Classifying Major Explosions and Paroxysms at Stromboli Volcano (Italy) from Space
Abstract
:1. Introduction
2. Materials
2.1. Record of the Most Powerful Explosions
2.2. Satellite Data Sources
3. Methods
- Feature extraction
- K-means algorithm
3.1. Feature Extraction
3.1.1. Land Surface Temperature
3.1.2. Explosive Volcanic Deposit
3.1.3. Plume Height
3.2. K-Means Clustering
4. Results
4.1. The 3 July 2019 Paroxysm
4.2. The 10 November 2020 Major Explosion
4.3. Explosive Events Classification
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosi, M.; Bertagnini, A.; Landi, P. Onset of the persistent activity at Stromboli Volcano (Italy). Bull. Volcanol. 2000, 62, 294–300. [Google Scholar] [CrossRef]
- Di Traglia, F.; Calvari, S.; D’Auria, L.; Nolesini, T.; Bonaccorso, A.; Fornaciai, A.; Esposito, A.; Cristaldi, A.; Favalli, M.; Casagli, N. The 2014 effusive eruption at Stromboli: New insights from in-situ and remote sensing measurements. Remote Sens. 2018, 10, 2035. [Google Scholar] [CrossRef] [Green Version]
- Calvari, S.; Di Traglia, F.; Ganci, G.; Giudicepietro, F.; Macedonio, G.; Cappello, A.; Nolesini, T.; Pecora, E.; Bilotta, G.; Centorrino, V.; et al. Overflows and Pyroclastic Density Currents in March-April 2020 at Stromboli Volcano Detected by Remote Sensing and Seismic Monitoring Data. Remote Sens. 2020, 12, 3010. [Google Scholar] [CrossRef]
- Rosi, M.; Bertagnini, A.; Harris, A.J.L.; Pioli, L.; Pistolesi, M.; Ripepe, M. A case history of paroxysmal explosion at Stromboli: Timing and dynamics of the April 5, 2003 event. Earth Planet. Sci. Lett. 2006, 243, 594–606. [Google Scholar] [CrossRef]
- Areu-Rangel, O.S.; Bonasia, R.; Di Traglia, F.; Del Soldato, M.; Casagli, N. Flood Susceptibility and Sediment Transport Analysis of Stromboli Island after the 3 July 2019 Paroxysmal Explosion. Sustainability 2020, 12, 3268. [Google Scholar] [CrossRef] [Green Version]
- Giordano, G.; De Astis, G. The summer 2019 basaltic Vulcanian eruptions (paroxysms) of Stromboli. Bull. Volcanol. 2021, 83, 1. [Google Scholar] [CrossRef]
- Calvari, S.; Giudicepietro, F.; Di Traglia, F.; Bonaccorso, A.; Macedonio, G.; Casagli, N. Variable Magnitude and Intensity of Strombolian Explosions: Focus on the Eruptive Processes for a First Classification Scheme for Stromboli Volcano (Italy). Remote Sens. 2021, 13, 944. [Google Scholar] [CrossRef]
- Barberi, F.; Rosi, M.; Sodi, A. Volcanic hazard assessment at Stromboli based on review of historical data. Acta Vulcanol. 1993, 3, 173–187. [Google Scholar]
- Walker, G.P.L. Explosive volcanic eruptions—A new classification scheme. Geol. Rudsch. 1973, 62, 431–446. [Google Scholar] [CrossRef]
- Harris, A.J.L.; Dehn, J.; Calvari, S. Lava effusion rate definition and measurement: A review. Bull. Volcanol. 2007. [Google Scholar] [CrossRef]
