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Abstract: Dolines are important features strongly influencing the outcomes of groundwater
vulnerability maps, subsidence risk and land use studies. Their relationship with subsurface
features like epikarst, stresses the importance of doline mapping for environmental and hydrological
management strategies. Current methodologies to map dolines from elevation models apply
morphometric attributes on depressions, including a depth threshold, to filter depressed areas and to
define dolines. However, the use of a single threshold tends to overlook dolines located in already
depressed areas. In this work a new geographic information systems (GIS)-based methodology
is proposed to identify karst depressions within digital elevation models, applying a multidepth
threshold approach. The method statistically classifies depression intervals to identify dolines at
variable depths. The method was tested in the Yucatan karst, displaying a final accuracy of 63%
after testing different parameters. The results are affected by false positives due to the impossibility
of verifying by imagery 190 possible dolines in areas of dense vegetation. Nevertheless, out of 655
estimated dolines, 464 match those located by imagery giving sensitivity and precision values of 85%
and 71%, respectively. Comparing this methodology against single threshold outcomes, improvement
is evident in doline mapping. Notwithstanding, its application and performance with lower and
higher resolution elevation models must be investigated.
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1. Introduction

Karstification is a long-term dissolution process of water acting over carbonate rocks such
as limestone, dolomite and other soluble rocks; dissolution is continuous, making karstification
an unceasing and evolving process. Thus, Karst refers to a three-dimensional open system in which
dissolution has already modified the surface and subsurface, thereby displaying characteristic features
such as dolines, caves and conduit networks. Dolines (sinkholes) are usually bowl-shape, enclosed
depressions at surface level, evolved as a consequence of the dissolution of carbonate rocks. Dolines
can act as connectors between surface water and groundwater, collecting and draining rainfall into the
subsurface [1].

Doline internal drainage and morphometric characteristics can serve to diagnose karst development
and other endokarst features [2,3]. Although the term “doline” is widely known, its definition varies
significantly across literature and current depressions classifications [4]. Ford and Williams [2] presented
a doline classification of six main types according to their forming process, whilst morphometric
attributes are additional characteristics to further subdefine dolines [5].
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Doline mapping plays a key role in the development of management strategies with a focus
on subsidence risk, land use planning and groundwater vulnerability [6–8]. Regarding the latter,
dolines in karst terrains exert great influence on vulnerability outcomes due to their hydrological
behavior, which allows a faster transport of pollutants from surface to water table. Doline patterns and
alignments also aid with inferences regarding subsurface karst development, such as epikarst and
conduit systems, due to their association with joints and faults [9,10]. Despite the importance of doline
mapping, their allocation either by fieldwork or imagery analysis is time consuming for large karst
areas. On the other hand, doline estimation from topographic maps is highly dependent on several
factors including map scale, doline size and contour interval [11].

Remote sensing and geographic information systems (GIS) are nowadays important tools to
analyze and study karst areas and landforms [12–14]. With the increase of available remote-sensing
data, several GIS-based processes for surface depression estimation have been proposed [15,16].
Automatic or semiautomatic depression mapping methods, based on digital elevation models (DEMs),
represent a great advantage against visual or manual delineation when study areas are considerable in
size or where vegetation is dense. Nevertheless, automated extraction of specific types of landforms
from DEMs still remains as a challenge [17]. High-resolution data does not always reflects better results,
as in the case of depression analysis. The number of depressions tends to increase when high-resolution
DEMs are applied, making necessary an extra analysis to eliminate artificial depressions. On the other
hand, coarser DEMs also affect depressions estimation since depressions smaller than the grid size
can be not defined. Therefore, effects of cell resolution or DEM accuracy on results must be always
considered [18].

Diverse schemas for doline estimation have been introduced and tested in multiple karst
areas [19,20]; as shown in Figure 1, the fill-difference method is the arithmetic procedure most utilized
as a base for doline mapping [9,21,22]. This fill-difference is based on the Fill tool, part of the ArcHydro
toolset of ArcGIS. The Fill algorithm elevates the value of DEM pixels representing depressions or
sinks (including those that are spurious) to create a hydrological “corrected” continuous surface [23].
To estimate depressions areas and depths, a subtraction between the original DEM and the filled DEM
is performed. The obtained DEM, representing depressions, is then converted into a binary raster
(1 = depression) to highlight depressions before performing a morphometric analysis to further classify
depressions as dolines or any other depression of interest.
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Figure 1. Basic workflow to estimate karst depressions. A depth threshold is commonly applied as
a parameter of the Fill algorithm [1,24] or near surface to eliminate shallow dolines. DEM refers to
digital elevation model.

