1 |
flat | 216 | 4 | 1921 | 1924 | 1922 | 2156 | 102 | 4 | 0 | 0 |
flat | 222 | 28 | 1873 | 1903 | 1893 | 15,912 | 368 | 29 | 1 | 1 |
flat | 223 | 9 | 1886 | 1899 | 1893 | 9171 | 272 | 13 | 4 | 4 |
flat | 240 | 22 | 1929 | 1956 | 1944 | 12,767 | 313 | 27 | 5 | 5 |
flat | 282 | 5 | 1889 | 1893 | 1891 | 5631 | 205 | 4 | −1 | 1 |
flat | 284 | 6 | 1890 | 1898 | 1894 | 4590 | 177 | 7 | 2 | 2 |
flat | 286 | 11 | 1871 | 1874 | 1872 | 3184 | 145 | 2 | −9 | 9 |
flat | 289 | 11 | 1866 | 1877 | 1871 | 5805 | 205 | 11 | 0 | 0 |
flat | 291 | 8 | 1876 | 1883 | 1879 | 3261 | 138 | 7 | −1 | 1 |
flat | 292 | 4 | 1879 | 1884 | 1881 | 8703 | 270 | 5 | 1 | 1 |
flat | 298 | 1 | 1885 | 1887 | 1886 | 1502 | 75 | 1 | 0 | 0 |
flat | 302 | 3 | 1872 | 1875 | 1873 | 2640 | 122 | 3 | 0 | 0 |
flat | 2008 | 3 | 1918 | 1921 | 1919 | 2206 | 104 | 3 | 0 | 0 |
flat | 10 | 3 | 1898 | 1901 | 1899 | 1941 | 83 | 3 | 0 | 0 |
flat | 48 | 13 | 1859 | 1874 | 1868 | 42,854 | 762 | 15 | 3 | 3 |
flat | 14 | 30 | 1888 | 1919 | 1908 | 21,090 | 440 | 30 | 1 | 1 |
funnel | 258 | 30 | 1882 | 1911 | 1899 | 13,515 | 330 | 29 | −1 | 1 |
funnel | 3 | 22 | 1911 | 1926 | 1920 | 6117 | 203 | 16 | −7 | 7 |
funnel | 4 | 20 | 1912 | 1927 | 1923 | 6821 | 219 | 15 | −5 | 5 |
funnel | 179 | 35 | 1880 | 1898 | 1891 | 18,253 | 401 | 18 | −18 | 18 |
funnel | 180 | 25 | 1879 | 1901 | 1894 | 9154 | 261 | 22 | −2 | 2 |
funnel | 201 | 17 | 1949 | 1963 | 1959 | 4608 | 172 | 14 | −3 | 3 |
funnel | 217 | 20 | 1910 | 1928 | 1922 | 7661 | 241 | 18 | −2 | 2 |
funnel | 227 | 26 | 1915 | 1940 | 1932 | 11,133 | 294 | 24 | −2 | 2 |
funnel | 228 | 32 | 1910 | 1939 | 1929 | 12,446 | 305 | 29 | −3 | 3 |
funnel | 220 | 25 | 1898 | 1919 | 1912 | 9029 | 261 | 21 | −4 | 4 |
funnel | 184 | 26 | 1868 | 1891 | 1885 | 16,469 | 386 | 23 | −3 | 3 |
funnel | 213 | 34 | 1860 | 1922 | 1900 | 61,677 | 869 | 62 | 28 | 28 |
mixed | 322 | 11 | 1853 | 1864 | 1858 | 7505 | 249 | 11 | 0 | 0 |
mixed | 6 | 15 | 1915 | 1929 | 1924 | 7672 | 254 | 13 | −2 | 2 |
mixed | 199 | 26 | 1934 | 1957 | 1949 | 12,229 | 317 | 24 | −2 | 2 |
mixed | 200 | 13 | 1948 | 1958 | 1955 | 8326 | 282 | 11 | −2 | 2 |
mixed | 202 | 10 | 1963 | 1972 | 1968 | 7782 | 265 | 9 | −1 | 1 |
mixed | 285 | 6 | 1885 | 1891 | 1888 | 5602 | 204 | 7 | 1 | 1 |
mixed | 352 | 9 | 1921 | 1928 | 1925 | 5237 | 194 | 7 | −2 | 2 |
mixed | 17 | 60 | 1882 | 1940 | 1917 | 50,258 | 569 | 58 | −1 | 1 |
mixed | 248 | 8 | 1873 | 1891 | 1886 | 26,056 | 591 | 18 | 10 | 10 |
Dataset | Shapiro-Wilk Normality Test | Wilcoxon Signed-Rank Test | Pearson’s Correlation Test | |
---|---|---|---|---|
p-Value | Correlation Coefficient | |||
D_field | 8.49 × 10−6 | 0.063 | 2.20 × 10−16 | 0.91 |
D_dem | 7.90 × 10−7 | |||
D_field without outliers | 3.53 × 10−6 | 0.064 | 2.20 × 10−16 | 0.97 |
D_dem without outliers | 1.06 × 10−5 |
D_Field (m) | D_Dem (m) | ΔD (m)—All Measures | ΔD (m)—No Outliers | |
---|---|---|---|---|
minimum | 1 | 1 | 0 | 0 |
first quartile | 6 | 5 | 1 | 1 |
median | 11 | 11 | 2 | 2 |
mean | 14 | 14 | 3 | 2 |
third quartile | 20 | 18 | 3 | 3 |
maximum | 67 | 62 | 28 | 7 |
st. deviation | 11 | 12 | 4 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melis, M.T.; Pisani, L.; De Waele, J. On the Use of Tri-Stereo Pleiades Images for the Morphometric Measurement of Dolines in the Basaltic Plateau of Azrou (Middle Atlas, Morocco). Remote Sens. 2021, 13, 4087. https://doi.org/10.3390/rs13204087
Melis MT, Pisani L, De Waele J. On the Use of Tri-Stereo Pleiades Images for the Morphometric Measurement of Dolines in the Basaltic Plateau of Azrou (Middle Atlas, Morocco). Remote Sensing. 2021; 13(20):4087. https://doi.org/10.3390/rs13204087
Chicago/Turabian StyleMelis, Maria Teresa, Luca Pisani, and Jo De Waele. 2021. "On the Use of Tri-Stereo Pleiades Images for the Morphometric Measurement of Dolines in the Basaltic Plateau of Azrou (Middle Atlas, Morocco)" Remote Sensing 13, no. 20: 4087. https://doi.org/10.3390/rs13204087
APA StyleMelis, M. T., Pisani, L., & De Waele, J. (2021). On the Use of Tri-Stereo Pleiades Images for the Morphometric Measurement of Dolines in the Basaltic Plateau of Azrou (Middle Atlas, Morocco). Remote Sensing, 13(20), 4087. https://doi.org/10.3390/rs13204087