- Giudicepietro, F.; López, C.; Macedonio, G.; Alparone, S.; Bianco, F.; Calvari, S.; De Cesare, W.; Delle Donne, D.; Di Lieto, B.; Esposito, A.M.; et al. Geophysical precursors of the July-August 2019 paroxysmal eruptive phase and their implications for Stromboli volcano (Italy) monitoring. Sci. Rep. 2020, 10, 10296. [Google Scholar] [CrossRef]
- Andronico, D.; Corsaro, R.A.; Cristaldi, A.; Polacci, M. Characterizing high energy explosive eruptions at Stromboli volcano using multidisciplinary data: An example from the 9 January 2005 explosion. J. Volcanol. Geotherm. Res. 2008, 176, 541–550. [Google Scholar] [CrossRef]
- Calvari, S.; Büttner, R.; Cristaldi, A.; Dellino, P.; Giudicepietro, F.; Orazi, M.; Peluso, R.; Spampinato, L.; Zimanowski, B.; Boschi, E. The 7 September 2008 Vulcanian explosion at Stromboli volcano: Multi-parametric characterization of the event and quantification of the ejecta. J. Geophys. Research. Solid Earth 2012, 117, B05201. [Google Scholar] [CrossRef]
- Bertagnini, A.; Coltelli, M.; Landi, P.; Pompilio, M.; Rosi, M. Violent explosions yield new insights into dynamics of Stromboli volcano. EOS Trans. Am. Geophys. Union 1999, 80, 633–636. [Google Scholar] [CrossRef]
- Andronico, D.; Pistolesi, M. The November 2009 paroxysmal explosions at Stromboli. J. Volcanol. Geotherm. Res. 2010, 196, 120–125. [Google Scholar] [CrossRef]
- Rittmann, A. Der ausbruch des Stromboli am 11 September 1930. Z. Vulkanol. 1931, 14, 47–77. [Google Scholar]
- Calvari, S.; Spampinato, L.; Lodato, L. The 5 April 2003 vulcanian paroxysmal explosion at Stromboli volcano (Italy) from field observations and thermal data. J. Volcanol. Geotherm. Res. 2006, 149, 160–175. [Google Scholar] [CrossRef]
- Calvari, S.; Lodato, L.; Steffke, A.; Cristaldi, A.; Harris, A.J.L.; Spampinato, L.; Boschi, E. The 2007 Stromboli flank eruption: Chronology of the events, and effusion rate measurements from thermal images and satellite data. J. Geophys. Research. Solid Earth 2010, 115, B04201. [Google Scholar] [CrossRef] [Green Version]
- Bonaccorso, A.; Calvari, S.; Linde, A.; Sacks, S.; Boschi, E. Dynamics of the shallow plumbing system investigated from borehole strainmeters and cameras during the 15 March 2007 Vulcanian paroxysm at Stromboli volcano. Earth Planet. Sci. Lett. 2012, 357–358, 249–256. [Google Scholar] [CrossRef]
- Pistolesi, M.; Rosi, M.; Pioli, L.; Renzulli, A.; Bertagnini, A.; Andronico, D. The Paroxysmal Event and Its Deposits. In The Stromboli Volcano: An Integrated Study of the 2002–2003 Eruption; Geophysical Monograph Series; Calvari, S., Inguaggiato, S., Puglisi, G., Ripepe, M., Rosi, M., Eds.; AGU: Washington, DC, USA, 2008; Volume 182, pp. 317–330. [Google Scholar]
- Pistolesi, M.; Delle Donne, D.; Pioli, L.; Rosi, M.; Ripepe, M. The 15 March 2007 explosive crisis at Stromboli volcano, Italy: Assessing physical parameters through a multidisciplinary approach. J. Geophys. Res. Solid Earth. 2011, 116, B12206. [Google Scholar] [CrossRef]