The majority of literature apply a defined depth as a threshold, which is subjective and study
area-dependent. This threshold serves to decrease the number of spurious dolines from the surface.
Nevertheless, this approach may not define dolines being contained in larger depressions or located at
depths under the assigned threshold value, even if this threshold has demonstrated the best overall
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accuracy for a given area. To solve this problem, a new methodology is presented in this work
with the goal of allocating dolines at variable depths and improve doline mapping using DEMs in
large karst areas.

The new proposed method for dolines mapping is evaluated on a study area located in the
Yucatan Peninsula, an interesting karst area with unique features like “Cenotes” (open dolines exposing
water) and a semicircular doline alignment. This is a side-study derived from the IKAV project, part
of the INOWAS group, which aims to develop an integrated karst aquifer vulnerability approach.
Initially, four European groundwater vulnerability methodologies where applied in the Yucatan state
(hereinafter Yucatan) to determine the congruence between vulnerability outcomes and regional
features. The results showed a strong influence of some parameters on specific vulnerability categories;
dolines were presented as a key feature, resulting in high vulnerability rates according to different
methodologies [25]. Nevertheless, the current doline map of the region is based on contours, at 10-m
intervals, classified as depressions [26–28]; Yucatan being a nearly flat area, a considerable number
of dolines were not mapped due to such large intervals, affecting outcomes from groundwater
vulnerability maps. Therefore, an accurate doline mapping in Yucatan is imperative in order to define
areas of high doline density more efficiently due to its influence in groundwater vulnerability mapping.

A semiautomatic multidepth threshold approach (hereinafter MDTA) is proposed, taking
advantage of the multiple tools available in GIS software. Additionally, a filter based on
“depressions-containing depressions” (DCD), or nested dolines, is tested and included to decrease
the number of spurious dolines and to improve accuracy. After testing different scenarios and
parameters, the MDTA demonstrates higher accuracy, precision and sensitivity values in comparison
with single-depth thresholds.

2. Materials and Methods

2.1. Study Area

Yucatan (39,524 km2) is located in the south of Mexico and is the northernmost part of the Yucatan
peninsula, which includes two other Mexican states (Campeche and Quintana Roo) and the northern
part of the Central American countries of Belize and Guatemala. The peninsula is formed by an emerged
limestone platform of about 165,000 km2, in which groundwater flow is primarily dominated by
turbulent conduit flow due to a well-developed conduit system at variable scale ranges [29]. According
to Weidie [30], the dominant sediments in the Peninsula are limestone and dolomite from the Eocene
or younger epochs reaching thicknesses > 1500 m. Lugo-Hubp [26] divided the Yucatan peninsula into
two main morphological units according to morphology and stages of karst formation: A relatively
young area in the north where Neogene sedimentary rocks predominate with high number of dolines
and an older area in the south with Paleogene sedimentary rocks exposing little doline development
(Figure 2). Two important doline areas have been highlighted in Yucatan; the Ring of Cenotes and the
North-eastern Yucatan [27,28,31]. At the north of the peninsula a sedimentary basin was formed after
the impact of an asteroid at the end of the cretaceous [27].This sedimentary basin is hydrogeologically
delimited by the Ring of Cenotes. The Ring of Cenotes is a fringe of high doline density displaying
a semicircular alignment of about 180 km diameter [32]. The ring, acting as a groundwater divide due
to high conductivity, intercepts water flowing from South, discharging to the sea. This divergence in
flow can be the cause for the low development of karst features inside the sedimentary basin and the
considerable number of dolines delineating the crater rim. Doline distribution in other areas have
shown a strong relationship with tectonic structure rather than lithology based on correlations of
karst depressions distribution with gravity anomalies and topography [28]. The Ring of Cenotes is
a regional fault which development is associated to differential lithological compaction within the
sedimentary basin, a buried reef complex or impact breccia collapse [33]. The ring is also a boundary
between fractured limestone and the unfractured limestone inside the ring [27]. A broader lithology
description from the analysis of drilling cores, can be found in the work of Rebolledo Vieyra [34].
With the exception of the Ring of Cenotes, evolution of karst landforms in Yucatan is associated with
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tectonics and the fluctuation of sea level during the quaternary and previous epochs [26]. In the
case of the Northeast doline field, the influence of dynamic interactions between the limestone near
the coast and seawater seems to have triggered the high development of dolines due to limestone
dissolution [35]. Another important regional feature is the Sierrita de Ticul fault line [29]. This fault
acts as a flow barrier with hydraulic heads declining toward the northeast [36]; this could explain the
lack of dolines in the plain located at North of this fault line.
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Figure 2. The Yucatan peninsula geology. Neogene carbonates present a high number of dolines in
comparison with Paleogene areas due to more interaction between carbonates and sea level variations.
Southern limits of the peninsula are displayed as those presented by Bauer-Gottwein [29], in accordance
with Vinson [37] and López-Ramos [38].

In Yucatan, topography presents elevations above sea level varying from centimeters along the
coast to approximately 30 m inland with the exception of a hill area located at the southern part of
Yucatan where elevation is up to 205 m [39]. The flat topography of the region and considerable
karstification allow infiltration to act at fast rates without runoff generation [40]; this makes groundwater
the only source for water supply in Yucatan [41].

Data from the National Meteorological Service shows a mean annual precipitation of about
1100 mm/year in a seasonal pattern, with intensities varying from 10 to 20 mm/day [42]. Precipitation
also varies spatially; the coastal area in the northwest receives an average of 550 mm/year and is
thus relatively dry, whilst the Yucatan south eastern region receives up to 1500 mm/year. Yucatan
water balance is positive with an estimated recharge varying from 14% to 20% of the mean annual
precipitation [38–40].

Soils are generally absent or shallow with a thickness less than 7 cm for Lithosols and
Luvisols [43,44]. Rendzinas predominate covering approximately 46% of the Yucatan area according
to public maps [45]. Soil texture is variable, with coarse and fine soils distributed along Yucatan but
showing dominance of medium textures in central areas. Vegetation maps show deciduous forest to
prevail, with mangroves and sand dunes along the coastal area [45].

Dolines are a common feature in Yucatan and many of them intersect the shallow water table
exposing water. Doline density is variable from areas with several dolines per square kilometers
to several kilometers between them [46]. Diameters of dolines located in the Ring of Cenotes vary
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from 50 to 500 m with depths ranging from 2 to 120 m [47,48]. These values show agreement with
averages of 4900 mapped dolines displaying a mean diameter of 104 m with a mean area of 8600 m2.
However, smaller dolines, clearly visible from imagery, are dispersed in Yucatan. Contour maps at
1:50,000 scale, publicly available from the National Institute of Geography and Statistics (INEGI),
are the base for the latest doline map of the region (Figure 3a). From contours maps, Aguilar [49]
performed a morphometric analysis on contours defined as depressions and water bodies (perennial
and intermittent) to categorize dolines (Figure 3b). However, the contour maps at 10 m intervals tend
to overlook shallow or small dolines. Also, inaccuracies in contours classification can derive in areas
without dolines, thus affecting further analysis. Therefore, methodologies to dolines mapping based
on DEMs can aid on doline mapping without extensive fieldwork. As the area is mostly a flat plain
with elevations gradually increasing southward, the use of the fill-difference method with a single
threshold to estimate dolines is potentially inappropriate since dolines contained by larger depression
areas will not be mapped. To address this problem the MDTA is proposed. This method was tested in
a 652 km2 study area located in North-eastern Yucatan and evaluated against 545 dolines mapped by
visual inspection of high-resolution imagery (0.3 m resolution). It is important to note that the study
area contains just 144 dolines according the 1:50,000 contour maps, where 117 coincide with those
mapped from imagery analysis. Inconsistencies are associated with doline size since those dolines
holding an area smaller than 50 m in diameter are not mapped (Figure 3c).Remote Sens. 2019, 11, x FOR PEER REVIEW 6 of 15 
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Figure 3. (a) Elevation, dolines distribution from contour maps at 1:50,000 scale and the study area in
Yucatan; notice the evident lack of data in a central area surrounded by a high doline density due to
probable misclassification; (b) a doline correctly mapped by contour maps in the study area; (c) one of
several dolines not included by contour maps.
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2.2. Material and Methods

The suggested method for doline mapping in nearly flat karst terrains is a semiautomatic approach
based solely on GIS software. In this work, ArcGIS version 10.5 is used and the ArcBruTile extension
served to display Google Earth imagery at high resolution directly in ArcGIS. A digital-elevation
model with 5 × 5-m grids, derived from light detection and ranging data (LiDAR) with 1 m of vertical
resolution, was obtained from public databases for this study [50]. The DEM in raster format was
corrected for no data values prior to being run in our analysis. Data correction was performed by filling
null data with averages of the surrounding grids by the moving window method. In this paper, doline
refers to any enclosed depression falling into defined morphometric attributes without consideration
of their development characteristics.