- Giudicepietro, F.; Calvari, S.; Alparone, S.; Bianco, F.; Bonaccorso, A.; Bruno, V.; Caputo, T.; Cristaldi, A.; D’Auria, L.; De Cesare, W.; et al. Integration of Ground-Based Remote-Sensing and In Situ Multidisciplinary Monitoring Data to Analyze the Eruptive Activity of Stromboli Volcano in 2017–2018. Remote Sensing. 2019, 11, 1813. [Google Scholar] [CrossRef] [Green Version]
- Calvari, S.; Spampinato, L.; Lodato, L.; Harris, A.J.L.; Patrick, M.R.; Dehn, J.; Burton, M.R.; Andronico, D. Chronology and complex volcanic processes during the 2002–2003 flank eruption at Stromboli volcano (Italy) reconstructed from direct observations and surveys with a handheld thermal camera. J. Geophys. Research. Solid Earth 2005, 110, B02201. [Google Scholar] [CrossRef] [Green Version]
- Calvari, S.; Intrieri, E.; Di Traglia, F.; Bonaccorso, A.; Casagli, N.; Cristaldi, A. Monitoring crater-wall collapse at active volcanoes: A study of the 12 January 2013 event at Stromboli. Bull. Volcanol. 2016, 78, 39. [Google Scholar] [CrossRef]
- Di Traglia, F.; Nolesini, T.; Ciampalini, A.; Solari, L.; Frodella, W.; Bellotti, F.; Fumagalli, A.; De Rosa, G.; Casagli, N. Tracking morphological changes and slope instability using spaceborne and ground-based SAR data. Geomorphology 2018, 300, 95–112. [Google Scholar] [CrossRef]
- Bonaccorso, A.; Calvari, S.; Garfì, G.; Lodato, L.; Patané, D. December 2002 flank failure and tsunami at Stromboli volcano inferred by volcanological and geophysical observations. Geophys. Res. Lett. 2003, 30, 1941–1944. [Google Scholar] [CrossRef]
- Di Roberto, A.; Bertagnini, A.; Pompilio, M.; Bisson, M. Pyroclastic density currents at Stromboli volcano (Aeolian Islands, Italy): A case study of the 1930 eruption. Bull. Volcanol. 2014, 76, 827. [Google Scholar] [CrossRef]
- Rosi, M.; Pistolesi, M.; Bertagnini, A.; Landi, P.; Pompilio, M.; Di Roberto, A. Stromboli volcano, Aeolian Islands (Italy): Present eruptive activity and hazards. Geol. Soc. Lond. 2013, 37, 473–490. [Google Scholar] [CrossRef]
- Bevilacqua, A.; Bertagnini, A.; Pompilio, M.; Landi, P.; Del Carlo, P.; Di Roberto, A.; Aspinall, W.; Neri, A. Major explosions and paroxysms at Stromboli (Italy): A new historical catalog and temporal models of occurrence with uncertainty quantification. Sci. Rep. 2020, 10, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Ganci, G.; Cappello, A.; Bilotta, G.; Del Negro, C. How the variety of satellite remote sensing data over volcanoes can assist hazard monitoring efforts: The 2011 eruption of Nabro volcano. Remote Sens. Environ. 2020, 236, 111426. [Google Scholar] [CrossRef]
- Folch, A.; Costa, A.; Macedonio, G. FALL3D: A computational model for transport and deposition of volcanic ash. Comput. Geosci. 2009, 35, 1334–1342. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Romagnoli, C. Characteristics and morphological evolution of the Aeolian volcanoes from the study of submarine portions. Geol. Soc. Lond. Mem. 2013, 37, 13–26. [Google Scholar] [CrossRef]
- Schmetz, J.; Pili, P.; Tjemkes, S.; Just, D.; Kerkmann, J.; Rota, S.; Ratier, A. An Introduction to Meteosat Second Generation (MSG). Bull. Am. Meteorol. Soc. 2002, 83, 977–992. [Google Scholar] [CrossRef]