The proposed MDTA is based on the fill-difference method to highlight depression areas but,
unlike previous works, we suggest the use of multiple depth intervals, statistically classified, to improve
dolines mapping. In other words, this method defines dolines at different depths to subsequently merge
those which overlap to avoid mapping the same doline at variable depths. The MDTA consists of four
steps: Depressions estimation, depressions classification, vectorization and filtering. The use of the
model builder function of ArcGIS simplifies the implementation of the method if some parameters in
the calculation, for example the number of intervals, minimum polygon area and minimum Gravelius
coefficient, are previously defined.

As displayed in Figure 4, in step one, a DEM without “No data” values is modified into
a depression-free DEM applying the Fill algorithm (1). Subtraction of the original DEM from the filled
DEM by Raster calculator (2) results in a new raster displaying depressions. Transformation of the
depression raster into binary data to differentiate depressions from no-depression grids is no longer
necessary due to the application of an optimization method in the next step.

Step two aims to classify depressions into multiple intervals utilizing the Slice algorithm (3).
The Jenks optimization method [51] was chosen in order to reduce the variance between values
contained in a given depression interval and to increase the variance between different intervals; this
classification serves to highlight depressions contained in larger depressions including those that are
shallow. The number of optimized depth classes by Jenks can be adjusted according the depressions
map range; in this work, a 10-class optimization was defined. To prepare our depression raster to be
converted into a refined polygon shape file, Contour (4) and Smooth line (5) tools were run.

Creation of polygons, deleting contours representing hills and the calculation of morphometric
parameters are part of step three. Polygons are vectorized from contours executing the Feature to
polygon (6) algorithm; therefore, polygons will represent depressions shape at ten different depths
(Jenks classes). A closed contour typifies a peak if it holds the same value as the contour containing it.
The Dissolve (7) tool eliminates peaks inside a closed depression and must be applied to each Jenks
class separately. The next task is to calculate a compactness coefficient for each polygon in a new
field created by the Add a new field (8) tool. The Gravelius coefficient estimates the ratio between the
perimeter of a given watershed (or doline) and the circumference of a circle with the same area as the
studied watershed [52]; this is expressed by the equation:

Gc = P/(2
√
πA) = 0.28* P/(

√
A) (1)

where Gc denotes the Gravelius coefficient, P is the perimeter and A is the area of the studied
two-dimensional landform. In so far as Gc approaches 1, the watershed holds a more circular
shape. The circularity index has been widely used as morphometric estimator for watersheds and
dolines [53,54]. To settle a maximum Gravelius value, a statistical morphometric analysis was run for
the 545 dolines mapped by imagery. In this work, depressions with Gc ≤ 1.04 are categorized as dolines.
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Step four focuses on the filtering of polygons by morphometric attributes and location to define
dolines. Using the Select by Attributes (9) tool, polygons with values of Gc > 1.04 are eliminated with
the Delete Features (10) tool. A minimum area of 900 m2 was chosen to classify depressions as dolines,
to be able to compare our results with outcomes of the MDTA using a DEM of 30×30-m resolution
(manuscript in preparation). Finally, a location filter was applied to decrease uncertainty. Using the
Select by location (11) data management tool, dolines containing dolines were selected and saved
in a final shapefile. This filter was included in the MDTA after testing two scenarios with different
settings for the Jenks classification. To avoid overestimations due to the possibility of mapping the
same doline at different depths, the Merge (12) and Dissolve (13) tools are applied once more.

In this work, three scenarios were applied. Scenario 1 analyzes depressions classified statistically
by Jenks intervals with base 0; scenario 2 eliminates depressions of less than 2 m, or Jenks base 2,
aiming to eliminate spurious dolines; finally, scenario 3 implements the DCD filter aiming to reassert
true dolines.

2.3. Sensitivity and Accuracy

A binary analysis to test accuracy overlapped estimated dolines over 545 dolines mapped by
high-resolution imagery. Sensitivity (true positives rate), precision (positive prediction value) and
accuracy were calculated for single-depth thresholds and the MDTA in three scenarios according to:

Sensitivity = TP/(TP + FN) (2)

Precision = TP/(TP + FP) (3)

Accuracy = TP/(TP + FP + FN) (4)

where TP is the number of estimated dolines matching those from imagery analysis (true positives);
FP are those estimated without match (false positives) and FN are dolines from imagery which are not
overlapped by estimated ones (false negatives).