- Karamanolakis, G.; Hsu, D.; Gravano, L. Weakly Supervised Attention Networks for Fine-Grained Opinion Mining and Public Health; Association for Computational Linguistics (ACL): Stroudsburg, PA, USA, 2019; pp. 1–10. [Google Scholar]
- Corradino, C.; Bilotta, G.; Cappello, A.; Fortuna, L.; Del Negro, C. Combining Radar and Optical Satellite Imagery with Machine Learning to Map Lava Flows at Mount Etna and Fogo Island. Energies 2021, 14, 197. [Google Scholar] [CrossRef]
- Corradino, C.; Ganci, G.; Cappello, A.; Bilotta, G.; Hérault, A.; Del Negro, C. Mapping Recent Lava Flows at Mount Etna Using Multispectral Sentinel-2 Images and Machine Learning Techniques. Remote Sens. 2019, 11, 1916. [Google Scholar] [CrossRef] [Green Version]
- Guyon, I.; Elisseeff, A. An Introduction to Feature Extraction. In Feature Extraction; Studies in Fuzziness and Soft Computing; Guyon, I., Nikravesh, M., Gunn, S., Zadeh, L.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 207. [Google Scholar] [CrossRef] [Green Version]
- Janssens, O.; Van de Walle, R.; Loccufier, M.; Van Hoecke, S. Deep learning for infrared thermal image based machine health monitoring. IEEE/ASME Trans. Mechatron. 2017, 23, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Cárdenas-Peña, D.; Orozco-Alzate, M.; Castellanos-Dominguez, G. Selection of time-variant features for earthquake classification at the Nevado-del-Ruiz volcano. Comput. Geosci. 2013, 51, 293–304. [Google Scholar] [CrossRef]
- Aiuppa, A.; Burton, M.; Allard, P.; Caltabiano, T.; Giudice, G.; Gurrieri, S.; Liuzzo, M.; Salerno, G. First observational evidence for the CO2-driven origin of Stromboli’s major explosions. Solid Earth 2011, 2, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Métrich, N.; Bertagnini, A.; Pistolesi, M. Paroxysms at Stromboli Volcano (Italy): Source, Genesis and Dynamics. Front. Earth Sci. 2021, 9, 593339. [Google Scholar] [CrossRef]
- Andronico, D.; Del Bello, E.; D’Oriano, C.; Landi, P.; Pardini, F.; Scarlato, P.; de’ Michieli Vitturi, M.; Taddeucci, J.; Cristaldi, A.; Ciancitto, F.; et al. Uncovering the eruptive patterns of the 2019 double paroxysm eruption crisis of Stromboli volcano. Nat. Commun. 2021, 12, 4213. [Google Scholar] [CrossRef] [PubMed]
- Burton, M.R.; Calvari, S.; Spampinato, L.; Lodato, L.; Pino, N.A.; Marchetti, E.; Murè, F. Volcanic and Seismic Activity at Stromboli Preceding the 2002–2003 Eruption. In The Stromboli Volcano: An Integrated Study of the 2002–2003 Eruption; Geophysical Monograph Series; Calvari, S., Inguaggiato, S., Puglisi, G., Ripepe, M., Rosi, M., Eds.; AGU: Washington, DC, USA, 2008; Volume 182, pp. 93–104. [Google Scholar]
- Aiuppa, A.; Bertagnini, A.; Métrich, N.; Moretti, R.; Di Muro, A.; Liuzzo, M.; Tamburello, G. A model of degassing for Stromboli volcano. Earth Planet. Sci. Lett. 2010, 295, 195–204. [Google Scholar] [CrossRef]
- Wan, Z.; Dozier, J. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans. Geosci. Remote Sens. 1996, 34, 892–905. [Google Scholar]
- Rajasekar, U.; Weng, Q. Urban heat island monitoring and analysis using a non-parametric model: A case study of Indianapolis. ISPRS J. Photogramm. Remote Sens. 2009, 64, 86–96. [Google Scholar] [CrossRef]
- Wadge, G.; Cole, P.; Stinton, A.; Komorowski, J.C.; Stewart, R.; Toombs, A.C.; Legendre, Y. Rapid topographic change measured by high-resolution satellite radar at Soufriere Hills Volcano, Montserrat: 2008–2010. J. Volcanol. Geotherm. Res. 2011, 199, 142–152. [Google Scholar] [CrossRef]
- Di Traglia, F.; Intrieri, E.; Nolesini, T.; Bardi, F.; Del Ventisette, C.; Ferrigno, F.; Frangioni, S.; Frodella, W.; Gigli, G.; Lotti, A.; et al. The ground-based InSAR monitoring system at Stromboli volcano: Linking changes in displacement rate and intensity of persistent volcanic activity. Bull. Volcanol. 2014, 76, 786. [Google Scholar] [CrossRef]
- Arnold, D.W.D.; Biggs, J.; Wadge, G.; Mothes, P. Using satellite radar amplitude imaging for monitoring syn-eruptive changes in surface morphology at an ice-capped stratovolcano. Remote Sens. Environ. 2018, 209, 480–488. [Google Scholar] [CrossRef] [Green Version]
- Pinel, V.; Poland, M.; Hooper, A. Volcanology: Lessons learned from Synthetic Aperture Radar imagery. J. Volcanol. Geotherm. Res. 2014, 289, 81–113. [Google Scholar] [CrossRef]
- Dierking, W. Quantitative roughness characterization of geological surfaces and implications for radar signature analysis. IEEE Trans. Geosci. Remote Sens. 1999, 37, 2397–2412. [Google Scholar] [CrossRef] [Green Version]
- Wadge, G.; Scheuchl, B.; Stevens, N.F. Spaceborne Radar Measurements of the Eruption of Soufriere Hills Volcano, Montserrat. In The Eruption of the Soufriére Hills Volcano, Montserrat, from 1995 to 1999; Druitt, T.H., Kolelaar, B.P., Eds.; Geological Society London Memoirs: London, UK, 2002; Volume 21, pp. 583–594. [Google Scholar] [CrossRef]
- Rignot, E.J.; van Zyl, J.J. Change detection techniques for ERS-1 SAR data. IEEE Trans. Geosci. Remote Sens. 1993, 31, 896–906. [Google Scholar] [CrossRef] [Green Version]
- Bovolo, F.; Bruzzone, L. A Context-Sensitive Technique Based on Support Vector Machines for Image Classification. In Pattern Recognition and Machine Intelligence; PReMI, 2005; Lecture Notes in Computer Science; Pal, S.K., Bandyopadhyay, S., Biswas, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3776. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, A.; Prati, C.; Rocca, F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry, IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [Google Scholar] [CrossRef] [Green Version]
- Hooper, A.; Zebker, H.; Segal, P.; Kampes, B. New method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett. 2004, 31, L23611. [Google Scholar] [CrossRef]
- Qiu, F.; Berglund, J.; Jensen, J.R.; Thakkar, P.; Ren, D. Speckle noise reduction in SAR imagery using a local adaptive median filter. GIScience Remote Sens. 2004, 41, 244–266. [Google Scholar] [CrossRef] [Green Version]