It is important to mention that unknown dolines, mainly in vegetation covered areas, which
we were unable to map by visual interpretation, are likely to exist. This directly affects the accuracy
analysis since estimated dolines not matching those from imagery were automatically considered
false positives.

3. Results and Discussion

Application of the Slice algorithm classifying Jenks at base 0, or scenario 1, arose in a considerable
number of estimated dolines, mostly for intervals near the surface. The effects of this overestimation
were clearer for the MDTA with more than 4000 probable dolines with around 3500 categorized as
FP. A random selection of 200 dolines from the MDTA served as a subsample to check their match
with imagery; more than 180 dolines were not visible even in areas with sparse vegetation. In general,
MDTA for scenario 1 performed poorly with an accuracy of 12% due to the high number of FP.
To minimize this probable overestimation, the model was run again setting a base of 2 m for the Jenks
classification, or scenario 2. Jenks base for this scenario was defined after the analysis of depressions
depth on the area. This procedure aimed to decrease the number of shallow dolines near the surface
and improve accuracy.

The MDTA performed better as estimated dolines and FP decreased by 43% and 68%, respectively,
from their initial numbers. Setting against single thresholds and MDTA for both scenarios, the latter
displayed the highest TP rate with a constant value of 472 matching dolines in both cases. This indicates
that a Jenks classification starting at 2-m depth eliminates a considerable amount of shallow dolines
without influencing TP. Therefore, accuracy was improved from 12% to 39% with sensitivity remaining
at 80% as shown in Figure 5. Despite this upgrade, the MDTA accuracy was still lower than those
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displayed by some single thresholds. In this case, employment of a single threshold seemed to be more
plausible since the highest accuracy was found for a depth of 3.5 m with 48%.
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Figure 5. Binary analysis of two Jenks classification scenarios from the overlap of estimated dolines
against real dolines mapped by high-resolution imagery. TP is the number of estimated dolines matching
those from imagery analysis (true positives); FP are those estimated without match (false positives) and
FN are dolines from imagery which are not overlapped by estimated ones (false negatives).

With estimated dolines still outnumbering those from imagery by more than 50% in scenario 2 and
the overlook of dolines under the assigned depth threshold (Figure 6), an extra process to filter spurious
dolines was necessary. When analyzing single threshold patterns, it was noticed that estimated, TP and
FP show a positive trend with regard to depth; the deeper the doline, the more likely to be mapped
and to be true. According to this statement, a filter of depressions-containing depressions (DCD) was
applied as scenario 3.

Incorporation of the DCD filter improved the MDTA performance for a final accuracy of 63%
(Table 1). True positives remained almost constant in all scenarios. This supports the idea of the DCD
as a filter to decrease the number of spurious dolines, hence the number of FP, without affecting TP.
Despite a minimum decline in sensitivity, precision and accuracy show improvements of 29% and
24%, respectively. Unlike scenarios 1 and 2, no single threshold displays a better accuracy than MDTA.
In Table 1, a 2.9-m depth displays the best accuracy with 47%. Nevertheless, this value is mostly
triggered by a low number of estimated dolines compared with those from imagery, rather than as the
result of a good match.
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Figure 6. An example of the best-accuracy threshold to define dolines. According scenario 2,
the best-accuracy threshold (2.9-m depth) is appropriate to delineate depression 1 but fails to map
a doline contained in depression 2 since its shape, at this given depth, is highly irregular to be categorized
as a doline. Notice the multiple contours, Jenks classes with estimated thresholds depth, surrounding
dolines (in yellow), supporting the implementation of the MDTA and a depressions-containing
depression (DCD) filter. Depth in the profile figure was exaggerated to visualize dolines.

Table 1. Single thresholds derived from Jenks base 2 and results of the MDTA with DCD filter
performance (scenario 3).