- Sparks, R.S.J.; Bursik, M.I.; Carey, S.N.; Gilbert, J.S.; Glaze, L.S.; Sigurdsson, H.; Woods, A.W. Volcanic Plumes. John Wiley & Sons: Chichester, UK, 1997; p. 574. ISBN 0-471-93901-3. [Google Scholar]
- Corradini, S.; Guerrieri, L.; Stelitano, D.; Salerno, G.; Scollo, S.; Merucci, L.; Prestifilippo, M.; Musacchio, M.; Silvestri, M.; Lombardo, V.; et al. Near real-time monitoring of the Christmas 2018 Etna eruption using SEVIRI and products validation. Remote Sens. 2020, 12, 1336. [Google Scholar] [CrossRef] [Green Version]
- Calvari, S.; Bilotta, G.; Bonaccorso, A.; Caltabiano, T.; Cappello, A.; Corradino, C.; Del Negro, C.; Ganci, G.; Neri, M.; Pecora, E.; et al. The VEI 2 Christmas 2018 Etna eruption: A small but intense eruptive event or the starting phase of a larger one? Remote Sens. 2020, 12, 905. [Google Scholar] [CrossRef] [Green Version]
- Grainger, R.G.; Peters, D.M.; Thomas, G.E.; Smith, A.J.A.; Siddans, R.; Carboni, E.; Dudhia, A. Measuring volcanic plume and ash properties from space. Geol. Soc. Lond. Spec. Publ. 2013, 380, 293–320. [Google Scholar] [CrossRef] [Green Version]
- Gouhier, M.; Deslandes, M.; Guéhenneux, Y.; Hereil, P.; Cacault, P.; Josse, B. Operational Response to Volcanic Ash Risks Using HOTVOLC Satellite-Based System and MOCAGE-Accident Model at the Toulouse VAAC. Atmosphere 2020, 11, 864. [Google Scholar] [CrossRef]
- Pavolonis, M.J.; Sieglaff, J. GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document for Volcanic Ash (Detection and Height); Version 3.0; NOAA NESDIS, Cent. for Satell. Appl. and Res.: College Park, MD, USA, 2012; 71p. [Google Scholar]
- Aghabozorgi, S.; Shirkhorshidi, A.S.; Wah, T.Y. Time-series clustering–A decade review. Inf. Syst. 2015, 53, 16–38. [Google Scholar] [CrossRef]
- Berkhin, P. A Survey of Clustering Data Mining Techniques. In Grouping Multidimensional Data; Springer: Berlin/Heidelberg, Germany, 2006; pp. 25–71. [Google Scholar]
- Di Giuseppe, M.G.; Troiano, A.; Patella, D.; Piochi, M.; Carlino, S. A geophysical k-means cluster analysis of the Solfatara-Pisciarelli volcano-geothermal system, Campi Flegrei (Naples, Italy). J. Appl. Geophys. 2018, 156, 44–54. [Google Scholar] [CrossRef]
- MacQueen, J. Some Methods for Classification and Analysis of Multivariate Observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical STATISTICS and Probability, University of California Press, Oakland, CA, USA; 1967; Volume 1, pp. 281–297. [Google Scholar]
- Arthur, D.; Vassilvitskii, S. K-means++: The Advantages of Careful Seeding; Technical Report; University of Stanford: Stanford, CA, USA, 2006; pp. 1–11. [Google Scholar]
- Lloyd, S.P. Least squares quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 129–137. [Google Scholar] [CrossRef]
- Singh, D.; Singh, B. Investigating the impact of data normalization on classification performance. Appl. Soft Comput. 2020, 97, 105524. [Google Scholar] [CrossRef]