Jenks
Class

Threshold
Depth

Estimated
Dolines

Dolines from
Imagery TP FP FN Sensitivity

%
Precision

%
Accuracy

%

1 2.4 454 545 275 179 270 50 61 38

2 2.9 406 545 305 101 240 56 75 47

3 3.5 356 545 277 79 268 51 78 44

4 4.1 283 545 245 38 300 45 87 42

5 4.8 253 545 213 40 332 39 84 36

6 5.6 155 545 141 14 404 26 91 25

7 6.5 86 545 80 6 465 15 93 15

8 7.7 34 545 32 2 513 06 94 06

9 9.45 19 545 18 1 526 03 98 03

10 14.7 22 545 21 1 523 04 98 04

MDTA Variable 655 545 464 191 81 85 71 63

Our results indicate efficiency of the MDTA for doline mapping, especially when Jenks with
a base >0 and the DCD filter are applied. However, more investigations regarding Jenks starting base
for depth and number of classification are suggested to verify their influence on other karst areas.
The DCD seems to be a precise step to reassert true dolines and decrease uncertainty of false positives.
Table 2 summarizes results obtained from three MDTA scenarios highlighting the influence of estimated
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dolines on final accuracy and how application of the DCD filter improved it. The impossibility of
allocating dolines in dense vegetation areas by high-resolution imagery creates uncertainty of FP that
could be in reality TP.

Table 2. Summary of the three MDTA scenarios.

MDTA Estimated
Dolines

Dolines from
Imagery TP FP FN Sensitivity

%
Precision

%
Accuracy

%

Scenario 1 4056 545 479 3577 66 88 12 12

Scenario 2 1122 545 472 650 73 87 42 39

Scenario 3 655 545 464 191 81 85 71 63

It is also important to consider the repercussions of high-resolution data in the analysis; the
massive number of estimated depressions, mostly at shallow depths, directly affects accuracy. This is
a consequence of the superior level of detail of DEM derived from LiDAR, therefore, application of the
MDTA with coarser resolution DEMs is recommended as further analysis. DEM-derived attributes
like slope or topographic position index (TPI) serving either as additional features or as base to map
out dolines, could present some problems when high-resolution DEMs are used. Small details at
surface-level are more evident, obstructing dolines identification. An advantage of this method is that
no other DEM-derived data is necessary for the analysis.

In Yucatan, some dolines hold water during the rainy season; water residence time in dolines,
characterized as intermittent water bodies, is expected to be short due to karstification and the high
evapotranspiration rates. Those identified as perennial intersect the water table of which variation is in
the range of centimeters due to the characteristics mentioned before. However, precipitation must be
considered as an influencing factor for dolines mapping since water table fluctuations during wet-dry
seasons can change the depth and shape of depressions. Acquisition date of the data is fundamental if
the method is applied in areas with high water table variations.

Our results indicate an underestimation of dolines derived from contour maps. Therefore,
digitalized maps from INEGI cannot be taken as an accurate source to display karst features to be
used in further studies where doline density is a key feature. The scale of the original map and the
near flat topography affects the location of dolines with depths of less than 10 m and areas smaller
than 50 m of diameter. Also, dolines can be excluded due to human errors during the digitalizing
process as we can see on Figure 3. Comparing the 665 dolines mapped by the MDTA against the 144
from contour maps in an area of 652 km2 reflects a difference in doline density of 0.79 dolines/km2.
This difference is considerable when doline density is imperative as in the case of groundwater
vulnerability analysis. Use of DEMs to estimate dolines seems more plausible. However, depressions
depth must be discretized in intervals, statistically classified, to define dolines to increase the accuracy.

4. Conclusions

In this work, we propose a new approach based solely on GIS tools for doline mapping utilizing
a DEM derived from LiDAR with 5-m resolution. The MDTA is composed of four steps including the
fill-difference method to estimate depressions. Application of statistics to segregate depressions into
multiple classes enhances differences between depth intervals, thereby expediting the allocation of
dolines contained in larger depressions. In addition to morphological filters like area or circularity
index, a “depressions-containing depressions” filter (DCD) was also tested and included as an essential
part of the method.

A total of 665 dolines were mapped and compared against 545 located by high-resolution imagery
with 464 matching spatially. The MDTA demonstrates an accuracy of 63% for doline mapping.
This moderate value is strongly driven by FP due to the impossibility of allocating all existing dolines
by high-resolution imagery in dense vegetation areas; therefore, a considerable amount of FP could
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be in reality TP, which would display an increment in accuracy. If we contemplate the satisfying
MDTA performance according to its sensitivity of 85%, the methodology is able to map out dolines
substantially better than those utilizing a single threshold. Sensitivity, precision and accuracy show
equilibrated percentages, highlighting the MDTA method as an excellent option for doline mapping
in karst landscapes. Furthermore, this work demonstrates the current underestimation of dolines in
Yucatan by previous works after comparing the results with dolines derived from 1:50,000 contour
maps in a 652 km2 study area. However, LiDAR data covering Yucatan is sparse encouraging testing
of the MDTA method with lower- and higher- resolution DEMs.
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