- Girona, T.; Realmuto, V.; Lundgren, P. Large-scale thermal unrest of volcanoes for years prior to eruption. Nat. Geosci. 2021, 14, 238–241. [Google Scholar] [CrossRef]
- Viccaro, M.; Cannata, A.; Cannavò, F.; De Rosa, R.; Giuffrida, M.; Nicotra, E.; Petrelli, M.; Sacco, G. Shallow conduit dynamics fuel the unexpected paroxysms of Stromboli volcano during the summer 2019. Sci. Rep. 2021, 11, 266. [Google Scholar] [CrossRef] [PubMed]
Number | Event | Class | References |
---|---|---|---|
1 | 07/03/2018 12:48:13 | ME | INGV bulletin, Bevilacqua et al. [29] |
2 | 18/03/2018 19:27:28 | ME | INGV bulletin, Bevilacqua et al. [29] |
3 | 24/04/2018 09:05:10 | ME | INGV bulletin, Bevilacqua et al. [29] |
4 | 26/04/2018 22:53:50 | ME | INGV bulletin, Bevilacqua et al. [29] |
5 | 18/08/2018 15:08:30 | ME | INGV bulletin, Bevilacqua et al. [29] |
6 | 06/12/2018 15:20:00 | ME | INGV bulletin, Bevilacqua et al. [29] |
7 | 25/06/2019 23:03:08 | ME | INGV bulletin, Bevilacqua et al. [29], Calvari et al. [7] |
8 | 03/07/2019 14:45:43 | PA | INGV bulletin, Bevilacqua et al. [29], Calvari et al. [7] |
9 | 13/07/2019 20:33:00 | ME | INGV bulletin, Calvari et al. [7] |
10 | 15/07/2019 19:09:00 | ME | INGV bulletin, Calvari et al. [7] |
11 | 28/08/2019 10:17:20 | PA | INGV bulletin, Bevilacqua et al. [29], Calvari et al. [7] |
12 | 29/08/2019 20:43:18 | ME | INGV bulletin, Calvari et al. [7] |
13 | 19/07/2020 03:00:42 | ME/PA | Bevilacqua et al. (2020), Calvari et al. [7] |
14 | 13/08/2020 14:50:28 | ME | INGV bulletin, Calvari et al. [7] |
15 | 10/11/2020 20:04:21 | ME | INGV bulletin, Calvari et al. [7] |
16 | 16/11/2020 09:17:45 | ME | INGV bulletin, Calvari et al. [7] |
17 | 21/11/2020 00:33:17 | ME | INGV bulletin, Calvari et al. [7] |
18 | 06/12/2020 05:12:44 | ME | INGV bulletin, Calvari et al. [7] |
19 | 01/03/2021 01:33:00 | ME | INGV bulletin |
Event | Optical Satellite Images | S1-SAR Pre-Eruptive | S1-SAR Post-Eruptive |
---|---|---|---|
07/03/2018 12:48:13 | SEVIRI Band 9–07/03/18 12:57 | 03/03/2018 05:04 | 09/03/2018 05:04 |
18/03/2018 19:27:28 | SEVIRI Band 9–18/03/18 19:27 | 15/03/2018 05:04 | 21/03/2018 05:04 |
24/04/2018 09:05:10 | SEVIRI Band 9–24/04/18 09:12 | 20/04/2018 05:04 | 26/04/2018 05:04 |
26/04/2018 22:53:50 | SEVIRI Band 9–26/04/18 22:57 | 26/04/2018 05:04 | 02/05/2018 05:04 |
18/08/2018 15:08:30 | SEVIRI Band 9–18/08/18 15:12 | 18/08/2018 05:04 | 24/08/2018 05:04 |
06/12/2018 15:20:00 | SEVIRI Band 9–06/12/18 15:27 | 04/12/2018 05:04 | 10/12/2018 05:04 |
25/06/2019 23:03:08 | SEVIRI Band 9–25/06/19 23:12 | 20/06/19 05:03 | 26/06/20 05:04 |
03/07/2019 14:45:43 | SEVIRI Band 9–03/07/19 15:12 | 26/06/19 05:04 | 08/07/19 05:04 |
13/07/2019 20:33:00 | SEVIRI Band 9–13/07/19 20:42 | 08/07/2019 05:04 | 14/7/2019 05:04 |
15/07/2019 19:09:00 | SEVIRI Band 9–15/07/19 19:27 | 14/07/2019 05:04 | 20/7/2019 05:04 |
28/08/2019 10:17:20 | VIIRS Band I5–28/08/19 12:14 | 25/08/19 05:04 | 31/08/19 05:03 |
29/08/2019 20:43:18 | SEVIRI Band 9–29/08/19 20:57 | 25/08/19 05:04 | 31/08/19 05:03 |
19/07/2020 03:00:42 | SEVIRI Band 9–19/07/20 04:12 | 14/07/20 05:04 | 20/07/20 05:03 |
13/08/2020 14:50:28 | SEVIRI Band 9–13/08/20 15:12 | 13/08/2020 05:04 | 19/8/2020 05:04 |
10/11/2020 20:04:21 | SEVIRI Band 9–10/11/20 20:12 | 05/11/20 05:04 | 11/11/20 05:04 |
16/11/2020 09:17:45 | SEVIRI Band 9–16/11/20 09:27 | 11/11/20 05:04 | 17/11/20 05:03 |
21/11/2020 00:33:17 | SEVIRI Band 9–21/10/20 00:42 | 17/11/2020 05:04 | 23/11/2020 05:04 |
06/12/2020 05:12:44 | SEVIRI Band 9–16/11/20 05:27 | 05/12/20 05:04 | 11/12/20 05:03 |
01/03/2021 01:33:00 | SEVIRI Band 9–01/03/21 01:57 | 27/02/2021 05:04 | 5/3/2021 05:04 |
Number | Event | PH (m) | EVD (a.u.) | LSTI (°C) | Class |
---|---|---|---|---|---|
1 | 07/03/2018 12:48:13 | 350 | 4.24 | 0.9 | Major Explosion |
2 | 18/03/2018 19:27:28 | 250 | 6.85 | 0.9 | Major Explosion |
3 | 24/04/2018 09:05:10 | 500 | 1.36 | 0.88 | Major Explosion |
4 | 26/04/2018 22:53:50 | 500 | 1.74 | 0.88 | Major Explosion |
5 | 18/08/2018 15:08:30 | 500 | 1.90 | 1.6 | Major Explosion |
6 | 06/12/2018 15:20:00 | 500 | 2.25 | 1.51 | Major Explosion |
7 | 25/06/2019 23:03:08 | 500 | 3.11 | 1.58 | Major Explosion |
8 | 03/07/2019 14:45:43 | 5860 | 12.51 | 2.63 | Paroxysm |
9 | 13/07/2019 20:33:00 | 110 | 0.98 | 2.63 | Major Explosion |
10 | 15/07/2019 19:09:00 | 380 | 1.76 | 2.63 | Major Explosion |
11 | 28/08/2019 10:17:20 | 3140 | 7.21 | 2.44 | Paroxysm |
12 | 29/08/2019 20:43:18 | 350 | 7.21 | 1.17 | Major Explosion |
13 | 19/07/2020 03:00:42 | 750 | 1.66 | 1.67 | Major Explosion |
14 | 13/08/2020 14:50:28 | 550 | 1.11 | 1.54 | Major Explosion |
15 | 10/11/2020 20:04:21 | 600 | 2.29 | 1.82 | Major Explosion |
16 | 16/11/2020 09:17:45 | 1000 | 12.43 | 1.82 | Paroxysm |
17 | 21/11/2020 00:33:17 | 80 | 0.89 | 1.06 | Major Explosion |
18 | 06/12/2020 05:12:44 | 300 | 1.23 | 1.06 | Major Explosion |
19 | 01/03/2021 01:33:00 | 500 | 1.51 | 1.6 | Major Explosion |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corradino, C.; Amato, E.; Torrisi, F.; Calvari, S.; Del Negro, C. Classifying Major Explosions and Paroxysms at Stromboli Volcano (Italy) from Space. Remote Sens. 2021, 13, 4080. https://doi.org/10.3390/rs13204080
Corradino C, Amato E, Torrisi F, Calvari S, Del Negro C. Classifying Major Explosions and Paroxysms at Stromboli Volcano (Italy) from Space. Remote Sensing. 2021; 13(20):4080. https://doi.org/10.3390/rs13204080
Chicago/Turabian StyleCorradino, Claudia, Eleonora Amato, Federica Torrisi, Sonia Calvari, and Ciro Del Negro. 2021. "Classifying Major Explosions and Paroxysms at Stromboli Volcano (Italy) from Space" Remote Sensing 13, no. 20: 4080. https://doi.org/10.3390/rs13204080
APA StyleCorradino, C., Amato, E., Torrisi, F., Calvari, S., & Del Negro, C. (2021). Classifying Major Explosions and Paroxysms at Stromboli Volcano (Italy) from Space. Remote Sensing, 13(20), 4080. https://doi.org/10.3390/rs13204080